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Abstract: With the rapid development of the web service market, the number of web services shows
explosive growth. QoS is an important factor in the recommendation scene; how to accurately recom-
mend a high-quality service for users among the massive number of web services has become a tough
problem. Previous methods usually acquired feature interaction information by network structures
like DNN to improve the QoS prediction accuracy, but this generates unnecessary computations.
Aiming at addressing the above problem, inspired by the multigrained scanning mechanism in a deep
forest, we propose a location-aware deep interaction forest approach for web service QoS prediction
(LDIF). This approach offers the following innovations: The model fuses the location similarity of
users and services as a latent feature representation of them. In addition, we designed a scanning
interaction structure (SIS), which obtains multiple local feature combinations from the interaction
between user and service features, uses interactive computing to extract feature interaction infor-
mation, and concatenates the feature interaction information with original features, which aims to
enhance the dimension of the features. Equipped with these, we compose a layer-by-layer cascade by
using SIS to fuse low- and high-order feature interaction information, and the early-stop mechanism
controls the cascade depth to avoid unnecessary computation. The experiments demonstrate that our
model outperforms eight other state-of-the-art methods on MAE and RMSE common metrics on real
public datasets.

Keywords: service recommendation; sparse data; feature interaction; deep forest; QoS prediction

1. Introduction

In recent years, most computer software has transformed from native software to web-
based software [1]. With the widespread adoption of technologies such as service-oriented
architecture (SOA), the Internet of Services (IoS), and cloud computing, an increasing
number of enterprises are launching various virtual services to meet user demands. Data,
artificial intelligence, and mobile applications also continue to provide new technological
support for enterprises to maintain a competitive advantage [2–4]. Nowadays, in the face
of the increasing number of services with similar functions, it is difficult for users to make
appropriate choices. How to evaluate and screen high-quality services from the massive
number of services has become a tricky issue. In this case, investigating and comparing
quality of service (QoS) has become a vital reference for service recommendation.

QoS is a key indicator to describe and evaluate web services’ quality [5,6]. Many stud-
ies focus on the prediction of QoS to achieve service recommendation, such as response time
(RT), throughput (TP), and so on. There are many methods for predicting QoS today, most
of which are inspired by collaborative filtering for service recommendation [7,8], which
completes the prediction of missing QoS by mining historical similarity information of users
or services. These methods mainly use information from the original user–service QoS
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matrix, which is easily affected by data sparsity and ignores some important influencing
factors, such as location information [9]. There are certain limitations.

In a real scenario, the QoS value recorded by calling the real service number only
accounts for a very small part of the QoS value of all web services, and the extremely sparse
data bring difficulties to QoS prediction. With the continuous upgrading and development
of deep learning and computing environments, many advanced deep learning methods
have been produced, such as those based on deep neural networks (DNN), which have
outstanding performance in effectively solving complex problems. Therefore, with the help
of deep learning models, which have the ability to automatically learn feature interactive
information [10], many scholars solve the problem of feature interaction information fusion
and improve the accuracy of QoS prediction.

Traditional research relies on the artificial extraction of low-order feature interaction
information, and deep neural networks tend to learn implicit high-order feature interactions,
resulting in unnecessary computations. Although existing models have achieved great
improvements in prediction accuracy, most models do not structurally enhance the fusion
of feature interaction information, and cannot model feature interactions efficiently and
explicitly. As an exploratory deep model of non-neural network structures, deep forests [11]
have certain advantages in multigranularity scanning to process feature relationships and
characterize high-order feature interactions. Therefore, in response to the above problems,
this paper proposes a location-aware deep interactive forest method based on the idea of
deep forests.

The main contributions of this article are as follows:

• We designed a scanning interactive structure (SIS). It interacts user features and service
features, and selects different size combinations of local features to generate more
effective feature interaction information and alleviate the effect of sparse data. It also
designs a new interactive calculation to express the feature interaction information
under different orders.

