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Abstract: Mitigating low-frequency noise in various industrial applications often involves the use of
the filter-x least mean squares (FxLMS) algorithm, which relies on the mean square error criterion. This
algorithm has demonstrated effectiveness in reducing noise induced by Gaussian noise within noise
control systems. However, the performance of this algorithm experiences significant degradation and
does not converge properly in the presence of impulsive noise. Consequently, to uphold the stability
of the ANC system, several robust adaptive algorithms tailored to handle shock noise interference
have been introduced. This paper systematically organizes and classifies robust adaptive algorithms
designed for impulse noise based on algorithmic criteria, offering valuable insights for the research
and application of pertinent active impact noise control methods.
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1. Introduction

Noise control encompasses both active noise control (ANC) approaches and passive
noise control (PNC). Passive noise control primarily involves addressing noise through the
manipulation of sound waves and acoustic isolation materials or structural design. This
method is highly effective for controlling higher-frequency noise but has several drawbacks
when it comes to low-frequency noise control. The characteristics of active noise reduction
and passive noise reduction are outlined in Table 1.

Table 1. The characteristics of active noise reduction and passive noise reduction.

Characteristics Active Noise Reduction Passive Noise Reduction

Real-time Faster response and adaptation Relatively slower response
Adaptability Automatically adjusts parameters Typically lacks adaptability

Effective Noise Reduction Effectively suppresses various
types of noise

Limited effectiveness in handling
complex noise patterns

Power Consumption Requires additional power Relatively lower
power consumption

Complexity Algorithm and hardware Material or structure
Relatively simple implementation

Therefore, in recent years, active noise control systems have gained increasing favor
due to their compact size and excellent low-frequency noise reduction capabilities. They
utilize active noise control algorithms to generate anti-noise signals, which are emitted
through acoustic devices such as speakers to eliminate unwanted noise. The two core
components of the ANC system are adaptive filters and control algorithms. The coefficients
of the adaptive filter are iteratively updated according to the rules of the control algorithm.
The filter, guided by the control algorithm, produces a secondary sound source that is
equal in magnitude but opposite in phase to the primary noise, resulting in destructive
interference to cancel out the primary noise. In 1933, German physicist Paul Lueg first
applied active noise cancellation to the treatment of noise at lower frequencies in pipelines,
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implementing active noise control using the least mean square (LMS) algorithm [1]. In 1981,
Burgess introduced the filtered-x least mean square (FxLMS) algorithm to address phase
shift in the secondary path. Since then, FxLMS has become a classic algorithm in active
control methods [2].

Figure 1 illustrates the block diagram of a feedforward ANC system. Where the
reference signal is denoted as x(n) = [x(n), x(n − 1),. . ., x(n – L + 1)]T, P(z) signifies the
primary path, and the secondary route is represented by S(z). The adaptive filter is used for

obtaining the estimation of the secondary path, denoted as
∼
S(z), through offline or online

modeling techniques. When the filter length is L, the adaptive filter, denoted as W(z), has a
weight vector represented as w(n) = [w0(n), w1(n), . . ., wL−1(n)]T. The represented output
response of the filter is y(n):

y(n) = wT(n)x(n) (1)
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Figure 1. Block diagram of an ANC system using the filtered-x structure.

The expression for the error signal is as follows:

e(n) = d(n)−yf(n) = d(n)−y(n) ∗ s(n) (2)

where s(n) corresponds to the response characteristics of S(z) and * signifies the discrete
convolution operator. Represented by y f (n) and x f (n), these terms stand for the filtered
reference and secondary signal, respectively.

The cost function in the FxLMS algorithm entails the square mean of the error signal,
with E[∗] denoting the expectation operator:

J(n) = E [e2(n)] (3)

The FxLMS algorithm employs gradient descent to derive the iterative update equation,
which is as follows:

w(n + 1) = w(n)− µ
∂J(n)
∂w(n)

= w(n) + µe(n)x f (n) (4)

The FxLMS algorithm possesses advantages such as simplicity, ease of implementation,
and effective active control, making it particularly efficient in handling noise that follows a
Gaussian distribution. However, its noise reduction performance significantly diminishes
when dealing with impulse noise.

The characteristics of impulse noise can be adequately illustrated using the noise model
depicted in Figure 2, which follows a standard SαS distribution. As shown in Figure 2,
in the presence of impulse noise, the l2 norm of the error signal exhibits unbounded
characteristics. This implies that the e(n), rooted in the MSE, lacks a minimum value,
hindering the algorithm from achieving stable convergence.
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The SαS distribution is characterized by the following expression for its characteristic function:

V(t) = exp{jδt − γ|t|α[1 + jβsgn(t)S(t, α)]} (5)

where:

S(t, α) =

{
tan

(
απ
2
)

α = 1
2 log|y|/π α ̸= 1

(6)

When α ∈ (0, 2), a decrease in α results in a heavier-tailed probability distribution,
increasing the likelihood of outliers in the signal. A smaller α corresponds to a higher
degree of noise impulses. In real-life situations, common values for the α of pulse noise
range from (1, 2). The graph distinctly illustrates that when α = 0.5, the curve exhibits
pronounced peaks and thicker tails, representing an uncommon occurrence in everyday
noise. Conversely, when α = 2, the distribution degenerates into a Gaussian distribution. β
serves as the symmetry coefficient, where β = 0 indicates a symmetric distribution. The
parameter δ signifies the location parameter. γ is the scale parameter.

