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Abstract: In large and densely populated cities, the concentration of pollutants such as ozone and its
dispersion is related to effects on people’s health; therefore, its forecast is of great importance to the
government and the population. Given the increased computing capacity that allows for processing
massive amounts of data, the use of machine learning (ML) as a tool for air quality analysis and
forecasting has gotten a significant boost. This research focuses on evaluating different models, such as
Random Forest (RF), Support Vector Regression (SVR), and Gradient Boosting (GB), to forecast ozone
(O3) concentration 24 h in advance, using data from the Mexico City Atmospheric Monitoring System
using meteorological variables that influence the phenomenon of ozone dispersion and formation.

Keywords: gradient boosting; machine learning; ozone forecasting; random forest; support vector
regression

1. Introduction

The Metropolitan Area of the Valley of Mexico is 2240 m above sea level, located
in a terrain of significant complexity, surrounded by mountains with an average height
ranging between 600 and 800 m above the valley floor. This geographical setting makes it a
region of great interest due to the substantial influence of meteorological variables on the
dispersion of pollutants in the atmosphere. Furthermore, it is considered one of the largest
cities in the world, characterized by a high population density, rendering it a focal point
for the study of pollutant dispersion phenomena in the air. It played a pivotal role in the
MILAGRO campaign (Megacity Initiative: Local And Global Research Observations) [1], in
which nearly 150 institutions collaborated, supported by 450 researchers from various parts
of the world. This extensive effort involved deploying diverse equipment in March 2006
to collect extensive data on pollutants and meteorological information, aiming to gain a
deeper understanding of pollutant dispersion phenomena in the atmosphere of a megacity.

The air quality issue has garnered international priority, with studies conducted in
Mexico City and major cities worldwide. In response to this challenge, governmental
agencies have enacted regulations governing air quality levels to reduce pollutant concen-
trations. For instance, restrictions on the use of leaded gasoline were implemented due to
the more contaminating and particularly toxic emissions from vehicles, which could reach
hazardous concentrations in urban environments, posing risks to the health of residents.

Pollution poses a significant impact on public health, with the World Health Organi-
zation (WHO) estimating approximately 7 million premature deaths annually, equivalent
to 800 deaths every hour or 13 per minute. Numerous studies have been conducted to
assess the adverse effects resulting from prolonged exposure to various pollutants. For
example, the study by Rosalba Rojas-Martinez et al. [2] on the lung development issues in
children in Mexico City due to prolonged exposure to air pollutants concluded, after three
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years of follow-up that the children involved in the study exhibited adverse effects on lung
development. This implies long-term health risks associated with an increased likelihood of
developing heart-related conditions. As mentioned by Baldasano et al. [3], the established
regulations have succeeded in reducing air pollutant concentrations, except ozone (O3),
which has shown a global upward trend, making its impact on health a priority. This is
evident in studies such as Karthik L. et al. [4], which conducted a review of 55 medical
articles from 1980 to 2014 on the health impacts of ozone exposure, and Niu et al. [5], where
the results indicate that prolonged exposure to ozone (O3) significantly affects cardiac
mortality in China. Given its substantial health impact, understanding the formation and
dispersion of ozone has become critically important, as well as the ability to forecast its
concentrations to enable timely control measures.

Currently, this process is accomplished through conventional techniques such as
mathematical models to simulate pollutant dispersion and statistical tools to comprehend
and infer the behavior of this phenomenon. The advancement of technology and the
capacity for massive data processing through machine learning have opened up new
avenues of research to address this issue. Section 2 explores some research endeavors that
apply machine learning to air quality.

2. Related Works

Currently, the use of machine learning as a forecasting tool in various fields is on
the rise, and the field of air quality has yet to be an exception. Several related research
studies have been conducted in different countries; in their research, Ahmad et al. [6]
utilized machine learning techniques to predict ground-level ozone concentrations in
Mexico City using hourly data from March 2015 to February 2016 and aimed to elucidate
the relationship between variables and high ozone levels. The performance of three distinct
models, Artificial Neural Network (ANN), Support Vector Regression (SVR), and Random
Forest (RF), was evaluated based on the coefficient of determination (R2) and the index
of agreement (IOA); Yarragunta et al. [7] conducted a study analyzing air pollution data
from various cities in India, encompassing nine attributes, including location details and
pollutant levels. The study focused on daily data of pollutants, such as SO2, NO2, PM10,
PM2.5, CO, and O3, aiming to forecast air pollution levels for the subsequent days. Six
supervised machine learning techniques were used to build predictive models, including
logistic regression, support vector machines, random forests, K-nearest neighbors, naive
Bayes classifier, and decision tree. The research emphasized learning and predicting the
air quality index through adaptable machine learning algorithms, with Accuracy as a
metric for model evaluation; Liang et al. [8] conducted a study based on data collected
by Taiwan’s Environmental Protection Administration (EPA) from 2008 to 2018, focusing
on three specific regions within Taiwan. The primary objective was to develop models to
efficiently forecast the Air Quality Index (AQI) for short-term durations: 1 h, 8 h, and 24 h.
Five machine learning algorithms, including random forest, AdaBoost, support vector
machine, artificial neural network, and stacking ensemble methods, were examined to
achieve this. Model performance was evaluated using scale-dependent error indexes: MAE,
RMSE, and R2. In a study led by Aljanabi et al. [9], data from the Jordanian Ministry of
Environment, covering the period from 1 May 2014 to 4 June 2019, were analyzed. This
dataset captured daily averages of ozone readings alongside meteorological variables, such
as temperature and wind patterns. The study’s objective was to forecast the daily ozone
concentration in Amman by leveraging a blend of meteorological and seasonal indicators
from the preceding day, including distinct events like special days. The study evaluated
several algorithms, namely, MLP, SVR, DTR, and XGBoost, and found MLP to be the
most proficient. Additionally, the team explored the potential outcome improvement by
integrating smoothing filters into the time-series data. The efficacy of the models was
gauged using metrics like MAE, RMSE, and R2.