• We proposed the LDIF model based on deep forests. By fusing the location similarity
information of users and services, and using SIS to compose a layer-by-layer cascade,
which automatically fuses feature interaction information from low- to high-order, it can
find more effective feature information and improve the accuracy of QoS prediction.

• The approach proposed in this paper is experimentally verified under six kinds of
data sparsity by using the real public WS-DREAM service dataset. The experiment’s
result shows that our approach has higher prediction accuracy compared with eight
other state-of-the-art approaches.

2. Related Work

Service recommendation algorithms can be divided into traditional collaborative
filtering methods and deep learning-based methods. Collaborative filtering methods are
further divided into memory-based collaborative filtering and model-based collaborative
filtering, but the research focuses are different.

2.1. Collaborative Filtering Methods

Memory-based collaborative filtering methods focus on using historical interactive
information of users or services to complete the prediction of QoS. They mainly calculate
similarity to improve prediction accuracy. Zheng et al. [12] proposed a new similarity cal-
culation with different weights and a fusion of user- and item-based similarity calculation
used to predict missing QoS values. Zheng et al. [13] proposed personalized QoS prediction
for cloud services by using two different similarity rank lists. After that, Wu et al. [14]
found that users with lower similarity are useless, or even harmful, to the target users, so
the two-stage strategy of similarity threshold and similarity fusion was used to replace the
traditional TOP-K selection strategy. However, these improvements did not substantially
change the mathematical formula of similarity calculation, so Jiang et al. [15] proposed an
effective collaborative filtering approach for personalized web service recommendation.
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This approach improved the traditional Pearson correlation coefficient (PCC) similarity
measurement approach by considering the influence of service personalization, and com-
bined the algorithm based on personalized users and the algorithm based on personalized
items. Although these methods are easy to implement, they are easily affected by problems
such as sparseness, cold start, and poor scalability.

Model-based collaborative filtering methods focus on using the QoS interactive matrix
to learn the model, and are widely used to solve the problems mentioned above. With
the introduction of matrix factorization (MF) [16] and factorization machines (FM) [17],
a new research idea was derived for how to integrate feature interaction information to
achieve higher prediction accuracy. Among them, Zheng et al. [18] believed that the QoS
of web services could be predicted according to the characteristics and past experience of
the user, so they proposed a personalized web service QoS prediction approach based on
neighborhood integration matrix factorization. Tang et al. [19] used the network map to
measure the network distance between service and users and identify the neighbors of
users by considering the impact of the underlying network on the QoS of web services,
and they introduced the above two factors into the matrix factorization as constraints for
calculation. And Ngaffo et al. [20] used a flexible matrix factorization technique and a
QoS prediction of the future time interval using a time series forecasting approach based
on an autoregressive integrated moving average (ARIMA) model. But the latent vectors
themselves made by MF are not explanatory, so Chang et al. [21] introduced graph theory
into the matrix factorization model to strengthen the interpretability and accuracy; this
approach divides the user–service graph into a certain number of subgraphs by dividing
the maximum subgraph, and then applies both the subgraph and the user–service graph
to the matrix factorization model to perform local and global analysis and prediction. In
order to better integrate the contextual information and feature interaction information,
Tang et al. [22] directly used the similarity of geographic locations to find user neighbors,
and put the features of user neighbors as user features into the factorization machine
model to finish QoS prediction. On this basis, Yang et al. [23] proposed a location-based
factorization machine model that integrates users, services, similar users, similar services,
and geographic location features into a factorization machine. For the reliability of QoS data,
Wu et al. [24] proposed a noise-resistant data-characteristic-aware latent factor (DCALF)
model to implement highly accurate QoS prediction.

