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Abstract: In this study, we proposed a system to reduce the speaker’s suffering from the strong
light of a beam projector by applying regional brightness control over the screen. Since the original
image and the projected one on the screen are quite different in area, brightness, and color, the
proposed system first transforms them so that they have the same area and similar color tone. Then,
to accurately determine the difference between those images, we have introduced a SSIM map, which
is a perception-based method of measuring image similarity. Accordingly, an image segmentation
model is used to determine the speaker’s silhouette from the SSIM map. We applied a couple of
well-trained segmentation models, such as Selfie and DeepLab-v3, provided with MediaPipe. The
experimental results showed the operability of the proposed system and that it determines most of a
lecturer’s body area on the screen. To closely evaluate the system’s effectiveness, we have measured
error rates consisting of false-positive and false-negative errors in the confusion matrix. With the
measured results, the error rates appeared so insignificant and stable that the proposed system
provides a practical effect for the speakers, especially in the case of applying DeepLab-v3. With the
results, it is implied that an accurate segmentation model can considerably elevate the effectiveness
of the system.

Keywords: multimedia system; beam projector; brightness control; SSIM; segmentation

1. Introduction

One of the old beam projectors developed in the 1990s, the “Eidophor”, could project
an analog video signal into a space the size of a movie theater. At the time, its effectiveness
as a video output device for educational purposes was tested, and positive results were
reported [1]. Thereafter, a beam projector could have been considered an effective device
for implementing a large screen at a low cost.

In recent years, beam projectors have been improving in many ways, such as in their
brightness, resolution, miniaturization, and lightweight designs, thanks to advances in
hardware. These improvements have led to their widespread use in education, homes,
businesses, and more. Advancements in light sources are especially encouraging from
the audience’s perspective, as they allow for sharper images to be projected onto the
screen. However, a speaker facing the beam projector may suffer from more glare due to
much stronger light [2]. The intense glare can make the speaker’s communication with
the audience uncomfortable and even cause the speaker’s vision loss from prolonged
exposure. Nevertheless, the ability to present audiovisual material on a large screen for a
large audience is an advantage of beam projectors, which cannot be easily achieved with
other display devices. Therefore, speakers are willing to tolerate this inconvenience in
many situations.

If a beam projector could selectively adjust the area of light projection, it would prevent
intense light from troubling a speaker’s eyes, providing a better presentation experience
while maintaining the benefits of the projector. Moreover, such a system is needed not
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only by the instructors but also by the students who use projectors for their learning
activities [3]. Some related research shows that beam projectors can be used to design
systems that can interact with learners [4,5]. Lin et al. proposed the basic workings of a
beam projection system while considering the brightness control to protect a speaker from
strong light [5]. Their research attempted to recognize faces through a camera and cover
the image, illuminating the face with a black circle. To perform so, they have introduced
a facial recognition algorithm based on skin color extraction to find a speaker’s area over
the screen.

Nowadays, for the purpose of such human detection, a machine learning-based face
recognition model [6,7] can be a good solution. However, there are some considerations
that make it difficult to directly apply typical face recognition models to the proposed
system. First, the light from the beam projector is projected over the face of a speaker. This
may make the recognition results quite inaccurate. Second, if an original image fed to the
beam projector contains a human face, the recognition model may also detect it as a speaker.
Third, if the speaker’s facial area has been completely darkened due to brightness control,
the recognition model will not be able to detect the face in the next stage.

This study aims to continuously recognize human figures to find adequate areas to
adjust the luminance while strong light interferes with the recognition process. For this
purpose, we focus on the similarity of the images, wherein we designed a system that
compares an input image of the beam projector with a captured image of the screen to
find the different regions. The segmentation of the human body is performed within these
different regions. In Section 3, we describe the proposed system’s structure and each
module’s role in detail, including finding image differences, human body segmentation,
and adjusting the luminance in specific areas. Section 4 presents implementation details
and results by discussing some behaviors and experimental measurements.