Many everyday situations give rise to impulsive noise. Impulse noise is an unexpected,
sharp sound that occurs instantaneously over the course of time. Figure 3 illustrates noise
signals with varying intensities under different α values of the α-stable distribution. As
observed in Figure 3, a decrease in α leads to increased amplitude and discrete changes in
the noise signal, thereby complicating the convergence of algorithms.

Various robust adaptive algorithms, extensively discussed in prior literature, have
been developed to improve the stability of ANC systems when confronted with abrupt
noise interference. This study systematically organizes and categorizes adaptive algorithms
designed explicitly for impulsive noise, classifying them based on their criteria. The aim is
to provide a structured summary, offering valuable insights for research and applications
in active impulsive noise control.
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2. Fractional Lower-Order Power-Based Algorithms
2.1. p-Power Algorithms

From the above, it is evident that when the impulse noise signal follows an α-stable
distribution, the l2 norm of the e(n) does not exist, but the p power of the e(n) is bounded.
In lieu of minimizing the variance, as in standard algorithms, Leahy et al. proposed
minimizing the existing fractional lower-order moments (p < α) [3]. Here, p represents
the order less than the dispersion α. They introduced the filter-x least mean p-power
(FxLMP) algorithm, where the cost function aims to minimize the p-power of the e(n).
Leahy and colleagues studied the impact of parameter p on the algorithm’s performance
and concluded that the closer p is to the characteristic parameter of impulsive noise, the
better the algorithm performs. In fact, when setting the parameter p in the FxLMP algorithm
to a fixed value, the algorithm degrades into different algorithms such as LMAD, LMAT
and LMF [4,5]. Therefore, the FxLMP algorithm can be considered a general algorithm for
this type. Subsequently, many researchers improved the FxLMP algorithm based on the
study by Leahy. Akhtar and Mitsuhashi, based on the FxLMP algorithm, applied threshold
nonlinear transformations to both the reference and error signals. This further improved
the robustness of the FxLMP method without increasing computational complexity [6].
However, the stability of the FxLMP algorithm is contingent on the parameter p. The
algorithm exhibits better stability when p is less than the characteristic parameter α of
impulsive noise. Consequently, it is necessary to estimate the characteristic parameter of
impulsive noise in advance when applying the FxLMP method. Bergamasco and Piroddi
delved into the dependency of the FxLMP algorithm on the characteristic parameter α

of impulsive noise [7]. They proposed a sliding window method for online estimation of
the characteristic parameter α. This method circumvents the need for prior knowledge of
the characteristic parameter α in p power algorithms but comes at the cost of increased
algorithm complexity.

In addition, another drawback of the FxLMP series algorithms is the increased compu-
tational complexity and slow convergence speed of ANC systems due to the computation of
fractional lower-order powers. To address this, Akhtar and Mitsuhashi, building upon the
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FxLMP algorithm, introduced two modified algorithms: the modified FxLMP (MFxLMP),
which incorporates a threshold method, and the filtered-x modified normalized least mean
p power, which utilizes a normalization step size method [8]. The filter-x affine projec-
tion (FxAP) algorithm was introduced by S.C. Douglas to address convergence speed in
correlated input environments. Subsequently, Akhtar and Nishihara combined the affine
projection algorithm with the normalized p power algorithm (FxNLMP) [9]. This integra-
tion leveraged the characteristics of the projection algorithm to improve the convergence
speed of the algorithm. The results indicate that the algorithm maintains good convergence
when transitioning from low-intensity impulse noise (α = 1.7) to high-intensity impulse
noise (α = 1.1) and maintains insensitivity to changes in the noise source. In contrast,
the FxLMP algorithm becomes unstable. Additionally, the introduction of the projection
algorithm results in an increase in computational complexity. Akhtar, building upon the
FxLMP, FxNLMP and filtered-x generalized normalized LMP (FxGNLMP) algorithms,
proposed the convex-combined step size FxGNLMP algorithm, which enhanced the conver-
gence speed and steady-state performance of active impulsive noise control algorithms [10].
Nevertheless, the convex combination algorithm increased computational complexity due
to the parallel computation of two filters. Zheng developed a filter-logarithmic recursive
least p-power algorithm, integrating logarithmic moments with p-power norms to enhance
the noise reduction performance in the α state of 1.35 [11].

In order to facilitate a more intuitive comparison of various update functions, the filter
coefficient update formulas are standardized as follows:

w(n + 1) = w(n) + µφ(e(n))x f (n) (7)

The cost function and filter coefficient update formulas for the fractional lower-order
power algorithms are shown in Table 2.

Table 2. Summary of adaptive algorithms in Section 2.1.

