
Citation: Kong, J.-W.; Oh, B.-D.; Kim,

C.; Kim, Y.-S. Sequential Brain CT

Image Captioning Based on the

Pre-Trained Classifiers and a

Language Model. Appl. Sci. 2024, 14,

1193. https://doi.org/10.3390/

app14031193

Academic Editors: Charles Tijus,

Kuei-Shu Hsu, Teen-Hang Meen,

Po-Lei Lee and Chun-Yen Chang

Received: 15 December 2023

Revised: 28 January 2024

Accepted: 30 January 2024

Published: 31 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Sequential Brain CT Image Captioning Based on the Pre-Trained
Classifiers and a Language Model
Jin-Woo Kong 1, Byoung-Doo Oh 2 , Chulho Kim 3 and Yu-Seop Kim 1,*

1 Department of Convergence Software, Hallym University,
Chuncheon-si 24252, Gangwon-do, Republic of Korea; kongjw0110@gmail.com

2 Cerebrovascular Disease Research Center, Hallym University,
Chuncheon-si 24252, Gangwon-do, Republic of Korea; iambd822@gmail.com

3 Department of Neurology, Chuncheon Sacred Heart Hospital,
Chuncheon-si 24253, Gangwon-do, Republic of Korea; gumdol52@hallym.or.kr

* Correspondence: yskim01@hallym.ac.kr

Abstract: Intracerebral hemorrhage (ICH) is a severe cerebrovascular disorder that poses a life-
threatening risk, necessitating swift diagnosis and treatment. While CT scans are the most effective
diagnostic tool for detecting cerebral hemorrhage, their interpretation typically requires the expertise
of skilled professionals. However, in regions with a shortage of such experts or situations with time
constraints, delays in diagnosis may occur. In this paper, we propose a method that combines a
pre-trained CNN classifier and GPT-2 to generate text for sequentially acquired ICH CT images.
Initially, CNN undergoes fine-tuning by learning the presence of ICH in publicly available single
CT images, and subsequently, it extracts feature vectors (i.e., matrix) from 3D ICH CT images.
These vectors are input along with text into GPT-2, which is trained to generate text for consecutive
CT images. In experiments, we evaluated the performance of four models to determine the most
suitable image captioning model: (1) In the N-gram-based method, ReseNet50V2 and DenseNet121
showed relatively high scores. (2) In the embedding-based method, DenseNet121 exhibited the
best performance. (3) Overall, the models showed good performance in BERT score. Our proposed
method presents an automatic and valuable approach for analyzing 3D ICH CT images, contributing
to the efficiency of ICH diagnosis and treatment.

Keywords: intracerebral hmorrhage; medical image captioning; deep learning; convolutional neural
network; GPT-2

1. Introduction

Intracerebral hemorrhage (ICH) is a severe cerebrovascular disorder where blood
vessels within the brain rupture, leading to bleeding in the brain tissue. It accounts for
10–30% of strokes and exhibits high incidence and mortality rates. Additionally, the brain
tissue is highly sensitive, so when bleeding occurs, the tissue can easily be damaged,
potentially impairing or even halting brain function, posing a direct threat to the patient’s
life [1–5]. ICH is primarily diagnosed by analyzing computed tomography (CT) images.
This is because CT images sequentially capture images from the beginning to the end of the
target, enabling precise confirmation of the presence and location of ICH and facilitating
rapid examinations. However, if the diagnosis is delayed, increased pressure within
the brain can lead to a higher likelihood of the bleeding area expanding, exacerbating
neurological damage. Missing the opportune time for treatment may result in complications
due to bleeding, increasing the probability of additional medical issues [4–7].

Furthermore, the analysis of CT images requires technical expertise, experience, and
knowledge. Recent studies worldwide have reported additional challenges, including (1) a
fourfold increase in the workload of radiologists from 2006 to 2020 [8]; (2) the potential
decrease in the accuracy of CT image analysis due to the increased workload [9]; (3) a

Appl. Sci. 2024, 14, 1193. https://doi.org/10.3390/app14031193 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14031193
https://doi.org/10.3390/app14031193
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9426-6541
https://orcid.org/0000-0001-8762-8340
https://orcid.org/0000-0003-1645-4173
https://doi.org/10.3390/app14031193
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14031193?type=check_update&version=1


Appl. Sci. 2024, 14, 1193 2 of 15

minimum of 30 min required by radiologists to write an interpretation report after analyzing
CT images [10]. Therefore, there is a growing effort in research for the image captioning-
based automation of medical image analysis to assist physicians by reducing the time
required for radiologists to write interpretation reports and streamlining the diagnostic
and treatment processes [11–17].