2. Related Research
2.1. Structural Similarity Index Measure

Image quality assessment (IQA) is a research topic that studies the degree of distortion
in an image due to its compression, movement, rotation, etc. Methods to evaluate image
quality distortion are generally classified as Full Reference (FR), No Reference (NR), and
Reduced Reference (RR) methods, depending on how much of the original image can be
referred to during the evaluation process [8]. Our study can apply the FR method since
an original presentation image and the captured image from a camera are both available.
If the captured image has relatively low quality compared to the original one, it may be
caused by an obstacle appearing between the screen and the camera.

In traditional FR methods, Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio
(PSNR) are popular techniques that can evaluate the difference between an original image
(or video) and a distorted one with simple calculations. Unfortunately, they are known to
not be so useful when the distortion effects overlap or multi-distorted images are given for
evaluation [9–11].

To address these limitations, Chandler and Hemami (2007) argued that it is necessary
to combine techniques based on the human visual system, such as luminance, contrast, and
texture, to evaluate the image quality efficiently [12]. There has been some research on IQA
models motivated by the human visual system. The Structural Similarity Index Measure
(SSIM) is a representative one of those models, which is based on the hypothesis that the
human visual system is mainly affected by the structural information of images [8]. SSIM
measures the similarity of two images by extracting luminance, contrast, and structural
features from those images. While traditional IQA models, including MSE and PSNR,
produce numerical evaluation results that are not so understandable by humans, SSIM
has an advantage in that it enables the analysis of the differences in images from more
understandable results [13].
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Though the SSIM measured the similarity of images globally [8], there was an argu-
ment that the similarity of the images could be used as an indicator to find non-similar
regions of an image when applied regionally. A. Aki et al. showed that it was possible to
measure dissimilarity and observe changes in the ground using satellite images of the same
area at different times as an example [14]. In their approach, though the exact formula
to calculate SSIM was not applied, they introduced an idea to measure the similarity of
images regionally. This suggests SSIM can also be regionally used to find the more probable
area for human detection in an image by excluding the other areas with higher similarity to
the original one.

In summary, a review of the literature on SSIM suggests the following implications
for this research: First, if one specifies a window and measures the SSIM at each point [15],
the SSIM can detect changes in different parts of the video. If there is a significant change
between what the projector is trying to show and what one sees, it can be assumed that
something is distorting the image. Second, two compared images must represent the same
area to obtain an accurate SSIM. The screen will have a defined projection area due to a
keystone or lens shift of the projector. When a camera observes the screen, the projection
area in a captured image would appear as a rectangle (e.g., a trapezoid) [16]. Therefore,
the geometric transformation process would be necessary to match the image with the
original one. Finally, color correction is required before the SSIM is calculated. Suppose the
projected light reflects discoloration due to the characteristics of the light source, lens, or
sensor. Thus, the luminance, which is a fundamental factor in calculating the SSIM, will be
influenced by those characteristics.

2.2. Semantic Segmentation

Image segmentation is generally carried out to obtain information regarding where the
objects are located in an image, what those objects look like, and which pixels correspond to
which objects [17]. If a picture is segmented and each pixel in the image is labeled according
to the segmentation, pixels with the same label would share the specific properties. Image
segmentation tasks are divided into semantic segmentation and instance segmentation
based on their purposes. If the purpose is to label the image’s pixels according to which
object they are included in, then only the semantic segmentation task is enough to achieve
the goal. Instance segmentation is necessary when each pixel should be categorized into
individual instances in the image. Since segmentation is typically expensive and not
mandatory for our study, we focused on segmenting the human body rather than on
segmenting each person [18].