In research conducted by Di et al. [10], data from various regions within the United
States, spanning 1 January 2000 to 31 December 2015, were examined. The study employed
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three machine learning algorithms, neural network, random forest, and gradient boosting,
to model PM2.5 levels. These algorithms incorporated a broad range of predictor variables,
encompassing satellite data, meteorological factors, land-use metrics, elevation, chemical
transport model predictions, and several reanalysis datasets. An ensemble approach was
adopted to amalgamate the outcomes of these three algorithms, yielding a consolidated
PM2.5 forecast. The models’ effectiveness was gauged using metrics such as R2, RMSE,
MAE, and mean bias error (MBE). In their comprehensive study, Srivastava et al. [11]
harnessed meteorological parameters, including vertical wind, wind speed and direction,
temperature, and relative humidity, to predict concentrations of pollutants like CO, NO2,
O3, SO2, PM10, and PM2.5 across three strategic sites in New Delhi’s districts. The research
incorporated an array of machine learning methodologies, such as Linear Regression,
Stochastic Gradient Descent Regression, Multi-layer Perceptron, and Gradient Boosting
Regression. The performance of the models was evaluated using MSE, MAE, and R2. In a
study by Zhu et al. [12], the multi-task learning (MTL) method was proposed to predict
hourly air pollution concentrations, incorporating various regularization techniques for
optimal model selection. The model leverages historical meteorological and pollutant data
from the Department of Meteorology at the University of Utah between 2006 and 2015 to
predict pollution levels for the following day.

Model effectiveness was assessed using the root mean square error. In a study by
Aditya et al. [13], two machine learning models, logistic regression and autoregression,
were employed to analyze data from an Italian city between 2004 and 2005. While logistic
regression classified samples as polluted or not, autoregression predicted PM2.5 levels
seven days in advance. The logistic regression model’s performance was assessed using
mean accuracy (MA) and standard deviation accuracy (SDA), while the autoregression
model was evaluated with MAE. Contreras-Ochando et al. [14] introduced airVLC, a
web application designed to predict and map air pollution levels in Valencia, Spain. This
application harnesses real-time open data sources, capturing metrics like pollution readings,
weather conditions, calendar events, and traffic intensities. Analyzing historical data
from 2013 to 2015, the team explored multiple regression techniques to pinpoint the most
effective pollution prediction method.

Additionally, the study assessed various interpolation methods, emphasizing a novel
approach that factors in wind direction, enhancing traditional methods like IDW and
Kriging. Several machine learning models were employed to predict the primary pollutants
in Valencia in real-time, such as Linear Regression, quantile regression with the lasso
method, K-nearest neighbors, decision tree regression, and Random Forest. The Root Mean
Squared Error was the chosen metric to evaluate each model’s efficacy.

3. Materials and Methods
3.1. Data Set

The data used for the study were obtained from two monitoring networks in the Mexico
Valley area. The data on pollutants and meteorological variables were obtained from the
Automatic Atmospheric Monitoring Network (RAMA) and the Meteorological Network
(REDMET) of the Atmospheric Monitoring System of Mexico City (SIMAT) of the Environ-
mental Secretariat of the Government of Mexico City [15]. Solar radiation data were obtained
from the EMA stations of the CONAGUA monitoring network [16]. The study period covers
from the years 2015 to 2022. The geolocation of the measurement points is shown in Figure 1.
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Figure 1. Location of measurement sites. Red diamonds belong to CONAGUA’s Automatic
Weather Stations, black diamonds belong to the SIMAT monitoring network of the Mexico City
Environmental Secretariat.

3.2. Feature Vector Construction

Feature vector construction is a critical step in the machine learning pipeline that
has a profound impact on every subsequent step, from model training and evaluation to
the interpretability of the results. It involves not just selecting the right features but also
appropriately processing and engineering these features to best represent the problem
space for the learning algorithm, hence the importance of understanding the variables
within our research domain and their relationships in order to extract patterns from our
data and enhance the precision of our predictions. Next, we will delve into the various
factors and their influence on ozone concentrations.

The concentration of tropospheric ozone (O3) is influenced by various atmospheric
and meteorological factors, as mentioned in the research in Table 1, including temperature,
humidity, wind direction, and wind speed. Next, we present a general overview of how
each of these factors can impact ozone concentration:

1. Temperature:

• Photochemical Reactions: Ozone formation in the troposphere is a result of
photochemical reactions. Higher temperatures generally increase the rate of
these reactions, leading to a faster and more efficient production of ozone.

• Stability of the Atmosphere: On hot days, especially under high-pressure systems,
the atmosphere can become more stable, trapping pollutants, including ozone
and its precursors, close to the ground and increasing concentrations.

• Volatile Organic Compound (VOC) Emissions: Higher temperatures can also
lead to increased emissions of VOCs from vegetation and certain human-made
sources, further promoting ozone formation.