Cost Function φ(e(n)) References

J(n) = E [|e(n)|p] p
∣∣e(n)∣∣psign(e(n)) [3,4]

J(n) = E [|e′(n)|p]



e′(n) =

 c1 i f e′(n) ⩾ c1
c2 i f e′(n) ⩽ c2
e(n) c1 ⩽ e′(n) ⩽ c2

x′ f (n) =


c1 i f x′(n) ⩾ c1
c2 i f x′(n) ⩽ c2
x′ f (n) c1 ⩽ x′ f (n) ⩽ c2

p
∣∣e′(n)∣∣psign(e(n))x′ f (n)

[5]

J(n) = E [|e′(n)|p]
{

p
∣∣e′(n)∣∣p−1sign(e(n))/ ∥ x f (n) ∥

p
p +E(n) + δ

E(n + 1) = λE(n) + (1 − λ)e2(n)
[6,7]

J(n) = E [|e′(n)|aq]

 p
∣∣e′(n)∣∣asign(e(n))/ ∥ x f (n) ∥

aq
aq +E(n) + δ

E(n + 1) = λE(n) + (1 − λ)eaq(n)
a = p − β; q = p/aβ

[8,9]

J(n) = E [|e′(n)|p] p
∣∣e′(n)∣∣p−1sign(e(n))λ(n)(1 − λ(n))[y1(n)− y2(n)] [10]

J(n) =
n
∑

i=1
λn−i logp(1 + |e(n)|)


φ(e(n)) = K(n)e(n)

K(n) = v(n)P(n−1)xs(n)
λ+v(n)xT

s (n)P(n−1)xs(n)
P(n) = λ−1P(n − 1)− λ−1K(n)xT

s (n)P(n − 1)

v(n) =
logp−1(1+|e(n)|)
(1+|e(n)|)|e(n)|+τ

[11]

The characteristics of p-power algorithms are summarized. These methods are in-
tricately linked to impulsive noise, influencing the robustness of parameter p. More
specifically, the algorithm’s convergence is contingent on the relationship between p and
α amidst impulsive noise interference, where effective convergence occurs when p < α.
Whether estimating α online or offline, additional steps and computational burden are
introduced, contributing to increased algorithm complexity. The computation of the p
power of the error signal further amplifies the algorithm’s computational load.
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Scholars have sought to enhance the performance of this type of algorithm by employ-
ing methods such as normalized step size, filter convex combination and integration with
projection algorithms to improve convergence speed and steady-state error. However, these
improvement measures cannot prevent the subsequent increase in algorithm complexity.

2.2. Other Algorithms

p-power algorithms need to satisfy p < α to prevent instability in ANC systems. To
ensure stability in all situations, the choice of p = 1 has been proposed, leading to the
sign algorithm (SA). The SA algorithm, in comparison to the FxLMP algorithm, does not
necessitate prior knowledge of the distinctive parameter α of impulsive noise, leading
to a reduction in processing demands [12,13]. However, traditional SA trades conver-
gence speed for robustness. To address this, Shao introduced the affine projection sign
algorithm, commonly known as APSA, which minimizes the posterior error l1 moment
as the optimization goal [14]. By introducing the error sign vector, APSA eliminates the
need to invert matrices during weight coefficient updates, significantly reducing algorith-
mic computational complexity. Simultaneously, the introduction of the error l1 moment
enhances the algorithm’s resilience to impulsive noise. The algorithm exhibits excellent
resistance to impulse noise interference, enhancing the convergence speed under colored
input signals. Yu and Zhao simplified the formula for the proportionality factor in the
proportionate affine projection sign algorithm, commonly known as PAPSA, improving the
algorithm’s computational efficiency and impulsive noise resilience. The performance of
noise reduction in sparse systems is improved [15].

Zhao improved the efficiency and impulsive noise resilience of the proportionate affine
projection sign algorithm (PAPSA) by introducing the Gaussian entropy as a substitute
for the error l0 moment in the proportionality matrix function along with its approximate
formula [16]. Additionally, Li introduced the error sign function and reference signal into
the SA step size, allowing for a larger step size during the initial working phase for rapid
convergence and a smaller step size with minimal errors to achieve significant steady-state
error reduction. The algorithm demonstrates fast convergence under colored input signals,
where the smoothing factor parameter satisfies 0 < β < 1 [17]. Wang implemented an
enhanced Gaussian kernel formula, replacing the traditional variable step size formula. β
represents a smooth factor [18]. Kim expedites the convergence of the APSA algorithm
through adaptive step size adjustment [19]. In this context, the parameter δ is typically
set to 0, and α is defined as 1-M/5L. This ensures stability when outliers are present.
This formula adjusts the step size to be larger when the error is significant, enhancing
convergence speed, and smaller when the error is minor, improving steady-state error.
Chen and Ni enhanced the convergence speed of the sign algorithm (SA) by introducing a
natural logarithmic momentum term related to the absolute value of weight coefficients in
the weight coefficient update formula [20]. This algorithm enhances system performance
in sparse environments, where ε is a non-zero decimal number. Zong proposed a series
of dual sign algorithms (DSA) and introduced compensation terms related to the l1 and l0
moments of weight coefficients in the weight coefficient update formula to accelerate the
convergence process in sparse environments [21].