2.2. Deep Learning Methods

In recent years, neural networks have also been gradually applied in QoS prediction.
Due to the continuous improvement in numbers of features, current service recommenda-
tion algorithms are no longer satisfied with the low-order feature interaction information
in FM. More scholars use the characteristics of deep neural networks to automatically com-
plete the fusion of low-order and high-order feature interaction information. For example,
Cheng et al. [25] in Google thought that deep neural networks can extend higher-order in-
visible feature interaction information, so they proposed the Wide and Deep model, which
combined polynomial regression and deep neural networks for parallel data processing. On
this basis, Wang et al. [26] proposed the Deep&Cross model with a Cross network instead
of polynomial regression. The Cross network can be used to explicitly characterize the
influence of feature interactions, and the order of feature interaction information will vary
with the number of layers, which further improves the interpretability of feature interaction
information and the accuracy of result prediction. For the Cross network, Lian et al. [27]
thought that it is only a scaled form of the original features, so proposed a new network
structure (CIN) and a new recommendation model (xDeepFM), which uses vector-level
interactions in different feature domains instead of element-level feature interactions.

On this foundation, service recommendation algorithms evolved to integrate geo-
graphic location features; Zhang et al. [28] fused geolocation information by combining
collaborative filtering and a multilayer perceptron. Li et al. [29] proposed a topological
neural network (TAN) by describing the topological structure of the underlying network
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and the complex interaction between autonomous regions, which combined the path
features and end-cross features through an explicit path-modeling layer and an implicit
cross-modeling. If only a single type of feature is used, the problem of gradient disap-
pearance in deep network is serious, so Zhang et al. [30] considered user and service
historical probability distribution features and location features to reuse the ResNet net-
work, which alleviates the gradient disappearance problem and improves the prediction
accuracy. Wang et al. [31] believed that the state of unknown QoS is a hidden state, so they
proposed a hidden state initialization and perception approach based on LDA. Different
from the above idea, Wang et al. [32] employed information entropy into the combination
of FM and DNN to mine more useful features. Recently, Zhang et al. [33] proposed a novel
deep neural network model with multistage and multiscale feature fusion. This model
extracted global, individual, and local features separately and implemented feature fusion
using a multistage neural network architecture. Additionally, Zhu et al. [34] incorporated
historical call similarity, constructed neighborhood subgraphs of users and services using
similarity relationships, and proposed the double subgraph network (BGCL) method based
on graph contrastive learning. Zhang et al. [35] introduced a feature mapping and inference
network method to capture the deep features of users and services and made up for the
loss of feature information with feature compensation blocks. Lu et al. [36] investigated a
Gaussian feature distribution smoothing network to address the issues of noise and label
imbalance in the dataset for QoS prediction.

It is worth noting that the previous methods all incorporate geographic location fea-
tures or other contextual features into the model, but lack the interaction information
between geographic location similarity and other features, so our approach integrates geo-
graphic location similarity features into feature interaction information based on location
awareness. Zhou et al. [11] proposed a new deep learning model: the deep forest. It is
different from the neural network structure but achieves better performance than neural
networks in most scenarios. As an ensemble model of trees, the deep forest can use the same
size parameters as the neural network to achieve higher prediction accuracy in various
fields, and can also achieve higher prediction accuracy in the case of sparse data. Therefore,
this paper proposes a new service recommendation approach based on the idea of deep
forests, so as to alleviate the impact of sparse data and improve the prediction accuracy by
fusing feature interaction information.

3. Proposed Approach

3.1. Problem Description

In order to be easily understood, the notation definitions are shown in Table 1:

Table 1. Notation and descriptions.

Notation Descriptions

U the set of all web service users

Uk
i the k-th feature of the i-th user

Ui the feature of user i (U1
i , U2

i . . . Uk
i )

S the set of all web services

Sk
j the k-th feature of the j-th web service

Sj the feature of service j (S1
1, S2

2 . . . Sn
j )

Q the QoS set

Qij the QoS value between user i and service j

X the form of data (U1
i , U2

i . . . Uk
i , S1

1, S2
2 . . . Sn

j , Qij)

D the maximum depth of layer

A the Matrix A

l the highest order of feature interaction representation in single-dimensional SIS layer
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In the real world, the relationship between users and services is a many-to-many type,
where a user can invoke multiple services, and a service can also be simultaneously invoked
by multiple users. When users invoke services, the current QoS is recorded to represent
the performance of the service as observed by the user. QoS is predicted by the known
user and service information (service function information, user and service location and
network information) and the observed QoS. As defined in Table 1, in X, Ui represents a
user, Sj represents a service, and Qij represents the QoS value that the user feeds back to the
service. Ultimately, users can select services that meet their needs based on the predicted
QoS list. Figure 1 is the overall flow chart of the service recommendation approach.