Modern segmentation models are based on convolutional neural networks (CNNs),
which are similar to object classification models [19]. However, the structure of the seg-
mentation model requires more consideration. According to the explanation of Long et al.
(2014), as a fully convolutional network goes through convolutional and pooling layers,
the resolution becomes progressively lower, and the image details are lost [20]. Semantic
segmentation models usually take the form of downsampling and upsampling to com-
pensate for the shortcomings of fully convolutional networks. The module executing the
downsampling is called the encoder, and the module executing the upsampling is called
the decoder.

Figure 1 shows an example model configured to utilize MobileNet V3 for image
segmentation [21]. The first half was presented with MobileNet V3 as the backbone. The
second half was configured with R-ASPP Lite as the split head. MobileNet V3 performs the
downsampling role, and R-ASPP Lite performs the upsampling role.
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Figure 1. Segmentation architecture with MobileNet V3 [21]. 
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ture to MobileNet V3. It is reported that DeepLab-v3 has a similar performance to other 
models by employing ‘atrous convolution’ while performing the upsampling [23]. The 
atrous convolution method is to extend the window size without increasing the number 
of weights by setting some values in the convolution kernel to zero.

Table 1 summarizes the characteristics and performance of each segmentation model 
in MediaPipe. Performance in the table was measured using the CPU and GPU of Google’s 
Pixel 6. From those models, our study utilized SelfieSegmenter and DeepLab-V3 with a 
square input size. Both models are semantic segmentation models and have similar input 
sizes. However, the precision of the quantization type is different, and the CPU and GPU 
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Figure 1. Segmentation architecture with MobileNet V3 [21].

Google offers some segmentation models with a similar structure as solutions in
MediaPipe, which include SelfieSegmenter and DeepLab-v3 [22]. SelfieSegmenter is based
on MobileNet V3 and is divided into square and landscape versions depending on the
input shape. Another well-known image segmentation model, DeepLab-v3, has a similar
structure to MobileNet V3. It is reported that DeepLab-v3 has a similar performance to
other models by employing ‘atrous convolution’ while performing the upsampling [23].
The atrous convolution method is to extend the window size without increasing the number
of weights by setting some values in the convolution kernel to zero.

Table 1 summarizes the characteristics and performance of each segmentation model
in MediaPipe. Performance in the table was measured using the CPU and GPU of Google’s
Pixel 6. From those models, our study utilized SelfieSegmenter and DeepLab-V3 with a
square input size. Both models are semantic segmentation models and have similar input
sizes. However, the precision of the quantization type is different, and the CPU and GPU
latencies are higher in DeepLab-V3. The main reason for this performance difference is
believed to be due to differences in the precision of the quantization types.

Table 1. Benchmarks of MediaPipe segmentation models [22].

Model Name Input Shape Quantization Type CPU Latency GPU Latency

SelfieSegmenter (square) 256 × 256 Float 16 33.46 ms 35.15 ms
SelfieSegmenter (landscape) 144 × 256 Float 16 34.19 ms 33.55 ms

HairSegmenter 512 × 512 None (float 32) 57.90 ms 52.14 ms
SelfieMulticlass 256 × 256 None (float 32) 217.76 ms 71.24 ms

DeepLab-V3 257 × 257 None (float 32) 123.93 ms 103.30 ms

3. Proposed System

The structure of the proposed system consists of four modules: the Transformation
Profile Generation Module, the Transform Module, the Segmentation Module, and the Out-
put Module. Figure 2 is a schematic representation of the overall processes and behaviors
that occur for the system to work. The Transformation Profile Generation Module concerns
image calibration according to the environment in which the system is installed. Thus, this
module involves only a one-time process when the installation environment is determined.
The other three modules are repeated until the system stops working.
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Figure 2. Overall functional architecture of the proposed system.

3.1. Transformation Profile Generation Module

In the proposed system, the transformation profile refers to a geometric transformation
model and a color relationship transformation model to compare the similarity of the images
with considerations of such two-type transformation relationships caused by the screen’s
position and the characteristics of a camera observing the screen and the beam projector.