Studies have used MIMIC-CXR [18], Open-I [19], MS-COCO [20], and ImageCLEF [21]
datasets, which are publicly available training datasets for various types of medical images,
as well as chest X-ray images. Reference [11] designs three encoders to extract the following
feature vectors: (1) visual feature vector (using VGG-16 [22]): vector representation for
medical images, (2) semantic feature vector (using VGG-16): vector representation for
the classification results and information about the imaging method of medical images,
(3) caption vector (using NLTK [23]): vector representation for captions about medical
images. These encoder vectors are concatenated and fed into a decoder, which is LSTM (long
short-term memory [24]), to generate texts through a beam search method. Reference [12]
developed an encoder–decoder architecture using SAT (Show Attend and Tell [25]), a
caption generation model for medical images, and GPT-3 [26] as the encoder and decoder
to perform text generation for chest X-ray images. Firstly, the SAT encoder generates text
for medical images. Then, the GPT-3 decoder is pre-trained with the MIMIC-CXR dataset
and fine-tuned with the text of the SAT. Reference [13] modified the CNN encoder of SAT
to ResNet-101 and generated texts for medical images through this change. Reference [14]
used a pre-trained ResNet34 [27] to represent feature vectors for medical images and
applied the MLC (multi-label classification) method to predict the most relevant words
from the text. This involves selecting the top-ranked words from the classified words and
generating the final caption by arranging them according to statistical rules.

In Reference [15], the encoder is composed of an ensemble learning model using
various pre-trained CNN-based models and k-NN (k = 1) [28], while the decoder employs
GPT-2 [29]. The authors experimented with various combinations of pre-trained CNN-
based models to design a combined encoder as follows: DenseNet [30], InceptionV3 [31],
InceptionResNetV2 [32], and Xception [33] (each model is ensembled with 1-NN). At this
time, they generated text for medical images using the Voting ensemble learning method.
Reference [16] generated texts for fetal ultrasound videos. In this case, the encoder uses the
VGG-16 CNN model to represent feature vectors for each frame, and a gaze-assisted model
is employed to extract gaze maps for each frame. Then, residual connections are performed
for the extracted feature vectors and gaze maps, which are then passed to the decoder, a
convolutional LSTM, to generate text.

Reference [17] proposes a 3D CT scan captioning model with an encoder–decoder structure,
where the encoder is a 3D CNN model and the decoder is a distilGPT-2 language model. The
model is trained end-to-end using an encoder–decoder strategy to generate medical interpre-
tation texts for 3D ICH CT images. Among the proposed models, the one that utilizes an
EfficientNet-B5 encoder converted to 3D CNN and employs the beam search text generation
strategy achieves an average BLEU score of 0.35. But, the 3D CNN typically used for video
captioning considers both spatial and temporal dimensions, which leads to high computa-
tional costs and an increased number of model parameters, potentially increasing the risk of
overfitting [34]. On the other hand, 2D CNN considers only the spatial features of the image,
resulting in lower computational costs and a reduced number of parameters, decreasing the risk
of overfitting. Moreover, it excels at extracting structural features from CT images.

Therefore, most image captioning research for medical images has been carried out
targeting single medical images (2D images), and it is challenging to find studies focusing
on sequentially appearing medical images (3D images) like videos or CT scans (3D CT
images). Therefore, there is a need for automated text generation technology capable
of processing 3D ICH CT images to improve the diagnostic efficiency and accuracy of
ICH. However, specialized models for handling image and text data have the following
limitations. CNN models excel in image classification and feature extraction but lack the
ability to consider context and sequence when generating sentences. On the other hand,
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sequence models like GPT-2 are suitable for sequential data like text or time series but
struggle to handle spatial information found in images. Therefore, integrating CNN models
which excel in feature extraction with sequence models which are suitable for sequential
data may be effective in CT image captioning task.

In this paper, we propose a method to alleviate the burden of analyzing and interpret-
ing CT images for medical professionals by utilizing pre-trained CNN-based classifiers
and the language model GPT-2 on 2D images. The goal is to reduce the time required
for analysis and report writing, focusing on automatically generating text for sequential
brain CT images. First, we make CNN-based classifiers using 2D CNN which has strengths
in extracting visual features. The CNN-based classifier undergoes fine-tuning using the
Kaggle dataset [35] for ICH multi-classification based on brain CT images. In this case, the
utilized pre-trained 2D CNN models were ResNet-50V2 [27], DenseNet-121 [30], VGG-16,
and VGG-19 [22]. ResNet and DenseNet can be expected to achieve accurate classification
performance on CT images by learning fine features and detailed information through resid-
ual connections and dense connections [36]. Additionally, VGG, with its simple yet effective
structure, has the advantage of learning various features in CT image classification [37].

Then, the fine-tuned CNN-based classifier serves as the encoder for feature extrac-
tion and passes the feature matrix to GPT-2 as follows: it extracts feature vectors from
frame-level images of 3D ICH CT images and integrates these vectors into a single matrix
(e.g., token embedding). This matrix is then transmitted along with the corresponding text
to train GPT-2 to generate text for 3D ICH CT images. By this, the proposed model can per-
form like an integrated model with strengths of CNN models and sequence models. Finally,
we performed a performance evaluation on the proposed model using N-gram-based met-
rics (BLEU [38], METEOR [39], ROUGE [40], and CIDEr [41]) and embedding-based metrics
(skip-thought [42], embedding average, vector extrema [43], and greedy matching [44]) to
compare the generated text from test images with reference text. Also, we assessed the
drawbacks of the two metrics through the secured BERT score [45].