In addition, there are mixed-moment algorithms and continuous p power algorithms.
In 1997, Jonathon and Apostolos proposed a method called the mixed norm (MN) algorithm,
which forms a new cost function by convexly combining the l2 and l1 norms of the error [22].
Papoulis and Stathaki improved the convergence speed and steady-state performance of
the MN algorithm by adapting the fixed mixing parameter in the MN algorithm based on
the error and normalizing the step parameter in the weight coefficient update formula [23].
Song and Zhao summarized the general form of the MN algorithm, proposing the filtered-x
general mixed norm (FxGMN) algorithm [24]. When p = q = 2 and λ0 = 0.5, the algorithm
exhibits optimal noise reduction capabilities in pulse environments. They enhanced its
convergence speed through convex combination methods and studied the control capability
of the FxGMN algorithm for impulsive noise under different parameter combinations. Lu
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and Zhao employed a continuous logarithmic transformation p-power cost function for
active noise control [25]. The algorithm performs well under various secondary path
conditions. Hadi, based on the FxLMP algorithm, introduced a continuous mixed p-norm
cost formula to improve adaptive algorithms in ANC systems [26]. Feng introduced self-p-
normalized algorithms to achieve faster convergence without compromising the stability
error characteristics of the system, where ⊙ denotes the Hadamard product and r denotes
the intensity of the reference noise [27]. Some algorithm update formulas are shown in
Table 3.

Table 3. Summary of adaptive Algorithms in Section 2.2.

Cost Function φ(e(n)) References

J(n) = E [|e(n)|] sign(e(n)) [12,13,19]
J(n) = E [|e(n)|] sign(e(n))√

sign(eT(n))XT(n)X(n)sign(e(n))
[14,15]

J(n) = E [|e(n)|]
{

sign(e(n))((1 − β)µ(n − 1) + γ||pi ||)
pi = βpi−1 + (1 − β)sign(e(n))x(n)

[17]

J(n) = exp(− e2(n)
δ2 )

 exp(− e2(n)
δ2 )sign(e(n))V(n)

V(n) = βV(n − 1) + (1 − β) e2(n)
δ2 exp(− e2(n)

δ2 )

[18]

J(n) = E [|e(n)|]


µ(k) sign(e(n))√
sign(eT(n))XT(n)X(n)sign(e(n))+δ

µ(n) = αµ(n − 1) + (1 − α)min[µsol µ(n − 1)]
µsol = argmin||e(n)− µ(n) X(n)sign(e(n))√

sign(eT(n))XT(n)X(n)sign(e(n))+δ
||1

[19]

J(n) = E [|e(n)|] + λ
M−1
∑

i=0
In(1+|w|/ε) sign(e(n))− ρsgnw(n)/(ε+|w(n)|) [20]

J(n) = λ(n)E [|e(n)|p] + (1 − λ(n))E [|e(n)|q] sign(e(n))(λ (n)p|e(n)|p−1 + (1 − λ(n))p|e(n)|q−1) [24]

J(n) =
∫ 2

1 E [log(1 + |e(n)|p)]dp log(1+|e(n)|)−log(1+|e2(n)|)
log(|e(n)|)e(n) sign(e(n)) [25]

J(n) =
∫ 2

1 λn(p)E [|e(n)|p]dp sign(e(n))
∫ 2

1 pλn(p)|e(n)|p−1dp [26]

J(n) = E [|e(n)|]


sign(e(n))
x′ f (n) = qspn(n)⊙ x(n)

qspn(n) = 1/(
∣∣x(n)/r

∣∣+1)

[27]

In summarizing various algorithms, the sign algorithm stands out for its ability to
handle impulsive noise without the need for prior estimation of the characteristic param-
eter α. However, its drawback lies in a relatively slow convergence speed, necessitating
enhancements through techniques like affine projection, variable step size, and momentum.
The mixed norm algorithm combines error l1 and l2 moment algorithms, offering a balanced
approach, where the former boosts robustness and the latter improves convergence speed.
Meanwhile, the continuous p-power algorithm introduces a logarithmic transformation for
rapid convergence, albeit at the expense of a higher complexity. Choosing the most suitable
algorithm depends on specific application requirements and contextual considerations.
When exclusively considering the algorithm’s effectiveness, the FxGMN algorithm is appli-
cable. Due to the property of convex combination, this approach enhances the robustness
of the MN algorithm while keeping up with convergence rate. When the primary concern
is complexity, the SA algorithm can be used, which is easy to implement, but the algorithm
has poor stability in the mixed noise environment with Gaussian noise or in the impact
noise with a high intensity. The continuous mixed p-norm algorithm can be used when
faster convergence is required.

3. Non-Linear Transformation-Based Algorithms
3.1. Threshold Method

Grounded in the error l2 moment criterion, the FxLMS algorithm experiences sig-
nificant performance degradation when encountering impulsive noise interference. The
simplest and most direct method to mitigate impulsive noise interference is to set thresh-
olds for both the error signal and reference signal. Sun introduced the threshold FxLMS
(ThFxLMS) algorithm, which ignores signals with values exceeding a predefined threshold
parameter [28]. In this approach, the corresponding filter coefficients remain unchanged,
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ensuring the stability of the ANC system. However, in specific scenarios, this method
may lead to frequent coefficient freezing, resulting in a slower convergence speed. In 2009,
Akhtar further improved the algorithm based on the ThFxLMS algorithm [29]. In addition
to correcting the reference signal, constraints were applied to the error signal, replacing
outliers with critical values. Zhou proposed a method using box plot (BP) sliding windows
for online threshold estimation [30]. This method does not require prior knowledge of
the impulsive noise characteristic parameter α, and the threshold exhibits time-varying
characteristics. Non-linear threshold transformations applied to the reference signal can
be utilized not only in FxLMS but also in other algorithms. Saravanan enhanced the algo-
rithm’s control performance against impulsive noise by applying a threshold non-linear
transformation to both the error and reference signals and adopting a variable step size
approach [31].