Figure 3 shows the transformation relationships between the images. In Figure 3, im-
age A is sampled by the camera, and image B is the original image. Image A is transformed
into image A′ by tearing off a part of image A and adjusting its rotation angle. To perform
this, the geometric transformation relationship between image A and image B is referred
to. This rule for geometric transformation from image A to image A′ forms the Geometric
Transformation Profile (GTP).
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Image B can be transformed to image B′ by referring to the color transformation rela-
tionship between image B and image A′. Accordingly, this rule for the color transformation
relationship from image B to image B′ forms the Color Transformation Profile (CTP).

3.1.1. GTP Generator

The geometric transformation matches the area of the screen observed by the camera to
the area of the original image to be projected. The screen view that the camera is watching
is largely distorted by the camera’s angle of view and its position relative to the beam
projector. To compensate for this, we applied a perspective shift operation. The features
of the images for perspective translation and a transformation matrix to make those two
images have similar regions should be found. Equation (1) is a matrix that converts a
feature point (x1, y1) on the camera screen to a corresponding feature point (x2, y2) in the
original image [24]. x2

y2
1

 =

a00 a01 b0
a10 a11 b1
a20 a21 1

x1
y1
1

 (1)

This step needs to find the eight unknowns in the matrix by finding at least four points
that correspond between images A and B. To perform this, various algorithms can be used
for feature detection, such as corner detection, SIFT, and HOG features [25–27]. If these
features are unambiguously extracted, they can be used as a reference point for calculating
the transformation matrix.

3.1.2. CTP Generator

If image A′ in Figure 3 has been obtained by geometric transformation, then a color
transformation process is performed to get image B′ by correcting the color distortion
that occurred during the projection of image B and capturing it with a camera. The color
transformation model can be obtained by machine learning. It uses the coordinates and
color values of each pixel of image B as the input data and then produces the outputs,
which are the color values, to construct image B′. The required model can be expressed as
Equation (2).

f (pos X, posY, R, G, B) = R′, G′, B′ (2)

Equation (2) converts the colors R, G, and B of the coordinates (x, y) of the original
image (i.e., image B) to the intentionally distorted colors R′, G′ and B′ of the same coordi-
nates of the output image (i.e., image B′). It is not easy to get the perfect color-matching
results from this transformation. However, it can reduce the considerable color differences
between those two images.

3.2. Transformation Module

The two transformation profiles generated by the Transformation Profile Generation
Module, called GTP and CTP, are applied to the two input channels of the Transformation
Module as follows:

First, the Geometric Transformer converts the image sampled by the camera into a
region of interest (ROI) with the GTP. The effect of the geometric transformation is to cut
out unnecessary areas and leave only those matching the original image. To perform this,
the camera should be watching the speaker and the projection screen at the same time.
Figure 4 shows an example of extracting a ROI from a captured image.
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Second, the CTP is used by the Color Transformer to convert the original image. This
color transformation reduces the color difference between the original image and the output
of the Geometric Transformer (i.e., the ROI image). As shown in an example of Figure 5,
the green color in the original image has been converted to the blue color to increase the
color similarity between the two images compared by the Segmentation Module.
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3.3. Segmentation Module

The Segmentation Module process is performed in two steps: SSIM-MAP generation
and human segmentation. The SSIM-MAP represents the similarity for each point having
the same coordinates in two images, with higher similarity displayed by a bright color and
lower similarity displayed by a dark color.