This paper is structured as follows: Section 2 presents the data collection and pre-
processing methods for training the fine-tuned CNN classifier and for collecting and
preprocessing data for CT image captioning. In Section 3, a detailed explanation of the
structures of the CNN classifier and GPT-2, along with hyperparameters, is provided.
Section 4 describes the evaluation metrics used and discusses the performance of the CNN
classifier along with the results of the evaluation metrics. Section 5 concludes the work by
detailing the results and findings of this paper.

2. Dataset
2.1. Fine-Training for Classifier

While we have sequential brain CT images and corresponding text data, there is a
shortage of data to pre-train the CNN classification model from brain CT images. Therefore,
we performed fine-tuning using the ICH CT images and the corresponding ICH multi-
classification dataset available on Kaggle.

The brain CT images are in DICOM format with meta-information, as shown in
Figure 1, and the labels indicating the presence of ICH subtypes for each given image are
recorded in CSV format. The subtypes of ICH include the following: intraparenchymal,
intraventricular, subarachnoid, subdural, and epidural. The ICH CT images are in DICOM
format, as illustrated in Figure 1, with metadata included. Labels indicating the presence of
ICH subtypes for a given image are recorded in CSV format. The subtypes of ICH include:
intraparenchymal, intraventricular, subarachnoid, subdural, and epidural.

Using the metadata from Figure 1, pixel-formatted images are adjusted for brightness
and contrast by windowing [46] with window center, window width, intercept, and slope
data, emphasizing ICH more clearly. Subsequently, the images are resized to 224 × 224
(width × height) dimensions, and then formatted into PNG. The labels are modified, with
normal brain CT images assigned 0, and ICH subtypes of brain CT images assigned 1. Due
to a significant difference in the number of normal brain CT images (640k) and images
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with the presence of ICH (107k), there is a potential for bias in the training data. Therefore,
we randomly selected 150k normal brain CT images and trained the model alongside
images containing ICH. Out of the total 257,932 images, 145,807 were used for training,
48,362 for validation, and finally, 64,483 for assessing the model’s accuracy. This approach
allows us to train the model without bias in the training data and validate and evaluate its
performance effectively.
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Figure 1. The preprocessing process for DICOM images containing meta-information. The size of CT
images is 512 × 512, with a window center of 47, window width of 80, intercept of −1024, and slope
of 1.0 applied for windowing. The images were resized to 224 × 224.

2.2. Image Captioning

We used CT scans and corresponding text for a total of 10,368 ICH patients from Chun-
cheon Sacred Heart Hospital (https://chuncheon.hallym.or.kr/, accessed on 14 December
2023) and Hallym University Sacred Heart Hospital (https://hallym.hallym.or.kr/, accessed
on 14 December 2023) in South Korea. These data are also in DICOM format and processed
in the same way as Kaggle data.

Text data, when generated, have the potential risk of violating an individual’s privacy
and breaching medical confidentiality, leading to the possibility of leakage of patient
information. Therefore, in this study, all sensitive information, including personal details,
was removed in advance, and the following preprocessing steps were undertaken: removal
of special characters, conversion to lowercase, elimination of non-English characters, etc.
Out of the 10,368 CT scans, 9330 were used for training, 519 for testing, and 518 for
validation during the training process to assess the model’s performance.

3. Methodology
3.1. Pre-Trained CNN Based Classifier

The automatic text generation model for ICH CT images proposed in this study is
depicted in Figure 2. Firstly, pre-trained CNN models are fine-tuned for binary classification
tasks, as shown in Figure 3.
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Figure 3. Fine-tuning the pre-trained CNN.

The pre-trained CNN has an input layer of size 224 × 224, and a fully-connected
layer with a size of 1024 is added for fine-tuning, just before the output layer, to ensure the
extraction of features of the same size before the output layer. Following this, it learns the
presence of ICH from preprocessed Kaggle image data. During training for text generation,
we use the architecture excluding the last layer responsible for classification, referred to
as the CNN encoder. In this context, we compare and analyze the performance using the
following four fine-tuned CNNs to determine a suitable encoder architecture:

• ResNet-50V2 is a lightweight and efficient model compared to its predecessor, ResNet-50.
It utilizes residual connections to improve the learning process by adding skip con-
nections, which add the feature maps extracted from the previous layer to the input
of the next layer. This increases the depth of the network, showcasing improved
performance during the training process. The architecture of ResNet-50V2, depicted
in Figure 4, incorporates pretrained weights that enhance the performance in training
with low-resource data, making it adept at feature extraction for untrained data such
as medical images. The hyperparameters used in ResNet-50V2 are as follows: the
initial layer consists of a 2D convolution layer with a 7 × 7 kernel size and 64 filters,
followed by batch normalization and ReLU activation functions. Subsequently, a
3 × 3 max-pooling layer with a stride of 2 is added. The following layers include
four residual blocks. The first block has 64 filters and a stride of 2, the second block
has 128 filters and a stride of 2, the third block has 256 filters and a stride of 2, and the
fourth block has 512 filters with a stride of 1.
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Figure 4. ResNet-50V2 architecture, the value before each block is connected to the value after the
block through a simple addition in residual connections.