2. Humidity:

• OH Radical Production: Water vapor can contribute to the formation of hydroxyl
radicals (OH), which play a crucial role in oxidizing VOCs and other pollutants,
leading to the production of ozone. However, the exact relationship between
humidity and ozone production can be complex and might vary depending on
other prevailing conditions.

• Dilution: On the other hand, extremely high humidity levels can lead to conden-
sation and cloud formation, which may reduce solar radiation, slowing down
photochemical reactions.
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3. Wind Direction:

• Transport of Precursors: The direction of the wind can transport ozone precursors
(like NOx and VOCs) from their sources to other areas. For instance, if a city
has major industrial zones on its eastern side and the wind is blowing from
east to west, areas downwind can experience elevated ozone levels due to the
transported pollutants.

• Clean Air Advection: Conversely, winds from rural or oceanic directions can
bring cleaner air, reducing ozone concentrations.

4. Wind Speed:

• Dispersion: Faster wind speeds can help disperse pollutants, diluting their
concentration. This can decrease the buildup of ozone precursors in a particular
area and reduce localized ozone formation.

• Vertical Mixing: Strong winds, especially when accompanied by turbulence,
can enhance the vertical mixing of the atmosphere, distributing ozone and its
precursors over a larger vertical layer. This can lead to a decrease in ground-level
ozone concentrations.

Table 1. Overview of research on machine learning applications for air quality forecasting models.

Research Paper Predicted Predictors Models Metrics

A Machine Learning ap-
proach to investigate
the build-up of surface
ozone in Mexico City
(2022) [6].

O3.

Temperature, Relative
humidity, Wind speed
and direction, NO,
NO2, UV-A and Plan-
etary Boundary Layer
Height.

Random Forest, Gradi-
ent Boosting, Deep Neu-
ral Network.

R2, Index of Agreement
(IOA).

Prediction of Air Pol-
lutants Using Super-
vised Machine Learning
(2021) [7].

Air quality index for
PM10, PM2.5, NO2, CO,
SO2, NH3, O3.

Country, State, City,
Place, Last updated,
Min, Max, Average,
and Pollutants(PM10,
PM2.5, SO2, CO, NO2,
O3).

Decision Tree, Support
Vector Machine, Logis-
tic Regression, Random
Forest, Naive Bayes, K-
Nearest Neighbor.

Accuracy.

Machine Learning-
Based Prediction of Air
Quality (2020) [8]

Air quality index for 1
h, 8 h, and 24 h.

PM2.5 and PM10 mov-
ing average, O3 average
of the last eight hours,
CO concentration for
the last eight hours, Air
uality index based on
the maximum concen-
tration of PM10, PM2.5,
NO2, SO2, O3 and CO.

Random Forest, Ad-
aBoost, Support Vec-
tor Regression, Artifi-
cial Neural Network.

RMSE, MAE, R2.

Ground-level Ozone
Prediction Using
Machine Learning Tech-
niques: A Case Study
in Amman, Jordan
(2020) [9]

O3.

Ozone, Temperature,
Humidity, Wind di-
rection, and speed,
Memorable day (week-
end, holiday), Day of
the year.

Multi-Layer Perceptron,
Support Vector Regres-
sion, Decision Tree, XG-
Boost.

RMSE, MAE, R2.

An ensemble-based
model of PM2.5 con-
centration across the
contiguous United
States with high spa-
tiotemporal resolution
(2019) [10]

PM2.5.

Satellite-derived
aerosol optical depth,
Satellite-based mea-
surements, Chemical
transport model pre-
dictions, Land-use
variables, and Meteoro-
logical variables.

Ensemble Model (Neu-
ral Network, Random
Forest, Gradient Boost-
ing).

RMSE, R2.
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Table 1. Cont.

Research Paper Predicted Predictors Models Metrics

Estimation of Air Pol-
lution in Delhi Using
Machine Learning Tech-
niques (2018) [11]

Air pollution levels for
CO, NO2, O3, SO2,
PM10, PM2.5.

Vertical wind, Wind
speed and direction,
Temperature, and
Relative humidity.

Linear Regression,
Stochastic Gradient De-
scent, Random Forest,
Decision Tree, Support
Vector Regression,
Multi-layer Perceptron,
Gradient Boosting
Adaptive Boosting.

RMSE, MAE, R2.

A Machine Learning
Approach for Air Qual-
ity Prediction: Model
Regularization and Op-
timization (2018) [12].

Next day concentration
for O3, PM2.5, SO2.

Air temperature,
Relative humidity,
Wind speed, and di-
rection, Wind gust,
Precipitation accumu-
lation, Visibility, Dew
point, Wind cardinal
direction, Pressure,
Weather conditions,
Weekday/weekend,
Concentration pollu-
tant, and Bias term.

MTL with Linear Re-
gression. RMSE.

Detection and Predic-
tion of Air Pollution Us-
ing Machine Learning
Models (2018) [13].

Classification of Sam-
ples into Polluted or
Non-Polluted Cate-
gories, PM2.5.

Temperature, Wind
speed, Dew point, Pres-
sure, PM2.5 Concen-
tration, Classification
result.

Autoregression, Logis-
tic Regression. MA, SDA, MAE.

AirVLC: an Application
for Visualizing Wind-
sensitive Interpolation
of Urban Air Pollution
Forecasts (2016) [14].

NO, NO2, SO2, O3.