Figure 1. The overall flow of recommendation approach.

3.2. LDIF Approach

For completing high-quality service recommendations, this approach draws on the
ideas of the deep forest model. Firstly, the geographical location information of users
and services is converted into dense numerical features through the Glove algorithm; the
geographical location similarity between users and services is calculated, and the location
information between the two is fused; then, using the innovation of the multigrain scanning
mechanism in a deep forest, the interaction between user features and service features is
automatically scanned to obtain multiple local feature combinations, aiming to generate
more effective feature interaction information and alleviate the impact of sparse data;
Thirdly, considering that the feature interaction information can be represented numerically,
we think that the interaction between local features and connecting this information with the
original features is a useful strategy; After that, the high- and low-order feature interaction
information is automatically learned and fused using a layer-by-layer structure.

Deep neural networks exhibit the advantage of hierarchical structure, so they have the
ability to automatically fuse the interaction information of low- and high-order features,
but there is an unchangeable difference between the tree structure and the neuron node
structure. The tree structure is used to classify samples according to features rather than
reprocess the original feature data by performing a nonlinear operation. So, how to design
a layer-by-layer structure while using the tree structure to simultaneously alleviate the
impact of sparse data and fuse feature interaction information becomes a tough problem.
This paper designs a novel layer-by-layer structure approach based on the deep forest,
which can alleviate the impact of sparse data in each layer and fuse feature interaction
information though a layer-by-layer structure. Figure 2 is the overall structure of the
LDIF approach.



Appl. Sci. 2024, 14, 1450 6 of 20

Figure 2. Structure of LDIF Approach. Assuming that the input vector is a 18-dimensional vector, it
will become 40-dimensional after passing through the first 2-dimensional SIS layer. We design the
size of scanning window in the next layer to be ⌊40/8⌋, so the input vector will go through 2-, 5-,
9-dimensional scan layers, etc.

In the LDIF approach, the 2-dimensional SIS layer is the layer with SIS and a scanning
window size of 2, and the rest of the layers have the same naming rules. First, we specify
the window size of ⌊the dimension o f f eature/8⌋ to address issues such as the number of
scans increasing when the scanning window is too small, resulting in size explosion; or
when the size is too large, the dimension growing slowly, even in a deep layer. Additionally,
we think that if the accuracy of prediction does not improve, it should stop generating the
next layer. So, it will be judged by whether the average prediction accuracy in this layer
is smaller than the previous layer. If not, it will stop generating the next layer. In the case
of looping, this early stop mechanism effectively controls the complexity of the approach
and the depth of layers and avoids unnecessary high-order feature interaction calculations.
Under the worst case, we believe that we need to specify a maximum number of layers (D)
to control the maximum complexity and max depth of this model.

For the problem of fusing feature interaction information and the sparse data, we
are rely on the processing of dimensional SIS layer. Through the above layer-by-layer
structure, the final dimensional SIS layer will fuse from low-to high-order feature interaction
information and make final QoS predictions. It will elaborate and demonstrate the structure
of SIS in Section 3.2.2.

3.2.1. Geographic Similarity

Network conditions and geographical location are closely related, QoS is largely
dependent on bandwidth and the network distance between the user and cloud server.
Considering geographical location factors has a positive effect on QoS prediction. Unlike
traditional collaborative filtering methods, we directly consider the geographical similarity
between users and services. The previous idea was that similar users may have similar QoS
for any service, but our idea is that users have similar network environments for services
close to them. Therefore, we convert geographic location information (text features) into
dense numerical features for geographic similarity calculation.