• DenseNet-121 is structured with dense blocks and transition layers, utilizing a se-
quence of convolution layers and skip connections. While ResNet forms a pathway by
connecting the immediate layer with an element-wise addition, DenseNet densely con-
nects layers as it goes deeper, employing channel-wise concatenation. The dense block
forms dense connections between internal layers, enhancing feature extraction and
the ability to reuse information. The transition layer adjusts the size of feature maps,
maintaining the efficiency of the model. In addition, through the dense connection
structure, features between layers accumulate, enabling the extraction of optimized
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features for subtle changes or patterns related to ICH. The architecture of DenseNet-
121 is depicted in Figure 5, and the hyperparameters used are as follows: the first
layer uses a 7 × 7 kernel size with 64 filters, along with batch normalization and ReLU
activation functions. Furthermore, the transition layer consists of a 1 × 1 convolution
layer and a 2 × 2 average pooling layer.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 15 
 

 
Figure 4. ResNet-50V2 architecture, the value before each block is connected to the value after the 
block through a simple addition in residual connections. 

• DenseNet-121 is structured with dense blocks and transition layers, utilizing a se-
quence of convolution layers and skip connections. While ResNet forms a pathway 
by connecting the immediate layer with an element-wise addition, DenseNet densely 
connects layers as it goes deeper, employing channel-wise concatenation. The dense 
block forms dense connections between internal layers, enhancing feature extraction 
and the ability to reuse information. The transition layer adjusts the size of feature 
maps, maintaining the efficiency of the model. In addition, through the dense con-
nection structure, features between layers accumulate, enabling the extraction of op-
timized features for subtle changes or patterns related to ICH. The architecture of 
DenseNet-121 is depicted in Figure 5, and the hyperparameters used are as follows: 
the first layer uses a 7 × 7 kernel size with 64 filters, along with batch normalization 
and ReLU activation functions. Furthermore, the transition layer consists of a 1 × 1 
convolution layer and a 2 × 2 average pooling layer. 

 
Figure 5. DenseNet-121 architecture, all convolutional layers within the dense block are densely 
connected by concatenation until they input into the transition layer. 

• VGG-16 consists of 16 layers, comprising 13 convolution layers and 3 fully connected 
layers. The distinctive feature of VGG-16 is its deep structure and the use of small 
filter sizes. VGG-16 is a simple yet powerful model primarily employed in computer 
vision tasks, capable of extracting rich features due to its very deep network archi-
tecture. This feature extraction ability enables the detection and extraction of various 
features of ICH, deriving relevant information. The architecture of VGG-16 is de-
picted in Figure 6, and the hyperparameters used are as follows: all convolution lay-
ers have a 3 × 3 kernel size with ReLU activation functions applied. Max pooling lay-
ers reduce the size of feature maps using a 2 × 2 kernel with a stride of 2. The fully 
connected layer consists of three dense layers with ReLU activation functions. 

 
Figure 6. VGG-16 architecture. 

Figure 5. DenseNet-121 architecture, all convolutional layers within the dense block are densely
connected by concatenation until they input into the transition layer.

• VGG-16 consists of 16 layers, comprising 13 convolution layers and 3 fully connected
layers. The distinctive feature of VGG-16 is its deep structure and the use of small filter
sizes. VGG-16 is a simple yet powerful model primarily employed in computer vision
tasks, capable of extracting rich features due to its very deep network architecture.
This feature extraction ability enables the detection and extraction of various features
of ICH, deriving relevant information. The architecture of VGG-16 is depicted in
Figure 6, and the hyperparameters used are as follows: all convolution layers have a
3 × 3 kernel size with ReLU activation functions applied. Max pooling layers reduce
the size of feature maps using a 2 × 2 kernel with a stride of 2. The fully connected
layer consists of three dense layers with ReLU activation functions.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 15 
 

 
Figure 4. ResNet-50V2 architecture, the value before each block is connected to the value after the 
block through a simple addition in residual connections. 

• DenseNet-121 is structured with dense blocks and transition layers, utilizing a se-
quence of convolution layers and skip connections. While ResNet forms a pathway 
by connecting the immediate layer with an element-wise addition, DenseNet densely 
connects layers as it goes deeper, employing channel-wise concatenation. The dense 
block forms dense connections between internal layers, enhancing feature extraction 
and the ability to reuse information. The transition layer adjusts the size of feature 
maps, maintaining the efficiency of the model. In addition, through the dense con-
nection structure, features between layers accumulate, enabling the extraction of op-
timized features for subtle changes or patterns related to ICH. The architecture of 
DenseNet-121 is depicted in Figure 5, and the hyperparameters used are as follows: 
the first layer uses a 7 × 7 kernel size with 64 filters, along with batch normalization 
and ReLU activation functions. Furthermore, the transition layer consists of a 1 × 1 
convolution layer and a 2 × 2 average pooling layer. 

 
Figure 5. DenseNet-121 architecture, all convolutional layers within the dense block are densely 
connected by concatenation until they input into the transition layer. 