Pollution level, Mete-
orological conditions
(Temperature, Relative
humidity, Pressure,
Wind speed, Rain),
Calendar features
(Year, Month, Day
in the month, Day
in the week, Hour),
and Traffic intensity
features.

Linear Regression,
Quantile Regression,
K-Nearest Neigh-
bor, Random Forest,
Decision Tree.

RMSE.

It’s essential to understand that these factors often interact in multifaceted ways. For
instance, a hot, calm day might be conducive to ozone buildup due to reduced dispersion
and enhanced photochemical reactions. However, if that hot day is also humid with cloud
cover, the reduced sunlight might counteract some of the enhanced ozone production.
For this reason, it is important to depict the relationships within the process that involves
interactions between various precursor pollutants, including nitrogen oxides (NOx, which
includes NO and NO2) and volatile organic compounds (VOCs), in the presence of sunlight,
as shown in the research by Lelieveld and Dentener [17], or in that by Finlayson-Pitts and
Pitts [18]. Next, we provide a breakdown of this phenomenon:

1. Emission of Precursors: Primary pollutants like nitrogen oxides (NOx) and volatile
organic compounds (VOCs) are emitted into the atmosphere. These are typically
released from automobile exhaust, industrial processes, power plants, and other
combustion processes.

2. Photodissociation of Nitrogen Dioxide (NO2):

NO2 + hν → NO + O (1)
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In the presence of sunlight, NO2 undergoes photodissociation, breaking down into
nitrogen monoxide (NO) and a free oxygen atom (O). The symbol “hv” represents a
photon of sunlight.

3. Formation of ozone:
O + O2 → O3 (2)

The free oxygen atom (O) rapidly reacts with molecular oxygen (O2) in the atmosphere
to form ozone (O3).

4. Reconversion:
NO + O3 → NO2 + O2 (3)

Nitrogen monoxide (NO) can also react with the ozone (O3) to form nitrogen dioxide
(NO2) and molecular oxygen (O2). This essentially reduces the concentration of ozone.

5. VOCs Role in the Cycle: VOCs, in the presence of NOx and sunlight, can generate
more reactive intermediates, which will react with NO to form NO2. This reaction
“removes” NO from the environment, allowing more ozone to form without it being
quickly converted back to oxygen. In other words, the VOCs help “tie up” NO,
preventing it from immediately destroying the ozone that’s been formed.

Finally, it is important to show how the ozone concentration could be influenced
by temporal factors such as the month, day of week, and hour, or by geospatial factors
as longitude, latitude and altitude; you can see a brief explanation of how each of these
variables might impact ozone concentration:

1. Month:

• Sunlight Intensity and Duration: Ozone formation is a photochemical process
that requires sunlight. Therefore, months with longer daylight hours and more
intense sunlight, typically the spring and summer months, tend to have higher
ozone concentrations.

• Temperature: Months with warmer temperatures, typically summer months, can
lead to higher ozone concentrations.

• Vegetation Growth and Emissions: Certain months, especially spring and early
summer, might see increased biogenic emissions of volatile organic compounds
(VOCs) from vegetation, which can contribute to ozone formation.

2. Day of week:

• Emissions Variability: Weekdays often have higher vehicular traffic and indus-
trial activities compared to weekends. This can lead to higher emissions of ozone
precursors like NOx on weekdays.

• Weekend Effect: Despite reduced precursor emissions on weekends, some urban
areas observe higher ozone levels during weekends, a phenomenon known as
the “weekend effect.” This can be due to the disproportionate reduction in NO
emissions compared to VOCs on weekends, altering the chemical balance and
facilitating ozone production.

3. Hour:

• Daily Cycle: Shown in the ozone concentration pattern, there are usually lower
levels in the early morning because the sun has not risen or is low in the sky,
reducing the intensity of UV radiation needed for ozone formation; ozone peaks
during the afternoon when sunlight is most intense and temperatures are highest;
in the evening, the rate of ozone production decreases, but the loss processes are
slower. UV radiation needed for ozone formation changes throughout the day,
affecting the intensity of UV radiation reaching the surface.

• Emissions Patterns: Human activities, such as traffic and industrial operations,
have specific hourly patterns.

• Mixing Layer Depth: The depth of the atmospheric mixing layer changes through-
out the day, affecting the dispersion of pollutants.
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4. Latitude:

• Sunlight Intensity: Near the equator (low latitudes), the sun’s rays are more
direct, leading to more intense UV radiation, which can enhance photochemical
reactions and thus ozone formation.

• Distribution of Emission Sources: Industrialized regions and urban centers,
significant sources of ozone precursors like NOx and VOCs, may be concentrated
at specific latitudes.

• Stratospheric Intrusions: At high latitudes, stratospheric intrusions can introduce
ozone-rich air from the stratosphere to the troposphere.

5. Longitude:

• Time of Day: Due to the Earth’s rotation, the position of the sun changes with
longitude, affecting the daily cycle of photochemical reactions.

• Distribution of Emission Sources: Significant emission sources might be concen-
trated at specific longitudes.

• Meteorological Patterns: Weather systems vary longitudinally, especially in
regions influenced by oceanic or continental effects.

6. Altitude:

• Decreased Pressure: As altitude increases, atmospheric pressure decreases, po-
tentially affecting ozone formation.

• Temperature Profile: The temperature can either increase or decrease with alti-
tude, affecting ozone concentrations.

• Vertical Distribution of O3: Ozone concentrations generally increase with altitude
in the troposphere and are high in the stratosphere.