Compared with the Word2Vec [37] algorithm, the Glove [38] algorithm considers the
global influence of the corpus more. Therefore, we use the Glove word-embedding algo-
rithm to convert the geographical location information into 50-, 200-, and 300-dimensional
dense numerical features, respectively. If these numerical features are directly used for
feature interaction operating, the computational complexity will be greatly increase. And
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it is unmeaningful to acquire the feature interaction information in location numerical
features. Finally, we concatenate similarity as a feature into the raw feature. This paper
uses cosine similarity to simply and quickly calculate the similarity between users’ and
services’ geographic locations. The similarity calculation formula is as follows:

cos θ =

−−−→
UVector ·

−−−→
SVector

∥−−−→UVector∥ × ∥
−−−→
SVector∥

(1)

where UVector represents the feature vector of user, and SVector represents the feature vector of
service. The value of cos θ will be added into the original feature as a new numerical feature.

3.2.2. Scan Interact Structure

Aiming at the problem of data sparsity that is prevalent in service recommendation, it
is often effective to consider automatic feature interactions with more fine grains. In the
SIS, we interact user features and service features, obtain feature interaction information
through scan window sliding and interaction calculation, and adjust the window size
adaptively as the dimension grows, thus realizing explicit automatic feature interaction and
avoiding complex computation. In addition, unlike the deep model, with the cooperation of
the cascade layer, we concatenate the interaction information of each layer into the features
of the previous layer, which is used for the scanning interaction calculation of the next layer.
For example, the fourth layer can interact with the feature interaction results of the second
layer to mine more efficient higher-order feature interactions. The following will take the
two-dimensional SIS layer as an example to show the structure in detail with Figure 3:

Figure 3. Structure of two-dimensional SIS layer. Assuming that the input vector is 18-dimensional,
of which 9 dimensional vectors are user features and the other 9 are service features. We think that
feature interaction is meaningful only when users and features work together, so it can be seen as
9 × 2-dimensional features, representing the features of users and services, respectively.

When the window size of scanning is 2, we define the notation of four numerical
features is U1, U2 , S1, and S2, which can make up matrix A as follows. When the second-
order and third-order feature interaction information needs to be calculated, the calculation
formulas are as follows:

A =

(
U1 U2
S1 S2

)
(2)

A ∗ AT =

(
U2

1 + U2
2 U1S1 + U2S2

U1S1 + U2S2 S2
1 + S2

2

)
(3)

A ∗ AT ∗ A =

(
U3

1 + U1U2
2 + U1S2

1 + U2S2S1 U2
1U2 + U3

2 + U1S1S2 + U2S2
2

U2
1 S1 + U1U2S2 + S3

1 + S2
2S1 U1U2S1 + U2

2 S2 + S2
1S2 + S3

2

)
(4)
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From the above Equations (3) and (4), the four values in the matrix can represent
the different combination and its influence, respectively. Therefore, second- and third-
order interaction matrices can connect with the original features to fuse feature interaction
information. Next, we perform the average sum for the matrix to represent the information
in now-order feature interaction. Through this mechanism one can achieve the effect of
feature enhancement and the fusion of feature interaction information, as well as controlling
the growth rate of feature dimensions. Extending the above situation, the calculation
formula for the n-order feature interaction matrix is as follows:

xl =
l

∏
i=1

f (i) (5)

f (i) =

{
xT if i%2 = 1
x if i%2 = 0

(6)