• VGG-16 consists of 16 layers, comprising 13 convolution layers and 3 fully connected 
layers. The distinctive feature of VGG-16 is its deep structure and the use of small 
filter sizes. VGG-16 is a simple yet powerful model primarily employed in computer 
vision tasks, capable of extracting rich features due to its very deep network archi-
tecture. This feature extraction ability enables the detection and extraction of various 
features of ICH, deriving relevant information. The architecture of VGG-16 is de-
picted in Figure 6, and the hyperparameters used are as follows: all convolution lay-
ers have a 3 × 3 kernel size with ReLU activation functions applied. Max pooling lay-
ers reduce the size of feature maps using a 2 × 2 kernel with a stride of 2. The fully 
connected layer consists of three dense layers with ReLU activation functions. 

 
Figure 6. VGG-16 architecture. Figure 6. VGG-16 architecture.

• VGG-19 is a model with a structure similar to VGG-16, but it has a more complex
architecture with additional layers, allowing it to learn more intricate features. It
consists of 19 layers, with an additional convolution layer in each of the third, fourth,
and fifth blocks compared to VGG-16. The inclusion of these three extra convolution
layers in VGG-19 enables it to learn more complex features of ICH and recognize
a greater variety of detailed patterns. The architecture of VGG-19 is illustrated in
Figure 7, and the hyperparameters used are as follows: it comprises 16 convolution
layers with 3 × 3 filter sizes and 3 fully connected layers.
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Following this, frame-level feature vectors of 3D ICH CT images are extracted from the
CNN encoder with the output layer excluded for feature extraction. These vectors are then
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merged into a feature matrix. The merged feature matrix is adjusted to a size of 74 × 1024,
aligning with the largest number of frames among the 3D ICH CT images. This structure is
consistent with token embeddings generated from text. GPT-2 is trained to generate text for
consecutive CT images using the feature matrix and corresponding text. Finally, the trained
GPT-2 is used to predict and generate text for test 3D ICH CT images. The generated text is
evaluated by comparing it with the reference text for the test CT images.

3.2. GPT-2

In this study, GPT-2 was utilized due to computer resource constraints. GPT-2 is the
second model in the widely used GPT series in the field of natural language processing. This
model is based on the transformer architecture, using the attention mechanism to capture
relationships between words in a sentence. This enables it to effectively learn correlations
among words that are farther apart in a sentence, leveraging the advantages of RNN and
LSTM-based models while enhancing computational efficiency through parallel processing.
By training GPT-2 on the features of 3D ICH CT images and language information, it could
enhance the understanding of ICH for medical professionals and patients. Also, it might
assist in predicting the likelihood of ICH, proposing hypotheses considering symptoms
and related factors, thus aiding in further examinations or evaluations.

Figure 8 illustrates the process of training GPT-2 using the extracted and merged
feature matrix from the CNN encoder and the corresponding text. The input to GPT-2
consists of embedding vectors for tokens that include positional encoding. This vector
sequence is transformed into Query (Q) vectors representing current positional information,
Key (K) vectors measuring relationships between different positions, and Value (V) vectors
containing actual information. These vectors generate attention scores through masked
multi-head attention, applying masking with a Lookahead mask to conceal information
beyond the current position. The generated attention scores pass through the SoftMax
function to calculate attention weights. After passing through the input embedding and
residual connection, layer normalization is performed. Subsequently, the generated vectors
are utilized as Q vectors in multi-head attention, and the merged feature matrix created
through the CNN encoder serves as K and V vectors (i.e., cross-attention). Q, K, and V
vectors are transformed into vectors with the same dimension, which is the embedding
dimension divided by the number of transformer heads. The input vectors then undergo the
calculation of attention weights, followed by residual connection and layer normalization.
Finally, they pass through the position-wise feed-forward neural network, and residual
connection and layer normalization are applied. This entire process is repeated for the
number of decoders (n = 16).
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The GPT-2 architecture utilized in this study consists of 6 transformer blocks, with an
additional 4 layers added to the existing 12 decoder layers. Each decoder layer employs
6 multi-head attention modules. Finally, the test data undergo automatic text generation
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using GPT-2 based on the corresponding feature vectors. The generated text is then
evaluated for performance by comparing it with the reference text from the test data,
utilizing 8 evaluation metrics and BERT scores. Text generation employs beam search and
greedy search methods. Beam search is a sequence-decoding strategy that explores the
global optimum by maintaining multiple candidates simultaneously, considering various
options to enhance the results. In contrast, greedy search is a sequential decoding strategy
that is computationally faster than beam search. It considers only the choice with the
highest score at each step, sequentially determining the sequence.

4. Experiments
4.1. Experimental Setup

All models were implemented with TensorFlow in Python3 and were run in an envi-
ronment with two NVIDIA A5000 GPUs (Nvidia Corporation, Santa Clara, CA, USA). The
training took approximately 17.5 h. Inference using test data took approximately 4.5 h.

To ensure that all fine-tuned CNNs undergo training under the same conditions, the
following parameters were considered: the loss function is binary cross-entropy and the
optimization algorithm is Adam optimizer [47]. The batch size was set to 64, and the
learning rate was set to 1 × 10−5. Training proceeded for 300 epochs, with early stopping
configured to halt training if the validation data loss did not decrease for 15 consecutive
epochs. The GPT-2 transformer block employed 768 embedding dimensions, and the
vocabulary size was 5000, indicating that the model was trained on a dataset containing
5000 unique tokens.