• Transport of Ozone Precursors: Elevated regions might be exposed to ozone
precursors transported from lower altitudes.

With the goal of predicting ozone concentrations in the study area with a 24-h lead
time, considering the existing relationships between these variables and the influence they
have on said concentrations, the feature vector was formed, as shown in Table 2.

Table 2. Feature vector.

Temporal and Geospatial Variables

longitude latitude altitude month weekday hour
24 h prior meteorological and pollutant variables

O3 NO NO2 NOx
Relative

humidity (rh)
Temperature

(tmp)

Wind
direction

(wdr)

Wind speed
(wsp)

Solar radiation from EMAs stations 24 h prior

ECOGUARDAS TEZONTLE MOLINODELREY ENCBI ENCBII PRESAMADIM
Meteorological variables Pollutant variables EMAs Stations

Mean 00to03 Mean 00to03 Mean 00to03
Mean 04to07 Mean 04to07 Mean 04to07
Mean 08to11 Mean 08to11 Mean 08to11
Mean 12to15 Mean 12to15 Mean 12to15
Mean 16to19 Mean 16to19 Mean 16to19
Mean 20to23 Mean 20to23 Mean 20to23

previous day’s maximum previous day’s maximum previous day’s maximum
previous day’s minimum previous day’s minimum previous day’s minimum

The feature vector consists of 132 variables.

3.3. Hyperparameter Optimization

The optimization of hyperparameters in machine learning models is a process of criti-
cal importance, significantly impacting model performance and accuracy. This procedure
involves fine-tuning the hyperparameters, which govern the learning algorithm’s behavior
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and its capability to accurately interpret and learn from underlying data patterns. Opti-
mal hyperparameter settings enhance the model’s performance and improve the results
obtained. One of the key roles of hyperparameter optimization is to mitigate the risks of
overfitting and underfitting, striking a balance where the model is sufficiently complex to
elucidate essential data patterns without being excessively tailored to the training data.
This balance is crucial in ensuring the model’s ability to generalize effectively from training
data to new, unseen data. There are different approaches to address this issue, as mentioned
by Feurer and Hutter [19]. In this research, we decided to use GridSearchCV, which has
some significant advantages in its implementation but also presents some disadvantages
that we need to address. The operational scheme of GridsearchCV is based on the wrapper
method proposed by Kohavi and Jonh [20] and is shown in Figure 2.

Figure 2. Hyperparameter optimization process: this figure shows the process of the fine-tuning of
hyperparameters using the GridSearchCV tool.

GridSearchCV is a systematic approach employed in the field of machine learning for
the optimization of model hyperparameters. This method is instrumental in enhancing the
performance of a machine learning model by exhaustively searching through a predefined
space of hyperparameter values. The fundamental premise of Grid Search is to evaluate
and compare the model’s performance across different combinations of hyperparameters,
thereby identifying the most effective set of parameters. This process of GridSearch involves
the following key steps:

1. Definition of Hyperparameter Space: The first step involves delineating the range or
set of values for each hyperparameter under consideration. This set forms a grid of
hyperparameter combinations, where each node represents a unique combination. The
generation of this grid of options and evaluating all solutions is a task that demands
too many resources and is impossible to carry out because many hyperparameters
take continuous values. Therefore, it is chosen to define recommended or well-known
ranges of values for these hyperparameters, creating a finite space of combinations.

2. Cross-Validation Mechanism: GridSearch is typically coupled with cross-validation to
assess the performance of the model for each hyperparameter combination.
Cross-validation involves dividing the training dataset into multiple smaller sets
or folds. The model is trained on all but one fold (the training set) and validated on
the remaining fold (the test set). This process is repeated so that each fold serves as
the validation set once, ensuring comprehensive evaluation.
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The utilization of cross-validation helps to improve the model’s performance by
reducing variance through averaging performance estimates from multiple iterations
of training and testing on different data subsets. It presents a better generalization
by evaluating the model on multiple subsets of the data, aiding in assessing its
generalization capabilities. This is especially important for detecting overfitting, as
the model’s performance is evaluated on various data partitions, resulting in a more
robust estimate of its accuracy on unseen data, as is mentioned in the study guided
by Kohavi [21].

3. Selection of Optimal Hyperparameters: Post evaluation, the combination of hyperpa-
rameters that produces the best performance is selected based on the minimal average
error of the test folds.

As mentioned before, GridSearchCV presents the advantages of increasing the model’s
precision and improving the generalization and potentially reduced bias in the estimation
of model performance. Another advantage is that it facilitates the comparison between
various model families because, although each model has its own sets of hyperparameters,
the evaluation is performed based on the same metric to measure the error. On the other
hand, its main disadvantage is the computational complexity that can arise for very large
datasets or complex models.

The optimization process in this research was conducted utilizing the GridSearchCV
tool from the Scikit-learn library [22]. The models subjected to testing included Ran-
domForest [23], GradientBoosting [24], and Support Vector Regression (SVR) [25]. In the
case of SVR, a pipeline was established to assess the impact of data scaling, involving
MinMax normalization and Z-score standardization, alongside hyperparameter tuning.
The comprehensive list of hyperparameters is presented in Table 3.

Table 3. Evaluated models.