In 2007, Thanigai introduced the FxLMM algorithm, utilizing a non-linear transforma-
tion of the error signal with the Hampel function. Zhou combining the Huber M-estimation
method with the LMS algorithm and presented a simplified FxLMM algorithm [32]. Wu
and Qiu utilized the Fair function to transform the error signal, facilitating the setting of
thresholds for error signals [33]. Akhter introduced a hyperbolic tangent threshold trans-
formation for both the reference and error signals, replacing the manual threshold-setting
approach [34]. Sun improved the FLMM’s performance by substituting a more precise
method for estimating the proportion of the distribution in the reference noise with a higher
degree of accuracy [35]. The threshold of the algorithm in this classification is obtained
through parameter estimation by the formula. Table 4 summarizes the threshold formulas
and corresponding weight coefficient update formulas for threshold-based algorithms.

Table 4. Summary of adaptive algorithms in Section 3.1.

Cost Function φ(e(n)) Reference

J(n) = E [
∣∣e(n)∣∣2] 

e(n)x′ f (n)

x′ f (n) =
{

x′ f (n) x′ f (n) ∈ [c1, c2]
0 otherwise

[29]

J(n) = E [
∣∣e(n)∣∣2] 

e(n)x′ f (n)

e(n) =

{
e(n) e(n) ∈ [c1, c2]
0 otherwise

x′ f (n) =
{

x′ f (n) x′ f (n) ∈ [c1, c2]
0 otherwise

[30]

J(n) = E [
∣∣e(n)∣∣2]



e(n)x′ f (n)

e(n) =
{

sign(e(n)) (|e(n)|−λ) e(n) ∈ [γ 1, γ 2]
0 otherwise

x′ f (n) =
{

sign(x′ f (n))
(∣∣x′ f (n)

∣∣−λ) (x′ f (n) ∈ [γ 1, γ 2]
0 otherwise

γ = argmin(N + ||x′ f (n)||+ 2
N−1
∑

i=0

∂ x
∂ n )

[31]

J(n) =


e2(n)

2 |e(n)| < ξ

ξ|e(n)| − ξ2
2 ξ ⩽ |e(n)| < ∆

∆2
2 ∆ < |e(n)|

e(n) |e(n)|< ξ
ζ sign ( e(n) ) ξ ⩽|e(n)|< ∆
0 ∆ <|e(n)|

[32]

J(n) = c2[ |e(n)|c − log(1 + |e(n)|
c )] ce(n)

c+|e(n)|
[33]

J(n) =



e2(n)
2 |e(n)| < ξ

ξ|e(n)| − ξ2
2 ξ ⩽ |e(n)| < ∆1

ξ
2 |∆2 − ∆1| − ξ2

2 + ξ
2
(|e(n)− ∆2 |)

2

∆1 ·∆2
∆1 ⩽ |e(n)| < ∆2

∆2
2

2 ∆2 < |e(n)|


e(n) |e(n)|< ξ

ζ sign(e(n)) ξ ⩽|e(n)|< ∆1
ξ
2

(|e(n)−∆2|)
∆1 ·∆2

∆1 ⩽|e(n)|< ∆2

0 ∆2 <|e(n)|

[34]

J(n) =



e2(n)
2 |e(n)| < ξ

ξ|e(n)| − ξ2
2 ξ ⩽ |e(n)| < ∆1

ξ
2 |∆2 − ∆1| − ξ2

2 + ξ
2

(|e(n)−∆2 |)
2

∆1 ·∆2
∆1 ⩽ |e(n)| < ∆2

∆2
2

2 ∆2 <|e(n)|


x (n) 0 ⩽ |x (n)| ⩽ ξ

ξ sign [x (n)] ξ <|x (n)| ⩽ ∆1

[ (
∣∣∣x (n)

∣∣∣−∆2)
ξ

∆1−∆2
] sign [x (n)] ∆1 <|x (n)| ⩽ ∆2

0 ∆2 <|x (n)|

[35]

The characteristics of Threshold-Based Algorithms can be seen in Table 4. The fixed
threshold method has low computational complexity, but its performance depends on
the selection of threshold parameters. Foreknowledge of the distinctive parameter α of
abrupt noise is required for the selection of threshold parameters, and adjustments to
this parameter are not feasible when noise conditions change. On the other hand, online
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estimation methods for thresholds have a high computational complexity. Algorithms that
implement hyperbolic tangent functions to the input and error signals still require offline
estimation of threshold parameters. Robust M estimation algorithms essentially achieve
resistance to impulsive noise interference by limiting the error signal.