The total number of parameters in GPT-2 was 168M, with a batch size of 16 and a
learning rate set to 1 × 10−5. The loss function was the SparseCategoricalCrossentropy
function from Keras, and the optimization algorithm was the Adam optimizer. Training
spanned 300 epochs, with early stopping configured to halt training if the validation data
loss did not decrease for 20 consecutive epochs. The text generated by GPT-2 was limited
to a maximum caption length of 200 words.

4.2. Evaluation Metrics
4.2.1. N-Gram-Based Evaluation Metrics

N-gram is a method of dividing text or sentences into consecutive N tokens to analyze
the frequency and order of each unit. Therefore, N-gram-based evaluation metrics assess
how well N-gram units in the reference text match those in the generated text. In this paper,
the following four metrics were used: BLEU, METEOR, ROUGE_L, and CIDEr.

BLEU [38] is a metric for evaluating the quality of machine-generated sentences. It
calculates N-gram precision by comparing the output of a machine translation system with
reference translation sentences, combining them with harmonic mean to compute a score.
The calculated score measures how similar the predicted sentences are to the reference
sentences, providing a method to assess the performance of the translation. METEOR [39]
operates similarly to BLEU but maps words in generated sentences to words in reference
sentences, evaluating how accurately they follow the order and structure. It considers the
quality of sentences by penalizing for incorrect order, considering the meaning and structure
of the sentences. ROUGE_L [40] finds the structurally similar longest common subsequence
(LCS) between the generated sentence and the reference sentence to measure the similarity
between sentences. CIDEr [41] introduces weights for each N-gram to evaluate the match
between the generated text and reference sentences. Initially, it sums the weights for all
reference sentences, then calculates the average by dividing the total by the number of
reference sentences to determine the average matching degree between reference sentences.
Subsequently, it computes the average for the matching degree between the generated text
and reference sentences, resulting in the final score.
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4.2.2. Embedding-Based Evaluation Metrics

Embedding is a technique that maps words or tokens to high-dimensional vectors. It
aims to capture semantic relationships between words, ensuring that words with similar
meanings are positioned closer in the vector space. Consequently, embedding-based metrics
assess the semantic similarity between reference and generated texts. In this paper, the
following four metrics were utilized: skip-thought, embedding average, vector extrema,
and greedy matching. These metrics evaluate the semantic similarity between the reference
and generated texts based on their meanings.

Skip-thought [42] is an LSTM-based language model that generates sentence-level
embeddings and is structured as an encoder–decoder architecture. The encoder encodes
the given input sentence, and the decoder predicts the next sentence that follows the
input sentence. The similarity between the input sentence and the predicted next sentence
is measured. Embedding average is a method of representing a sentence’s embedding
vector by taking the average of the embedding vectors for each word in the sentence. This
approach retains information about the words within the sentence and can encapsulate the
meaning and grammatical structure of the sentence. Thus, embedding average measures
the similarity of embedding vectors between two sentences. Equation (1) illustrates the
evaluation method using embedding average, where eS represents the average of word
embeddings for each token in sentence S.

eS = ∑w∈S ew

|∑w′∈ S ew′ |
Embedding average := cos_sim(eS, eS′)

(1)

Vector extrema [43] selects the value that is furthest from 0 among the maximum
and minimum values in the embedding vector to generate a representative value for a
sentence. Using cosine similarity, this generated value for the reference sentence and the
predicted sentence is used to measure their similarity. In greedy matching [44], given a
predicted sentence and a reference sentence, the word embeddings of each word in the
predicted sentence calculate the maximum similarity score among all word embeddings in
the reference sentence. Conversely, the word embeddings of each word in each reference
sentence calculate the maximum similarity score among all word embeddings in the
predicted sentence. The two values are then added, averaged, and used to measure the
similarity between the two sentences.

4.2.3. BERT Score

BERT score [45] is a sentence similarity metric that effectively combines the advantages
of N-gram-based metrics and embedding-based metrics using BERT [48]. The BERT score
involves inputting both the reference and predicted sentences into the BERT model to obtain
contextual embeddings. These embeddings are then used to create a similarity matrix using
cosine similarity for each token pair. The generated matrix calculates precision through
column-wise max pooling and recall through row-wise max pooling. F1 is computed from
the calculated recall and precision.

4.3. Experiment Results

Table 1 presents the performance evaluation results of the fine-tuned CNN classifier
on the publicly available Kaggle data. VGG-19 achieved the highest precision at 0.94, while
VGG-16 showed the highest recall at 0.89. All fine-tuned CNN classifiers demonstrated
a high F1 score and accuracy of around 90%, indicating successful training. Next, we
evaluated the performance of the four fine-tuned CNN classifiers and the GPT-2-based
image captioning model on generated text. We assessed performance using N-gram-based
evaluation metrics and embedding-based evaluation metrics, as shown in Tables 2 and 3.
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Table 1. Performance comparison with four fine-tuned CNN classifiers.