Since the LDIF approach is a layer-by-layer structure composed by dimensional SIS
layers with different scanning window sizes, we take the 2-dim SIS layer as an example
to illustrate: Assume that the input vector is 18-dimensional. First, the input vector is
divided into two columns. According to the size of the scan window, each sample will be
scanned in 8 times. Each time can be seen as a combination of local features to represent a
sample. Each sample will compute two values to describe second-order and third-order
feature interaction information by Equations (3) and (4). So, it will generate 16-dimensional
feature interaction information, and we need to concatenate it with origin feature to fuse
information. Until now, the raw input vector has transformed to a 34-dimensional vector.
Next, one random forest and one extreme random forest will generate a two-dimensional
primary prediction value. After that, a 2-dimensional primary prediction value still needs
to be connected to generate a 36-dimensional vector. For a more accurate prediction
value, two-stage prediction is a useful strategy. So, the 36-dimensional vector will go
through two random forests and two extreme random forests, respectively, and generate a
4-dimensional secondary prediction. Finally, the 36-dimensional primary prediction value
and the 4-dimensional secondary prediction value are concatenated as the input of the next
⌊40/8⌋dim SIS layer. As the 4-dimensional secondary prediction value is Q̂1, Q̂2, Q̂3, Q̂4,
and the real QoS value is Q, the prediction and error are computed by Equations (7) and (8).
So, each layer describes the feature interaction information for the output of the previous
layer. As the depth of layers increases, the order of feature interaction information will
continue to increase, which completes and improves the ability to automatically learn and
fuse high-order feature interaction information.

Prediction =
(Q̂1 + Q̂2 + Q̂3 + Q̂4)

4
(7)

Error =
∑i=1,2,3,4

∣∣Q− Q̂i
∣∣

4
(8)

3.2.3. Algorithm Complexity Analysis

In Algorithm 1 of LDIF, a deep forest is used as a super-integrated ensemble model;
we first analyze the time complexity of the random forest and complete random forest.
Since the trees in both models are CART trees, the complexity in building the trees is the
same. When there are n samples and m attributes, the time complexity of building the
tree is O(mn ∗ log n). In this algorithm, two models are used, so the time complexity is
O(2mn ∗ log n).
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Algorithm 1 The algorithm of LDIF

Input:
User Service QoS dataset X,
User location information Uloc,
Service location information Sloc,
Word Table Etable

Output:
The prediction value Q̂u,s

1: X← (U1
i , U2

i ... Uk
i , S1

1, S2
2... Sn

j , Qij)
2: if Etable[Uloc] and Etable[Sloc] then
3: Uloc ← Etable[Uloc]
4: Sloc ← Etable[Sloc]
5: end if
6: Simus ← Equation (1)
7: Uloc,Sloc ← Simus,Simus
8: PreviousLoss ← ∞
9: NowLoss ← SIS Structure

10: while NowLoss < PreviousLoss do
11: TempLoss ← SIS Structure
12: PreviousLoss ← NowLoss
13: NowLoss ← TempLoss
14: end while
15: Q̂u,s = prediction
16: return Q̂u,s

In step 1, it is necessary to use Glove to replace the text category features. If there
are v text words in total, the time complexity of building a corpus is O(v2). Assuming
that the feature length of users and services is d1, the local feature size is z1, the sliding
step size is 1, and the highest order of feature interaction calculation is P, then it takes
d1 − z1 + 1 times to complete one scan, denoted as Q. So, the computational complexity of
the feature interaction module is O(PQz3

1), Then the time complexity of completing a single-
dimensional scan layer is O(6PQz3

1mn ∗ logn). In step 14, assuming that the max depth
of layers is k, the time complexity is O(6kPQz3

1mn ∗ logn). The overall time complexity is
O(6kPQz3

1mn ∗ logn + v2).

4. Experiment

4.1. Dataset Description

To verify the effectiveness of our approach, we use a real web service QoS dataset
WS-DREAM obtained from the https://wsdream.github.io website for experimental evalu-
ation. The dataset contains two QoS attribute subdatasets, the response time (RT) and the
throughput (TP) dataset. Each dataset includes 1,974,675 records of calls made by 339 users
to 5825 services. The specific data information is as follows:

• User Information: User ID, IP Address, Country, IP No., AS (Autonomous System),
Latitude, and Longitude.

• Service Information: Service ID, WSDL Address, Service Provider, IP Address, Coun-
try, IP No., AS, Latitude, and Longitude.