The proposed system measures the SSIM values in two directions. The first direction
is to compare the geometrically transformed image of Figure 4 with the color-transformed
image of Figure 5b. This measurement produces an output defined as the channel SSIM-
MAP, as shown in Figure 6. The second direction is to examine the similarity between
the past and the current images, which are taken by the camera with a short interval, to
catch the differences caused by the speaker’s movement. We have defined the output of
this measurement as the time SSIM-MAP, as illustrated in Figure 6. Finally, those two
SSIM-MAPs are merged into a single SSIM-MAP containing all the areas that should be
considered as the dimming areas controlled by the Output Module.
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The Channel SSIM-MAP enables the detection of the appearance of an unexpected
object. If an object that does not exist in the original image appears in the camera image,
the object will be displayed as an area with low SSIM values. This means that if an obstacle
in front of the screen (such as a person) impedes light travel, the channel SSIM-MAP will
show that obstacle. SSIM-MAP is used to detect moving objects. Since the image on the
wallpaper is stationary, areas of low similarity could be where the speaker’s movement has
occurred when comparing the previous and current camera images. Finally, those channel
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SSIM-MAP and time SSIM-MAP images are merged into a single SSIM-MAP so that it can
be used to determine the areas for regional brightness control.

As shown in Figure 7, to extract a human body area for the brightness control, the
merged SSIM-MAP image (Figure 7a) is first inverted into grayscale to be used as a mask to
filter non-human areas in the camera-captured image. Since the mask (Figure 7b) indicates
a transparent area when it overlaps with the captured image, only the human body area
keeps the original color while the other areas are covered with the black color (Figure 7c).
Finally, human body segmentation is performed on the composite image to remove all
non-human areas (Figure 7d).
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3.4. Output Module

The Output Module creates a lower luminance setting for the segmented area. It
generates a composite image of the next frame of video and the refined segmented region.
Accordingly, the composite image has a dark color in the segmented region, as shown in
Figure 8.
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If the luminance of the refined segmentation region is perfectly zero, the refined
segmentation process will fail in the next iteration of the loop since the speaker may
disappear into darkness. Therefore, the luminance of the segmentation region should be
set to a low level that the Segmentation Module can recognize.

4. Implementation Details and Results
4.1. Hardware Configuration and Settings

The hardware of the proposed system consists of a webcam camera device, a beam
projector, and a desktop PC with a CPU based on the AMD64 architecture. Table 2 shows
the detailed specifications of the system hardware. The GPU was utilized for machine
learning in the Transformation Profile Generation Module, while image processing was
mainly conducted with the CPU.
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Table 2. System hardware specifications.

Component Specifications

CPU 13th Gen Intel(R) Core(TM) i7-13700K
GPU Nvidia RTX4090
RAM DDR5 32 GB

Webcam C930 e
1080 p, 30 fps

Beam Projector Wanbo T2 Max
1080 p, LED Light source

4.2. Transformation Profile Generation Module Implementation
4.2.1. GTP Generation

Geometric Transformation Profile (GTP) is a transformation matrix to extract the
screen area from the image captured by a camera. To get this matrix, the screen with the
highest brightness is first captured and inverted into a grayscale. Then, the projection and
non-projection areas are separated into 0 and 1 values by the appropriate threshold. The
process for determining the threshold is as follows:

1. Performs K-means clustering on the brightness of the pixels to find two clusters: black
and white [28,29].

2. Finds the maximum and minimum brightness values of the two clusters.
3. Sorts the values and taking the average of the second- and third-ranked values as the

threshold.

The threshold set by the above procedure will be in the range where brightness occurs
least frequently in the original image. Figure 9a is a histogram of brightness values, and if
you follow the procedure, the threshold can be determined automatically. Figure 9b is a
result of binarization by automated thresholding. As a result of this binarization, all pixels
in the screen area form the shape of a white square (generally, a trapezoid). To find four
vertices of the square, the Hough transform [30,31] is applied to extract the line segments of
the square and calculate their intersection points. Figure 9c shows the edges of the screen
area detected by the Hough transform. Finally, the transformation matrix is derived by
mapping those vertices into a rectangular area of the size of 320 × 180. Figure 9d shows
the automated result of the above process.
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brightness pixels, blue bars are high brightness pixels; (b) quantized image by threshold. (c) camera
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4.2.2. CTP Generation