Classifiers Precision Recall F1-Score Acc

ResNet-50V2 0.93 0.87 0.90 0.92
DenseNet-121 0.93 0.86 0.89 0.91

VGG-16 0.92 0.89 0.90 0.92
VGG-19 0.94 0.86 0.90 0.92

Table 2 shows the performance evaluation results for N-gram-based metrics (BLEU,
METEOR, ROUGE_L, CIDEr). DenseNet-121 exhibited relatively high scores in BLEU and
METEOR. While ResNet-50V2 had lower BLEU scores compared to DenseNet-121, the
difference was not substantial, and it showed high scores in ROUGE_L and CIDEr. Despite
VGG-16 and VGG-19 demonstrating high classification accuracy, as seen in Table 1, they
exhibited lower performance in N-gram-based evaluations.

Table 2. Evaluation scores based on the N-gram metrics for the final model. (B1 to B4: BLEU, B@4:
average of B1 to B4, M: METEOR, R_L: ROUGE_L, C: CIDEr, B: beam search (n = 3), G: greedy search).

Models
(With GPT-2) B1 B2 B3 B4 B@4 M R_L C

ResNet-50V2
B 0.27 0.19 0.16 0.13 0.18 0.14 0.30 0.38
G 0.25 0.19 0.15 0.13 0.18 0.13 0.30 0.36

DenseNet-121
B 0.28 0.21 0.17 0.14 0.20 0.14 0.28 0.25
G 0.28 0.21 0.17 0.14 0.20 0.14 0.29 0.27

VGG-16
B 0.20 0.14 0.12 0.10 0.14 0.10 0.21 0.18
G 0.20 0.15 0.12 0.10 0.13 0.09 0.20 0.16

VGG-19
B 0.21 0.16 0.13 0.11 0.12 0.10 0.23 0.16
G 0.21 0.16 0.13 0.10 0.12 0.10 0.23 0.17

Table 3 presents another set of metrics, including skip-thought, embedding average,
vector extrema, and greedy matching score, which calculate the cosine similarity between
the embeddings of predicted and reference sentences. The model utilizing DenseNet-121
encoder achieved the highest scores in each embedding metric: 0.54 in skip-thought, 0.71
in embedding average, 0.46 in vector extrema, and 0.63 in greedy matching. It consistently
displayed high scores in N-gram-based metrics as well. This indicates that DenseNet-121’s
feature representation benefits from the densely connected nature of its layers, enabling it to
capture complex patterns more effectively. The deeper layers contribute to the accumulation
and reuse of more features, resulting in the observed high-performance outcomes [49].

Table 3. The embedding-based metric evaluation scores of the final model. (ST: skip-thought, EA: em-
bedding average, VE: vector extrema, GM: greedy matching, B: beam search (n = 3), G: greedy search).

Models
(+GPT-2) ST EA VE GM

ResNet-50V2
B 0.51 0.69 0.44 0.63
G 0.51 0.69 0.44 0.63

DenseNet-121
B 0.54 0.71 0.46 0.63
G 0.54 0.71 0.45 0.63

VGG-16
B 0.51 0.66 0.42 0.59
G 0.51 0.66 0.42 0.60

VGG-19
B 0.50 0.66 0.41 0.59
G 0.51 0.67 0.44 0.59
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N-gram-based evaluation metrics are effective in capturing local patterns but have
limitations in handling long sentences or diverse vocabularies, posing challenges in terms
of vocabulary diversity and context representation. Moreover, due to a fixed number of
previous tokens, they might struggle with capturing long-term dependencies, considering
only partial sequence information, and potentially limiting the model’s understanding and
prediction of context.

Embedding-based evaluation metrics measure performance on specific tasks but do
not provide insights into how well a model performs in different tasks or domains. This
limitation hinders the evaluation of a model’s generalization ability. Embeddings are
learned automatically based on the training data, and if the data are biased or contain
limited information, the learned embeddings may reflect this bias, leading to a decrease in
model performance when applied to new data or domains.

BERT score is an evaluation metric designed to leverage the strengths of both metrics
while addressing their shortcomings. Table 4 presents the evaluation scores using BERT
score. The employed BERT model is PubMedBERT [50], and the results show high per-
formance across precision, recall, and F1 scores, all reaching 80%, in evaluating sentence
similarity based on contextual information.

Table 4. BERT score of the final model utilizing PubMedBERT.

PubMedBERT Precision Recall F1-Score

ResNet50V2 + GPT2 0.83 0.81 0.82
DenseNet121 + GPT2 0.80 0.80 0.80

VGG16 + GPT2 0.82 0.80 0.81
VGG19 + GPT2 0.81 0.80 0.80

Table 5 displays the text generated from 3D ICH CT images by the final model,
combining each CNN encoder and GPT-2. In the generated sentences, words unrelated to
the reference sentences are marked in red, words semantically similar to ICH are marked
in blue, and accurately generated words are marked in purple. When comparing the
reference sentences with the generated ones, ResNet-50V2 failed to produce sentences
mentioning the incorrect location and ICH, but accurately generated key information about
subdual hematoma (SDH) and brain herniation. Both DenseNet-121 and VGG-16 did not
generate sentences related to ICH but produced text related to lacunar infarctions and
SAH, resembling ICH in the CT images. VGG-19 generated sentences related to ICH but
appeared to confuse SDH with ICH and generated ICH as lacunar infarctions.