Under further analysis, the 339 users are distributed in 137 autonomous regions
and 31 countries, and the 5825 services are distributed in 1021 autonomous regions and
74 countries. QoS values include response time (RT), with the attribute ranging from 0–20 s;
and throughput (TP), with the attribute ranging from 0–1000 kbps.

In the comparison experiment, we randomly remove a part of the data to sparse the
data, so we set the matrix density to 5%, 10%, 15%, 20%, 25%, and 30%; the randomly
removed QoS data are used as the test set and the rest of the QoS data are used as the train

https://wsdream.github.io
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set. For example, when the QoS matrix density is 5%, 5% of the data are used as the training
dataset and the remaining 95% are used as the test set. We perform multiple experiments,
averaging all the experimental results as the final prediction.

4.2. Evaluation Metric

We specify mean absolute error (MAE) and root mean square error (RMSE) to measure
the performance of the proposed approach and other baselines. Lower values for these
two metrics suggest a more accurate prediction. They can be defined as follows:

• Mean Absolute Error: MAE is the average of the absolute values of the deviations of
all individual observations from the arithmetic mean.

MAE =
∑u,s

∣∣Qu,s − Q̂u,s
∣∣

N
(9)

• Root Mean Square Error: RMSE indicates the deviation between the observed value
and the truth.

RMSE =
∑u,s

(
Qu,s − Q̂u,s

)2

N
(10)

where Qu,s is the QoS value actually recorded by user u calling service s, Q̂u,s is the
predicted QoS value when user u calls service s. N represents the size of the number
in the test set.

4.3. Baselines

In order to verify the performance of the LDIF approach, we compare the eight
most classic recommendation methods, including the traditional collaborative filtering
approaches and the state-of-the-art deep learning combined approaches.

1. UPCC [39]: User-based collaborative filtering, using Pearson’s correlation coefficient
(PCC) to calculate the similarity between users, then using the real values of the top k
similar user neighbors on the service to predict the missing values, so as to provide
web service recommendations.

2. IPCC [40]: An item-based collaborative filtering algorithm, which first uses PCC to
calculate the similarity between web services, and then uses the real values of its top
k similar service neighbors on users to predict missing values, so as to provide web
service recommendations.

3. UIPCC: This approach is a combination of UPCC and IPCC methods, and the values
obtained by the two methods are weighted and summed to recommend web services.

4. PMF [41]: Probabilistic matrix factorization is a approach that adds a probability
distribution to the traditional matrix decomposition. It uses Bayes to derive the
posterior probability of the implicit features of users and items, so as to analyze web
services and make a recommendation.

5. DeepFM [42]: This approach uses a deep neural network combined with a classi-
cal factorization machine, and comprehensively considers the interaction effects of
low-order features and high-order features to predict the QoS value of web services.

6. DCN: This approach is the deep and cross network, which combines a cross network
with a deep neural network to achieve more efficiency and comprehensively consider
the interaction information from low- and high-order features, so as to predict the
QoS value of web services.

7. WDL: This approach is the wide and deep network, which combines polynomial regression
and deep neural networks to describe linear and nonlinear relationships, respectively.

8. DCN-V2 [43]: This approach is the improved deep and cross network, which is a
mixture of low-rank DCN (DCN-Mix) to achieve a healthier trade-off between model
performance and latency.
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Among the above methods, 1–3 are the traditional memory-based collaborative filter-
ing benchmark methods, 4 is the traditional model-based collaborative filtering benchmark
method, and 5–8 are the deep learning-based benchmarking methods.

4.4. Experimental Results and Analysis

In this experiment, the MAE and RMSE of nine methods are compared under six
different matrix densities (5%, 10%, 15%, 20%, 25%, and 30%). In the UPCC, IPCC, and
UIPCC methods, we set the maximum similarity neighborhood number k to 10; in the PMF
method, the L1 regularity coefficient is set as 0.01 and the dimension of the latent vector is
10; the DeepFM, DCN, WDL, and DCN-V2 methods are implemented through the deepctr
library; in the LDIF method, we set the number of decision trees to 100 and the max depth
to 10. Each experiment is randomly divided into a training set and a test set, and a total of
10 replicates are performed. The average of all experimental results is taken as the final
prediction result.