The Color Transformation Profile (CTP) is used to reduce color differences between
the original image and the geometrically transformed captured image. These differences
are mainly due to the color distortion during image projection and capture with the camera.
In the captured image, the edges of the screen are generally darker than the center and
may have some glares. In our study, to determine the color distortion, a polynomial
linear regression was performed, and LASSO regularization was applied to eliminate the
computation with little relevance [32,33]. For the training data set, 500 images have been
generated with random colors. Each pixel has been sampled from random coordinates
in those images. Figure 10 shows the polynomial linear regression training results with
LASSO regularization. In LASSO regularization, the alpha value represents the strength of
the regularization. Hence, a low strength indicates that the regression model will include
many coefficients that are less effective, increasing the amount of computation in the system.
Based on the RMSE and R-square calculated by training, we used the correlation coefficient
of alpha value −4.0 for this study.
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The correlation coefficients inferred from the polynomial linear regression are used as
a filter to correct the color distortion based on the location. To make similar effects with
the glare on the edge, the Gaussian blur method is applied [34]. Figure 11 shows the raw
image, camera image, and affected image by filter and blur.
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result image from camera image; (c) color-transformed result image from the raw image; (d) blurred
color-transformed result image from the raw image.

Table 3 summarizes the means and standard deviations of the SSIM values improved by
those color filtering and blurring effects. As shown in the table, the blur effect can improve
the similarity of two images (the original and captured ones) more than color filtering.

Table 3. SSIM measurement results from image effect.

Effects Mean Std

Original 0.6575 0.1271
Filtered 0.6899 0.1251
Blurred 0.7508 0.0925

Filtered + Blurred 0.7837 0.0911

4.3. Segmentation Module Implementation
4.3.1. SSIM-MAP Generator

After applying transformations with the GTP and the CTP, the SSIM-MAPs are gen-
erated to detect whether there are any objects in front of the screen that block the light
coming from the projector. In this study, the SSIM-MAP is made by binary-quantizing with
a 3 × 3 window and the appropriate threshold. In this study, we applied a level of 0.5 as
the threshold, which corresponds to the third quartile of the range of SSIM values from
−1.0 to 1.0. Since the size of the window is the number of surrounding pixels being used to
measure a pixel’s SSIM value, it affects the sensitivity of the measurements. The smaller
window size would derive the more sensitive SSIM value. However, it should be at least
3 × 3 [15]. If the window is too large, there may not be any difference in SSIM values based
on the location of the image [15]. As mentioned before, the proposed system generates
two different SSIM-MAPs, called the Channel SSIM-MAP and the Time SSIM-MAP, and
then merges them into a single SSIM-MAP to be used for human area segmentation by the
Brightness Control Area Refiner.

4.3.2. Brightness Control Area Detector

In this study, we have employed two well-known segmentation models, DeepLab-v3
and Selfie [35], to remove non-human areas from the masked camera image. Both segmenta-
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tion models are included in MediaPipe 0.10.0, which is an open-source AI library developed
by Google. Since those models are provided with sufficient training, no additional training
has been performed for our study. To check the results of applying those two segmentation
models, we have detected a brightness control area with each model for a single image in
which a speaker is giving a lecture.

Figure 12 shows the example results of brightness control area detection performed by
the proposed system. Figure 12a,b represent segmentation results using the DeepLab-v3
and Selfie segmentation models, respectively. These results show that the Selfie model has
found a smoother segmentation line than that of the DeepLab-v3 model. Figure 12c,d show
the segmentation line of each model for the area masked by SSIM-MAP. They illustrate that
most non-human areas have been successfully removed to detect the brightness control area.
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4.4. Performance Evaluation

If the body area has been segmented and the bright control is applied, there will be
less light in the human body. A reduction in the projected light will lead to the camera
obtaining a darker area in the picture, which would also affect the next segmentation due
to the difference in the incoming image. We sequentially adjusted the dimming brightness
level in 50 increments to measure this effect.