Model Hyperparameters

RandomForest Max depth : 40–50
Max features: 10–25

SVR (kernel RBF) Scaling: [StandardScaler, MinMaxScaler]
Gamma: [0.001, 0.01, 0.1, 1, 10, 100]

C: [0.001, 0.01, 0.1, 1, 10, 100]

SVR (kernel poly) Scaling: [StandardScaler, MinMaxScaler]
Degree: [2, 3, 4, 5, 6, 7, 8, 9]

C: [0.001, 0.01, 0.1, 1, 10, 100]

GradientBoosting n estimators: [1, 2, 5, 10, 20, 50, 100, 200, 300]
Max depth: [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

Learning rate: [0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

GridSearchCV is a process that can be time-consuming because it must test every com-
bination of hyperparameters on the training sets. For this reason, Cochran’s formula [26]
was used for sample size selection for quantitative variables when the population size is
known to train the models with a smaller sample size and reduce execution time. The
formula used is shown in Equation (4).

n =
NZ2σ2

(N − 1)E2 + Z2σ2 (4)

where:

n = sample size.
N = population size.
Z = critical Z value; for a confidence level of 99%, z equals 2.58.
σ2 = population variance.
E = absolute precision level; 1% of the population’s standard deviation.
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The dataset, containing data from 2015 to 2022, comprises 577,031 records. The sample
size selection formula determined that a sample size of 59,680 records would provide a 99%
confidence level, representing 10.34% of the total records. For the validation sample, 10%
of the complete dataset was chosen, resulting in 57,704 records. It is important to note that
the training and validation sets are entirely exclusive.

3.4. Model Evaluation

As shown in the hourly profile in Figure 3, ozone concentration exhibits a clear trend
with the time of day, and there is significant variation compared to the study period’s mean.
To effectively measure the performance of the evaluated models, their performance will be
evaluated using two approaches. The first approach will involve comparing the MAE of
the models with the MAE calculated for predictions based on Mean and Median strategies
throughout the entire period from 2015 to 2022. The second approach will compare the
MAE based on Mean and Median strategies, grouping by hour to evaluate which of the
models performs better throughout the hours of the day. The reference MAE values are
presented in Table 4.

Figure 3. Hourly ozone concentration profile; the dashed line represents the daily average for the
study period 2015–2022, and the solid line represents the hourly average, while the shaded area is the
standard deviation.

Table 4. Baseline Mean Absolute Error.

Timeframe MAE from
Mean

MAE from
Median Timeframe MAE from

Mean
MAE from

Median

2015–2022 21.53 20.77
00:00 9.03 8.95 12:00 15.83 15.82
01:00 8.85 8.77 13:00 17.82 17.81
02:00 8.50 8.39 14:00 19.10 19.09
03:00 8.01 7.84 15:00 19.38 19.34
04:00 6.87 6.54 16:00 18.69 18.63
05:00 5.08 4.45 17:00 16.53 16.43
06:00 3.42 2.85 18:00 14.01 13.91
07:00 4.01 3.67 19:00 12.54 12.43
08:00 6.66 6.52 20:00 11.24 11.13
09:00 9.38 9.31 21:00 10.37 10.26
10:00 12.03 11.94 22:00 9.70 9.60
11:00 13.92 13.88 23:00 9.33 9.26

The MAE was calculated using predictions based on both the mean and median strategies applied to the
complete dataset.

3.5. Setup for the Experiment

The programs were executed on a Beowulf cluster with Torque 3.0.3, using four
computing nodes running Ubuntu 20.04.4. Each node was equipped with 2 Intel(R) Xeon(R)
CPU E5-2640 v4 processors @ 2.40 GHz, featuring 20 processing cores and 128 GB of RAM.
The software versions used were Anaconda 22.9.0, Python 3.9.12, and Scikit-learn 1.0.2.
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4. Results.
4.1. GridSearch

The results presented in Table 5 were selected using the following criteria: the top five
results were chosen for each of the models, from which the one with the lowest MAE in
the test results and the one with the slightest difference between the training and test score
(gap) were selected. In the case of the RandomForest model, the result with the lowest
MAE in the test set also had the slightest difference between the training and test sets.

Table 5. Gridsearch results.

Model Hyperparameters Test Score Train Score Gap

RandomForest
Execution time: 2600

max depth = 45,
max features = 25. 7.825020 2.923992 4.901028

StandardScaler → SVR (RBF)
Execution time: 29,672

C = 100,
gamma = 0.01. 7.845238 3.350762 4.494476

C = 10,
gamma=0.001. 8.757496 8.652644 0.104852

StandardScaler → SVR (poly)
Execution time: 104,571

C = 100,
degree = 3. 9.062664 5.348223 3.714441

C = 10,
degree=2. 11.562271 10.979601 0.582670

MinMaxScaler → SVR (RBF)
Execution time: 22,465

C = 100,
gamma = 0.1. 7.785040 6.806308 0.978732

C = 100,
gamma = 0.01. 8.700342 8.617988 0.082355

MinMaxScaler → SVR (poly)
Execution time: 1,705,128

C = 100,
degree = 3. 7.925763 6.892926 1.032837

C = 10,
degree=4. 8.060671 7.198237 0.862434

GradientBoosting
Execution time: 42,584

learning rate = 0.1,
max depth = 10,

max features = 12,
n estimators = 300.

7.144314 1.735895 5.408419

learning rate = 0.1,
max depth = 9,

max features = 11,
n estimators = 300.

7.187491 2.818148 4.369343

The grid search was executed using n_jobs = 20 option; the execution time unit is in seconds.