3.2. Logarithmic Transformation and Trigonometric Transformation

For impulsive noise signals following an α-stable distribution, the signal becomes
more Gaussian-like after undergoing a logarithmic transformation. Consequently, Wu
introduced the FxlogLMS algorithm, or the filtered-x logarithmic transformation least
Mean square algorithm. This algorithm utilizes the error signal after logarithmic transfor-
mation as the objective function [36]. This algorithm exhibits stability without the need
for prior knowledge of the impulsive noise characteristic parameter α or the estimation
of threshold parameters, making it more robust compared to the FxLMP method. How-
ever, the FxlogLMS algorithm introduces additional computational complexity due to
the logarithmic calculation involved in updating the weight coefficients. Additionally,
careful consideration is required for cases where l exceeds the amplitude of the error signal.
George and Panda introduced an algorithm that utilizes the logarithmic transformation
of the squared error signal as the objective function, specifically designed for impulsive
noise elimination [37]. Furthermore, Sayin introduced a convex combination approach,
incorporating the logarithmic conversion of the error signal α (α = 1.2) moments [38]. The
algorithm corresponding to the l2 moment is referred to as the least mean logarithmic
square (LMLS) algorithm, while the l1 moment corresponds to the least logarithmic abso-
lute difference (LLAD) algorithm. Both algorithms exhibit rapid convergence and resilience
against impulsive noise interference, although careful parameter selection is essential for
their combination. LU introduced a recursive error fractional moment logarithmic transfor-
mation algorithm that combines logarithmic transformation with fractional lower-order
moment methods [39]. The recursive algorithm enhances the convergence speed of the
algorithm but also increases computational complexity. The Lorenz norm, another form of
logarithmic transformation, is utilized in algorithms presented by Lochan and Narwaria in-
cluding the Lorenz norm algorithm based on the error signal, the normalized Lorenz norm
algorithm and the momentum Lorenz norm algorithm [40]. These algorithms demonstrate
excellent steady-state performance and convergence speeds.

In addition to logarithmic transformations, trigonometric function transformations can
enhance the algorithm’s robustness against impulse noise. Mirza utilized the logarithmic
hyperbolic cosine transformation of the error signal as the objective function in the filtered-x
least cosine hyperbolic (FxLCH) algorithm and proposed the simultaneous use of variable
step sizes and threshold nonlinear transformation methods for active elimination of impulse
noise [41]. Wang employed the logarithmic hyperbolic cosine transformation of the error
signal as the cost function, enhancing the convergence speed of the algorithm through a
variable step size form [42]. Patel used the logarithmic hyperbolic cosine transformation
of the error signal as the cost function [43]. Since the weight coefficient update formula of
this type of algorithm requires calculating the exponential form of the error, the authors
proposed two approximation equations, reducing computational complexity. Yu adopted
the logarithmic hyperbolic cosine transformation of the error signal as the cost function and
improved the algorithm’s convergence speed through an accelerated gradient method [44].
Song utilized the hyperbolic tangent function of the error as the cost function [45]. The
parameter β needs adjustment based on the signal impulses and the algorithm. The
hyperbolic tangent function adjusts the step size based on the amplitude variation of the
error signal in weight coefficient updates. Under impulse noise conditions, the algorithm
adapts the stride to bolster system robustness. Conversely, with a decrease in the error
signal, the stride is increased to ensure the system convergence rate. Integrating the
hyperbolic secant function and the mean difference function, Lu formulated the cost
function [46]. This method, with a clever choice of combination parameters, allows the
step scaling factor to play a more excellent role. When the system has not encountered



Appl. Sci. 2024, 14, 1218 10 of 15

impulse noise and the error signal amplitude is large, the step size is not scaled to accelerate
convergence. When the error is small, the step size is scaled to enhance steady-state
performance. When encountering impulse noise interference, the step size is scaled to
strengthen system stability. In Xiao’s proposed algorithm, the random Fourier feature (RFF)
technique and CG approach are employed to address the slow convergence issues posed
by the generalized Hough transform (GHT) criterion [47].

Zhu proposed an algorithm based on a random Fourier filter to handle impulse
noise. The algorithm’s convergence capability is confirmed through numerical simulations
under different conditions [48]. Gu introduced the error arctangent as the cost function,
presenting the filtered-x arctangent error least mean square (FxatanLMS) algorithm [49].
The study showed outstanding performance of the normalized error arctangent algorithm
in handling narrowband, wideband, and impulse noise. Tao proposed a constrained least
variance algorithm, demonstrating superior performance in impulse noise environments
compared to other algorithms. The lncosh cost function is the natural logarithm of the
hyperbolic cosine function, representing a combination of mean square error and mean
absolute error criteria [50]. In this paper, setting β to 0.8 achieves the best convergence
performance under pulse noise. Krishna Kumar introduced a new robust norm based on
the exponential hyperbolic cosine function (EHCF) and developed corresponding adaptive
filters based on EHCF [51]. Radhika proposed two adaptive filters based on hyperbolic
sine functions that are suitable for impulse noise environments [52]. The study explored
learning rate-based stability conditions and steady-state analysis. Additionally, a variable
scale parameter format was proposed to eliminate the trade-off between convergence speed
and steady-state excess mean squared error. Guan proposed two adaptations based on the
hyperbolic secant function (HSF). In the presence of pulse interference, both algorithms
exhibit superior performance compared to existing algorithms [53]. Table 5 summarizes the
corresponding weight coefficient-updating formulas for algorithms based on logarithmic
and trigonometric transformations.

Table 5. Summary of adaptive algorithms in Section 3.2.