4.4.1. Evaluation Methods

In this study, the dimming area is determined by two segmentation models and the
regional brightness control of the projector. In this section, we explain how to evaluate the
proposed system’s effectiveness and present some measured results from our implementation.

To evaluate the system’s effectiveness, a mannequin that could be recognized as a
person was placed in front of the beam projector’s screen. The measurements have been
performed for two images resulting from two segmentation models: Selfie and DeepLab-
v3. Each frame has been processed based on a size of 640 × 360. In our experimental
environments (shown in Table 2), the total execution time with the Selfie segmentation
model appeared to be about 200 ms to process one frame. With DeepLab-v3, the total
execution time for one frame appeared to be about 220 ms. In the installation process, our
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implementation took 135 ms to generate the SSIM-MAP. Figure 13 shows a webcam image
of the screen with a mannequin and the proposed system’s output with DeepLab-v3.
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Segmentation is the task of labeling which classification each pixel belongs to. Usually,
the performance evaluation of a classification model is carried out based on the confusion
matrix. With the confusion matrix, the error rate of a system can be calculated by the
following Equation (3) [36].

Error Rate =
FP + FN

TP + TN + FP + FN
(3)

In the formula, TP, TN, FP, and FN represent true-positive, true-negative, false-positive,
and false-negative, respectively. In our study, the FP value indicates the number of error
pixels that are not actually included in the human body, but the segmentation model
determined they are. On the other hand, the FN value indicates the number of error pixels
that are actually included in the human body, but the segmentation model determined they
are not. The error rate of the system can be calculated using the rate of total error pixels,
including both FP and FN pixels. Then, the system’s accuracy can also be easily calculated
by subtracting the error rate from 1.0.

4.4.2. Implementation Results

Figure 14 is a frame-by-frame graph of the accuracy rate when our implementation is
operated using the Selfie and DeepLab-v3 segmentation models, respectively.
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In Figure 14, the numbers on the x-axis represent the order in the series of input frames,
and the values on the y-axis show the accuracy rates for those input frames, which have
been measured according to the methods in Section 4.4.1. The brightness levels in the index
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mean that our measurements have been carried out by increasing the brightness from 0%
to 100% in 20% intervals. In Figure 14a, the accuracy rates with the selfie model show a
gradually decreasing trend as the number of frames increases, except in the case of the
brightness level of 100%. In Figure 14b, the accuracy rates with the DeepLab-v3 model
appear to be over 70% in most cases, except for the brightness level of 0%. The results
in Figure 14 illustrate that the accuracy rates are more stable with the Deeplab-v3 model
compared to the case of the Selfie model.

We have also measured the FN rates and the FP rates to analyze the differences between
the cases further using those two segmentation models. Figure 15 shows a frame-by-frame
graph of the FN rates measured with our implementation. In Figure 15a, the FN rates of
the Selfie model case generally appear to be small values (around 0) and do not have many
changes. When the brightness level is set to 0%, the FN rates considerably increase since the
segmentation model does not work appropriately with much lower brightness. As shown
in Figure 15b, the FN rates of the DeepLab-v3 model case also appear stable below 0.05 at
most brightness levels except for level 0%. This implies that the accuracy rate differences
of both segmentation models in our implementation are not significantly affected by the
FN errors.
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a feed-back for processing the human body segmentation of the next frame. When the 
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Figure 15. FN rates of the proposed system: (a) Selfie model case; (b) DeepLab-v3 model case.