4.2. Optimal Model Selection

Each model listed in Table 5 underwent a comprehensive evaluation utilizing a dataset
comprising 57,704 records. The derived results, systematically arranged in descending
order based on their respective evaluation scores, are detailed in Table 6. Notably, every
model demonstrated superior performance compared to the median of the Mean Absolute
Error (MAE) observed during 2015–2022. However, selecting the optimal model requires
an in-depth assessment beyond mere evaluation scores. This includes a detailed analysis
of the models’ hourly MAE fluctuations, as depicted in Figure 4. Additionally, a critical
review of each model’s computational efficiency, particularly their execution times during
both the GridSearch process and subsequent training phases, is essential. This aspect of
model performance is thoroughly explicated in Figure 5.
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Table 6. Model results.

Model Fit Time Evaluation Score 1

GradientBoosting[0] 2 522 7.015008
GradientBoosting[1] 423 7.126916
StandardScaler → SVR (RBF)[0] 54,058 7.689650
RandomForest 392 7.808124
MinMaxScaler → SVR (poly)[0] 8172 7.901960
MinMaxScaler → SVR (poly)[1] 3250 8.037673
MinMaxScaler → SVR (RBF)[0] 1968 8.717526
StandardScaler → SVR (RBF)[1] 4191 8.758239
StandardScaler → SVR (poly)[0] 73,851 9.468176
MinMaxScaler → SVR (RBF)[1] 1959 10.733147
StandardScaler → SVR (poly)[1] 4242 11.405547

1 The results are organized in descending order based on their evaluation scores. 2 The number inside the brackets
represents the position within the hyperparameters column in Table 5 for each of the models.

Figure 4. Hourly MAE Profile. This graph illustrates the variations in Mean Absolute Error (MAE)
throughout the day for the top five models, as referenced in Table 6. Each model demonstrates
satisfactory performance, with GradientBoosting[0] consistently exhibiting the lowest error across
most periods.

Figure 5. Performance Profiling. The graph on the left depicts the execution time for the GridSearch
process as outlined in Table 5. Meanwhile, the graph on the right shows the specific training times
of the top five models, as listed in Table 6. Notably, in both graphs, the time axis is presented on a
logarithmic scale.

5. Discussion

This section is bifurcated into two distinct segments for a comprehensive analysis.
The first segment delves into a generalized discussion centered around the performance
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outcomes discerned from the hyperparameter optimization processes and an evaluation of
the models selected thereafter. The second segment, on the other hand, is dedicated to an
in-depth analysis of the best-performing model identified through these processes.

5.1. General Discussion

In the GridSearch results, RandomForest showed the shortest execution time and
acceptable training times with results in the Training and Testing. However, it is one of
the models with the greatest difference between the Training and Test sets, indicating a
slight overfitting. The SVR models that use the RBF kernel outperformed their counterparts
with the polynomial kernel in terms of execution times, and they did not show significant
differences in their Test scores. In general, the SVR-based models had the lowest level of
overfitting, as they exhibited the smallest differences in the Training–Test gap. However, it
is essential to consider the computational complexity of this model because it will consume
much time when the number of records exceeds 10,000, especially when using Sklearn’s
SVR implementation based on libsvm. This implementation has complexities greater than
quadratic n2, as mentioned by Abdiansah and Wardoyo [27]. GradientBoosting achieved
the best results for Train and Test scores with quite acceptable times, although it did show
a higher level of overfitting due to differences in the Train–Test gap.

Concerning the evaluation results, as can be seen in Figure 4, the top five selected
models show acceptable performance in terms of the MAE calculated by the time of day
range, exhibiting a similar behavior. It is worth noting that the models reflect the ozone
hourly profile quite well, as they capture the periods with the highest MAE during the
hours when ozone concentration varies the most, from 12:00 to 18:00, as shown in Figure 3.
GradientBoosting[0] exhibited lower MAE from 00:00 to 11:00, 13:00–14:00, and 17:00–22:00,
while GradientBoosting[1] performed better at 12:00, 15:00–16:00, and 23:00. Therefore, the
first model was selected as the one with the best performance.

An additional critical factor to consider in model selection is the execution time associ-
ated with different models, especially when dealing with a substantial volume of records.
This aspect becomes increasingly significant, as large datasets can entail considerable
processing durations. Consequently, the ability to conduct preliminary phases of hyperpa-
rameter optimization and model evaluation efficiently, utilizing a smaller yet adequately
representative subset of the data, is imperative for effectively identifying and selecting the
most suitable model.

5.2. Analysis of the Optimal Performing Model

Figure 6 presents an analysis of the performance exhibited by the GradientBoosting[0]
model, designated as GB_99, which was trained on a subset comprising 59,680 records. This
subset accounts for 10.34% of the training dataset and is statistically significant, offering
a 99% confidence level, as delineated in Equation (4). In contrast, the model labeled
GB_full refers to the GradientBoosting[0] variant trained on the entirety of the training
dataset, encompassing 519,327 records. Additionally, the graph includes MEAN and
MEDIAN, which indicate the MAE values when predictions are based on these respective
statistical measures. This comparison offers insight into the efficacy and scalability of the
GradientBoosting[0] model under varying training data volumes and their performance
against the MEAN and MEDIAN prediction approaches.
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Figure 6. Optimal performing model hourly MAE profile. The GB_99 represents the GradientBoosting
model trained on a sample size corresponding to 10.34%; GB_full denotes the GradientBoosting
model trained with the entire training dataset. MEAN and MEDIAN indicate the MAE values when
predictions are based on these respective statistical measures.