Cost Function φ(e(n)) References

J(n) = E [log2|e(n)|] log(|e(n)|)sign(e(n))
|e(n)|

[36]

J(n) = E [log[1 + e2(n)
2δ2 ]]

e(n)
e2(n)+2δ2 [37]

J(n) = E [ f (e(n))]− 1
α E[log[1 + α f (e(n))]]

f (e(n)) = |e(n)| (LLAD)

αe(n)
1+α|e(n)| (LLAD) [38]

J(n) =
i=1
∑
n

λn−i log[1 + |e(n)|p]
i=1
∑
n

λn−i p|e(n)|p−1sign(e(n))
1+|e(n)|p

[39]

J(n) =
i=1
∑

M−1
log[1 + ( e(i)

δ )
2
]

i=1
∑
n

λn−i e(i)
δ2+e2(i)

[40]

J(n) = E [In[ cosh(λ| e(n)|p)]] tanh(ρe(n)) [41–44,50]

J(n) = 1
β tanh( β

2 (
e(n)

∥x(n)∥ )
2
)

4 exp(−β(e(n)/∥x(n)∥)2e(n)

(1+exp(−β(e(n)/∥x(n)∥)2)∥x(n)∥)
2

[45]

J(n) = E [sech(e2(n))− λ
2 e2(n)] e(n)sech(e2(n))tanh(e2(n)) + λe(n) [46]

J(n) = E [ 1
λ tanh(λ| e(n)

∣∣∣p)] p
∣∣e(n)∣∣p−1sech(λ| e(n)

∣∣p
)sign(e(n)

)
[47]

J(n) = E [sech(λ| e(n)|p)] p sech(λ| e(n)|p) tan(λ| e(n)|) [48]
J(n) = 4

kπ arctan(πk
2 e(n)) 32arctan( πk

2 e(n))
π4k2e2(n)+4π2

[49]

J(n) = 1 − E [γ exp[− cosh(λ| e(n)|p]] exp[− cosh(λ| e(n)|2sinh(2λ| e(n)|) (p = 2) [51]
J(n) = 1 − E [exp[−sinh2(λe(n)]] exp[−sinh2(λe(n)]sinh(2λe(n)) [52]

J(n) = E [sinh−1(
∣∣∣e(n)∣∣∣2)] e2(n)√

1+e2(n)
[53]

The FxlogLMS algorithm involves logarithmic calculations during the filter weight
coefficient updating process, significantly increasing computational complexity. How-
ever, other logarithmic transformation weight coefficient updating formulas, excluding
FxlogLMS, do not require logarithmic calculations. Logarithmic hyperbolic cosine trans-
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formation algorithms essentially limit the amplitude of the error signal. Other types
of logarithmic transformations are similar to step size normalization algorithms. These
algorithms exhibit slow convergence rates in the presence of Gaussian noise. Three trigono-
metric functions that are suitable for nonlinear transformation of the error signal are the
hyperbolic tangent, hyperbolic secant and arctangent. This type of transformation is a
relatively recent introduction as a nonlinear cost function, demonstrating superior perfor-
mance. However, the weight coefficient updating formulas involve complex trigonometric
functions, especially hyperbolic functions, thereby increasing algorithmic complexity.

4. Other Transformation Algorithms

The MCC algorithm, formally known as the maximum correntropy criterion, aims
to enhance performance by maximizing the probability of similarity in the local space
between two sets of random variables. The core idea of this algorithm is to control the
observation range of random variables through the adjustment of kernel width, thereby
automatically excluding outliers. The MCC algorithm is essentially based on the mixed
second-order norm of the error signal, typically employing a Gaussian kernel function. In
the MCC algorithm, increasing the kernel width expands the observation space, making
the algorithm gradually approach the FxLMS algorithm. Conversely, decreasing the kernel
width narrows the observation space, thereby enhancing the MCC algorithm’s resistance to
impulsive noise.

Liu first introduced the concept of correntropy and theoretically analyzed the advan-
tages of the MCC algorithm in handling impulsive noise [54]. The MCC algorithm exhibits
l2 moment characteristics when two sets of analyzed signals are relatively similar, presents
l1 moment properties when there is a slight difference in signals and shows l0 moment
properties when the signal gap is larger. Therefore, it ensures the stability of the active
noise control (ANC) system under impulsive noise interference. PRINCIPE utilized the
MCC algorithm to identify and eliminate impulsive noise in system recognition under
impulsive noise interference [55]. Chen conducted a theoretical analysis, marking the first
investigation into the long-term performance of the MCC algorithm and providing insights
into its steady-state behavior [56]. Chen proposed the GMCC algorithm, formally known
as the generalized maximum correntropy criterion algorithm. They verified the stability
of this equation under impulsive noise interference through theoretical derivation and
simulation [57]. LU proposed a filtered-x recursive maximum correntropy algorithm with
adaptive kernel width updates, demonstrating fast convergence and robustness against
impulsive noise [58]. The results indicate that the algorithm exhibits a fast convergence
rate in environments with a low pulse intensity (α = 1.7). By integrating the AP algorithm
with other methods, Li proposed two novel adaptive approaches for addressing impulsive
noise [59]. Zhao presented a multi-convex combination maximum correntropy adaptive
algorithm. The synergy of the AP and GMCC algorithms can significantly improve the
algorithm’s effectiveness [60]. The algorithm achieves the best convergence performance
when the parameter α is set to 2. Wang introduced a transformed kernel width MCC algo-
rithm that operates as a fixed kernel width MCC algorithm when the error is small [61]. The
algorithm proposed by Zhou adopts an improved conjugate gradient method to iteratively
update filter coefficients, thereby enhancing the algorithm’s performance [62].