Figure 16 is a frame-by-frame graph of the FP rates when our implementation is
operated using the Selfie and DeepLab-v3 segmentation models. In Figure 16a, the FP rates
of the Selfie model case continuously increase as the frame progresses. This may be caused
by the fact that the dark area generated by the regional brightness control is provided with
a feed-back for processing the human body segmentation of the next frame. When the
brightness level is high, 80% through 100%, the FP rate plots are quite stable under 0.05. At
a brightness level of 60%, the FP rate plots become unstable between 0.0 and 0.3. As the
brightness level decreases, the FP error rates appear significant, so the proposed system
does not work properly. As shown in Figure 16b, the FP rates of the DeepLab-v3 model case
appeared stable, with values lower than 0.3 in most cases of brightness levels. Likewise, in
this case, the changes in FP rates become more active as the brightness level decreases.

When reviewing the operational results of the proposed system, several implications
can emerge. The measured results of our implementation seemed highly dependent on
the ability of the segmentation model. The Selfie model of MediaPipe did not work well
without sufficient light. With brightness levels below 60%, it could not properly distinguish
the human body and blurred areas as well. Otherwise, the DeepLab-v3 model did not
suffer much from low light levels. It is important that more experiments with various
segmentation models and experimental scenarios be conducted to increase the proposed
system’s practicality. This is because the results presented in this paper depend quite a bit
on several factors, including the brightness level and features of the previous frame.
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It is also expected that the performance of the proposed system could be greatly
enhanced if the segmentation model is newly trained using a dataset appropriate for the
purpose of this study. Because the existing well-known segmentation models, including
Selfie and DeepLab-v3, have already been trained with clear images with normal brightness
levels, they are not suitable for our experiments to be directly applied. Training models
with appropriate data sets for our study could be an important item for our future work.

5. Conclusions

The hardware technology associated with beam projectors is continuously evolving.
As higher-performance light sources for beam projectors are developed and applied, the
negative effects on human glare are also increasing. This study proposes a regional bright-
ness control method for beam projector systems to protect the eyesight of people who
perform activities such as delivering lectures in front of a beam projector.

The proposed system detects the human body area on the screen and regionally
reduces the light intensity in the detected area. To achieve these functions, the proposed
system first generates two profiles for geometric and color transformations to eliminate
the differences between the original source image and the projected image sampled by
the camera. After applying transformations with those two profiles, the SSIM is used to
generate a SSIM-MAP for the corresponding locations in the compared two images. Areas
with lower SSIM values would indicate people or unintended objects in front of the screen.
Then, those areas are segmented to extract only the actual human body. Finally, the system
works by controlling the area’s output brightness to reduce human glare.

One of the important features or implications of our study is that we have applied
SSIM-MAP to the segmentation model so that the proposed system can identify the human
body area with a method based on image differences. It enables the proposed system to
escape confusion between human figures in the projected image and the real human body.
The most important contribution of this research is proposing a new way to utilize the
SSIM for beam projectors. The SSIM was developed as a metric to evaluate the quality of
an image, but by reducing the window size for calculation, it can be used to identify where
the changes have occurred.

Another point is that we have proposed and implemented blurring and color conver-
sion methods to increase the similarity between the original image and the projected image
captured by a camera. Though blurring is a common method to degrade image quality by
reproducing the effect of light smearing [8], it is quite suitable for the proposed system to
simulate image degradation due to projection and capture with a camera. Color conversion
also achieved additional similarity improvements by correcting color values based on the
position of each pixel. Since the two methods have different causes of the phenomenon
they solve, we propose that applying both methods to this problem is an appropriate way
to improve the similarity.
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For future work, more experiments with various scenarios and configurations would
be carried out to enhance the proposed system’s performance and energy efficiency. To
perform this, additional segmentation models need to be applied or newly trained to
optimize our purpose. Some image quality assessment methods, such as PSNR and
MSE, can be considered in comparison with SSIM. For real-time processing, you need
to consider process optimization, dynamic brightness control, and energy efficiency to
improve performance. During the installation process, some additional preprocessing
tasks, such as brightness equalization and camera calibration, may considerably affect the
system’s performance. Finally, referring to user experience would improve the ease of use
of your proposed system.
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