Table 7 compares the hourly MAE performance for the GradientBoosting[0] model.
Here are some observations and opinions on these data:

• Data Size Impact: The GB_full model, trained on a significantly larger dataset
(519,327 records) compared to GB_99 (57,704 records), consistently shows lower MAE
across all timeframes. This indicates the potential benefits of training on more exten-
sive data, likely capturing more nuances and patterns, leading to better predictive
performance.

• Performance Consistency: Both models exhibit a similar pattern in MAE fluctuations
over the 24 h, suggesting that the underlying data characteristics influencing error
rates are similar for both datasets. However, the magnitude of the error is consistently
lower in the GB_full model, reinforcing the value of a more extensive training set.

• Timeframe Sensitivity: There are periods (like early morning hours) where the MAE
is relatively lower for both models and periods (like afternoon to early evening) where
MAE peaks. This pattern could indicate varying model performance based on time-
specific factors, suggesting that certain hours have characteristics that are either more
predictable or more challenging for the model.

Table 7. Optimal Model’s Hourly MAE Performance.

Timeframe GB_99 GB_full Timeframe GB_99 GB_full

00:00 6.772 5.754 12:00 9.444 6.893
01:00 6.172 5.223 13:00 10.905 7.919
02:00 5.709 4.718 14:00 11.932 8.639
03:00 5.595 4.645 15:00 12.345 8.546
04:00 4.9 3.941 16:00 11.413 8.22
05:00 3.76 2.958 17:00 9.582 7.125
06:00 3.054 2.39 18:00 7.443 5.932
07:00 3.088 2.369 19:00 6.824 5.493
08:00 4.239 3.441 20:00 6.6 5.428
09:00 5.44 4.377 21:00 6.521 5.217
10:00 6.628 5.218 22:00 5.924 4.885
11:00 7.789 6.05 23:00 5.565 4.567

In total, 57,704 records were used to calculate the MAE for the GB_99 model, while in the case of GB_full,
519,327 records were used.
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The comparison between the “Optimal Model’s Hourly MAE Performance” (Table 7)
and the “Baseline Mean Absolute Error” (Table 4) is quite revealing in terms of under-
standing the effectiveness of the Gradient Boosting (GB) models relative to basic baseline
methods. Here are some observations and opinions on these data:

• Significant Improvement Over Baseline: Both Gradient Boosting models (GB_99 and
GB_full) consistently outperform the baseline models across almost all timeframes.
The MAEs for the baseline methods are significantly higher than those for the Gradient
Boosting models, indicating the superior predictive capability of the latter.

• Effectiveness of Machine Learning Models: The considerable reduction in MAE when
using the Gradient Boosting models compared to the baseline methods illustrates the
value of machine learning in capturing complex patterns and relationships in the data
that simple statistical measures cannot.

6. Conclusions

Based on the results obtained in the present research, the following conclusions have
been reached:

• Machine learning models are a significant alternative for ozone concentration forecast-
ing. However, it is paramount to identify the variables influencing the phenomenon
in constructing the feature vector. This enables the models to discern patterns and
relationships among the variables correctly.

• Computational complexity can significantly impact the best model selection, as the
computational resources required for hyperparameter optimization can be time-
consuming and may not be feasible.

• A substantial volume of historical records to train models can enhance their preci-
sion. However, certain models do not efficiently handle large datasets, leading to
disproportionately increased evaluation times. Therefore, employing a technique that
allows for selecting a sufficiently representative sample to achieve results with an
acceptable level of reliability without adversely affecting the outcomes of the models is
of paramount importance. This approach ensures both the effectiveness and efficiency
of the model training and evaluation process.

• Establishing a baseline is a critical step in model evaluation. It helps set realistic
expectations and understand the value added by complex models.

• The GB models’ lower MAE scores, especially compared to the relatively high baseline
MAEs, suggest that these models have successfully captured significant underlying
trends and patterns in the hourly ozone concentration profile.

• Elevated errors observed during specific time intervals warrant further investigation
as potential focal points for future enhancements in model performance. Delving
into the underlying reasons for these heightened error rates during particular hours
and exploring what additional data or modifications in feature engineering might
mitigate these discrepancies could yield significant advancements in model accuracy
and reliability.

• Tree-based models like Random Forests or Gradient Boosting demonstrated better
generalization to unseen data, but they tend to be more prone to overfitting than
SVR models. This might necessitate more frequent retraining of tree-based models
compared to SVR. However, given their shorter training times, they still present a
better option in terms of model maintainability.
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ANN Artificial Neural Network
AQI Air Quality Index
CO Carbon Monoxide
CONAGUA Comisión Nacional del Agua
GB Gradient Boosting
IOA Index of Agreement
MAE Mean Absolute Error
ML Machine Learning
NO Nitric Oxide
NO2 Nitrogen Dioxide
NOx Nitrogen oxides
O3 Ozone
OH Hydroxyl radicals
PM10 Particulate matter 10 µm or less in diameter
PM2.5 Particulate matter 2.5 µm or less in diameter
R2 Coefficient of determination
RAMA Automatic Atmospheric Monitoring Network
REDMET Meteorological Network
RF Random Forest
RH Relative humidity
RMSE Root Mean Square Error
SIMAT Atmospheric Monitoring System of Mexico City
SO2 Sulfur dioxide
SVR Support Vector Regression
tmp Temperature
VOC Volatile Organic Compound
wdr Wind direction
wsp Wind speed
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