Table 5. Text generated from the final model (red: words generated differently from the ground truth,
blue: words semantically similar to ICH, purple: words generated identical to the ground truth).

Ground Truth ResNet50V2 + GPT2 DenseNet121 + GPT2 VGG16 + GPT2 VGG19 + GPT2

SDH right fronto
temporo parietal ICH
right temporo parietal

brain herniation,
otherwise no
demonstrable

abnormal finding.

SDH left fronto
parietal with brain

herniation, otherwise
no demonstrable

abnormal finding.

SDH right fronto
temporo parietal and
right tentorium small
vessel disease with
lacunar infarctions,

otherwise no
demonstrable

abnormal finding.

SDH right fronto
temporo parietal and

falx SDH, otherwise no
demonstrable

abnormal finding.

SDH in left basal
ganglia small vessel
disease with lacunar
infarctions, otherwise

no demonstrable
abnormal finding.

4.4. Discussion

Unlike the classification performance shown in Table 1, VGG-16 and VGG-19 exhibit
lower scores in the N-gram-based metric evaluations of Table 2. On the other hand,
ResNet-50V2 and DenseNet-121 generate text with higher scores compared to VGG-16
and VGG-19. This difference highlights the correlation between the model’s architecture
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and the complexity of the task it aims to perform. ResNet-50V2 and DenseNet-121 can
effectively capture complex patterns and features through residual and dense connections.
Moreover, they can efficiently learn and generalize complex features with fewer parameters.
In text generation tasks, the importance of contextual coherence and semantic consistency
is highly significant. In this context, it can be observed that ResNet-50V2 and DenseNet-121
possess architectures that consider features while simultaneously extracting and utilizing
consistent features. In contrast, the lower performance of VGG in N-gram-based metric
evaluations suggests a lack of contextual understanding in the model [51,52]. However, it
can be observed that these scores do not differ significantly from the results of generating
text through a single medical image [53].

Similar to our study, Reference [17] trained the encoder and decoder together, requiring
both normal and ICH patients to go through the text generation process. In contrast, our
study allows for the pre-confirmation of normal patients in the encoder section, enabling
faster patient classification. Furthermore, when generating text using only data from ICH
patients, the performance in terms of B@4, METEOR, and ROGUE-L is very similar to the
performance when using DenseNet-121 as the encoder. This suggests that comparable
performance can be expected with fewer resources, indicating better efficiency.

The fine-tuned CNN learned only the presence or absence of ICH. However, as seen
in Table 4, it can be observed that the model generates words related to diseases other
than ICH. This may be attributed to the fact that the fine-tuned CNN has learned both
normal and abnormal brains and has discriminated features beyond ICH. And the scores
obtained through the BERT score showed a consistently high accuracy of 80%, unlike other
evaluation metrics. This suggests that PubMedBERT, pre-trained on extensive textual data
in the medical field, exhibited outstanding performance in generating text.

The approach we proposed has the advantage of leveraging features from sequential
images and textual information, but it also has the following limitations: (1) training and ex-
ecution are more complex; (2) insufficient data may compromise the model’s performance;
(3) GPT-2 relies on the feature vectors from the CNN encoder during training, making the
representational capability of the CNN encoder crucial. However, ongoing data collection
and technological advancements can enhance the performance of both the CNN encoder
and GPT-2. Moreover, due to the absence of a gold standard dataset, it is challenging
to objectively evaluate superiority. Given the medical context, the most significant con-
cern in text generation is the Hallucination problem, which should be evaluated from a
clinical perspective.

5. Conclusions

In this paper, we propose a method for automatically generating text from sequential
brain CT images using a pre-trained CNN and the language model GPT-2, focusing on
2D images. We fine-tuned four types of pre-trained CNN classifiers, combined the CNN
encoder up to the layer extracting features from the fine-tuned CNN classifier with GPT-2,
and explored suitable models for the task.

Firstly, the fine-tuned CNN classifiers, trained and tested on publicly available datasets,
all exhibited high accuracy, surpassing 90%. Furthermore, regarding the generation of text
for continuous brain CT images combined with GPT-2, ResNet and DenseNet exhibited
excellent performance in terms of both similarity to the actual answers (N-gram-based
evaluation metric) and semantic aspects (embedding-based evaluation metric). Addition-
ally, utilizing PubMedBERT for BERT score, the models achieved outstanding results in
generating sentences relevant to the medical field.

In the future, we will augment the objective evaluation of our proposed method by
conducting a direct assessment from radiologists, evaluating aspects such as the model’s
stability, consistency, and clinical relevance. Additionally, we will explore the following
methods to improve model performance: (1) the multimodal method that integrates data
other than CT images; (2) utilization of advanced models such as medical imaging-specific
CNN and GPT-3 to determine the structural characteristics of ICH and the linguistic
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characteristics of the text more accurately. Through these efforts, we anticipate that our pro-
posed method could assist radiologists in swiftly identifying various conditions, including
intracranial hemorrhage (ICH), and making informed treatment decisions.
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