Chen introduced the kernel risk-sensitive loss (KRSL) algorithm, demonstrating from
theoretical and simulation perspectives that this method achieves a fast convergence, high
accuracy and robustness [63]. Zhang combined the minimum kernel risk-sensitive loss
criterion with the p-norm method, proposing a new robust adaptive algorithm [64]. Qian
introduced the convex combination KRSL algorithm. Similar to the MCC algorithm, the
performance of the KRSL algorithm is associated with the kernel width parameter [65].
Information-theoretic learning cost functions have the advantages of strong robustness and
not requiring prior estimation of the impulsive noise characteristic parameter α. However,
careful selection of the kernel width is necessary for optimal performance of this algorithm.
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In addition, Huang combined the maximum skewness line criterion with the FxLMP
algorithm, proposing a novel adaptive algorithm [66]. Lei derived a filter-x affine projection
algorithm based on the minimum variance distortionless response (MVC) by solving an
inequality-constrained problem [67]. This algorithm demonstrates a fast convergence
when dealing with active impulsive noise control. Cheng, inspired by convex combination
methods, combined the FxLMS algorithm with the FxMVC algorithm, developing the C-
FxMVC algorithm using an amplitude constraint approach [68]. Simulation results indicate
that the C-FxMVC algorithm performs well in terms of convergence speed and noise
reduction. Radhika theoretically analyzed the stability of VersoriaLMS-type algorithms
based on the maximum skewness line criterion under Gaussian and non-Gaussian noise
conditions [69]. Huang proposed a set of adaptive algorithms belonging to the SigmoidLMS
type by embedding conventional cost functions into the sigmoid function [70]. Leveraging
the amplitude compression feature of the sigmoid function, this algorithm resists impulsive
noise interference. The algorithm introduces a free parameter, aside from the step size,
controlling the compression amplitude and influencing convergence speed and steady-
state error. The sigmoid function transformation algorithm exhibits some similarity to the
hyperbolic tangent transformation.

Omer introduced a robust semi-quadratic criterion (HQC) adaptive filtering algo-
rithm using convex cost functions [71]. The proposed HQC introduces a more efficient
performance surface, leading to substantial improvements in dealing with impulsive noise.
Krishna proposed a robust algorithm and confirmed through simulation studies that the arc-
tan algorithm family achieves a higher performance compared to standard algorithms [72].
The filter coefficient update formulas for the algorithms are shown in Table 6.

Table 6. Summary of adaptive algorithms in Section 4.

Cost Function φ(e(n)) References

J(n) = exp(− e2(n)
2δ2 ) exp(− e2(n)

2δ2 ) e(n)
δ2

[54–56,61]

J(n) = exp(−( e(n)
β )

a
) exp(−( e(n)

β )
a
) ae(n)a−1

βa [57]

J(n) =
n
∑

i=1
λn−i exp(−e2(n)/2δ2)

n
∑

i=1
λn−i exp(−e2(n)/2δ2)e(n)/2δ2 [58]

J(n) =
n
∑

i=1
λn−i exp(−e2(n)/2δ2)



α(n)p(n)

α(n) = gT(n)p(n)
pT(n)R(n)p(n)

R(n) = R(n − 1) + exp(−e2(n)/2δ2)r(n)rT(n)

p(n) = −(1 + β(n) gT(n)p(n−1)
gT(n)g(n) )g(n) + β(n)p(n − 1)

β(n) = gT(n)(g(n)−g(n−1))
gT(n−1)g(n−1)

g(n) = g(n − 1)− α(n)R(n)p(n)
+exp(−e2(n)/2δ2)r(n)(d(n)− WT(n)s(n) ∗ x(n))

r(n) = s(n) ∗ x(n)

[62]

J(n) = exp(λ(1 − exp(− e2(n)
2δ2 ))) λ exp(λ(1 − exp(− e2(n)

2δ2 ))) · exp(− e2(n)
2δ2 ) · e(n)

δ2
[63,64]

J(n) = 1
2γ E [ 1

1+γ|e(n)|p ]]
|e(n)|p−1sign(e(n))

(1+γ|e(n)|p) 2
[66–68]

J(n) = 1
γ E [ 1

1+exp(−γ|e(n)|2) ] 2 e(n)
1+exp(−γ|e(n)|2) (1 −

1
1+exp(−γ|e(n)|2) )

[70]

J(n) = E [
√

1 + λ|e(n)|2]− 1 exp(−( e(n)
β )

a
) ae(n)a−1

βa [71]

In summary, in practical applications, the first consideration involves determining
whether a prior estimate of α is necessary to guide the selection of the appropriate algorithm.
Additionally, factors such as the computational complexity and hardware feasibility of the
algorithm must be taken into account. The final step is to choose the appropriate algorithm
based on the severity of the pulse noise. It is worth noting that in real life, pulse noise often
coexists with other types of noise, such as traditional broadband noise and narrowband
noise. Therefore, the algorithm’s performance in controlling noise in mixed environments
needs to be carefully considered.
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5. Conclusions

This article summarizes existing active control algorithms for impulse noise and
categorizes them into three classes. It reviews the development history of each class, sum-
marizes the theoretical background and noise reduction performance of various algorithms,
and discusses the characteristics and application scenarios of these algorithms. This pro-
vides valuable insights for future research and applications in the field of active impulse
noise control.
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