Tables 2 and 3 show the prediction performance of LDIF and various comparison meth-
ods under different data sparsities. It can be clearly seen that under the six different matrix
densities, the MAE and RMSE of LDIF are smaller than other methods, indicating that the
prediction accuracy of this approach is higher than the current state-of-the-art methods.

Table 2. Comparison of TP prediction performance.

Approach Density = 0.05 Density = 0.10 Density = 0.15 Density = 0.20 Density = 0.25 Density = 0.30
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

UPCC 27.26 63.80 24.87 59.87 23.97 58.59 23.63 58.01 23.44 57.71 22.97 57.30

IPCC 48.41 123.27 27.92 84.63 25.90 74.24 26.49 75.92 25.72 75.05 25.13 74.62

UIPCC 37.82 93.53 26.40 72.25 24.93 66.42 25.06 66.96 24.58 66.37 24.05 65.96

PMF 49.77 123.81 49.77 123.82 49.78 123.80 49.85 123.98 49.79 123.87 49.83 123.94

DeepFM 25.37 57.85 21.83 55.16 18.16 48.17 18.85 50.66 18.39 47.82 18.04 48.64

DCN 24.64 55.44 22.37 51.82 20.57 51.03 19.41 50.72 19.09 48.96 18.94 49.21

WDL 23.82 57.19 22.43 56.67 22.72 52.13 19.10 48.11 18.51 48.42 18.71 48.97

DCN-V2 22.53 49.02 20.91 46.47 17.64 41.78 17.23 41.94 15.95 41.50 16.28 41.31

LDIF 17.20 48.14 15.81 45.50 15.40 40.84 15.10 39.65 14.91 40.71 14.71 39.70

Gains 23.7% 1.8% 24.4% 2.1% 12.7% 2.2% 12.4% 5.5% 6.5% 1.9% 9.6% 3.9%

The best results and Gains are highlighted in bold. The following tables are the same.

Table 3. Comparison of RT prediction performance.

Approach Density = 0.05 Density = 0.10 Density = 0.15 Density = 0.20 Density = 0.25 Density = 0.30
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

UPCC 2.221 3.337 1.959 3.058 1.581 2.599 1.691 2.558 1.709 1.846 1.633 2.019

IPCC 3.539 4.971 2.846 4.216 2.083 3.372 1.618 2.806 1.438 2.588 1.352 2.473

UIPCC 2.879 4.153 2.402 3.637 1.831 2.985 1.654 2.682 1.573 2.216 1.492 2.246

PMF 3.557 4.990 3.555 4.989 3.555 4.99 3.555 4.991 3.558 4.994 3.558 4.990

DeepFM 1.385 2.066 1.428 1.948 0.894 1.590 1.058 1.664 0.874 1.499 0.710 1.396

DCN 2.639 4.004 1.816 2.719 1.565 2.323 1.462 2.108 1.092 1.709 1.012 1.626

WDL 1.382 2.128 1.013 1.724 1.362 1.944 0.818 1.513 0.907 1.607 0.939 1.536

DCN-V2 0.980 1.660 0.490 1.381 0.433 1.362 0.381 1.390 0.421 1.382 0.410 1.373

LDIF 0.403 1.305 0.402 1.303 0.303 1.301 0.301 1.300 0.300 1.300 0.300 1.300

Gains 58.8% 21.4% 18.0% 5.6% 30.0% 4.8% 21.0% 6.5% 28.7% 6.0% 26.8% 5.3%

As can be seen from the table, traditional memory-based collaborative filtering meth-
ods of UPCC, IPCC, and UIPCC do not perform well. They are greatly affected by the
matrix density. When the matrix density is 5%, the performance of other matrix densities
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will be greatly reduced. At the same time, since the number of services in the dataset is
much larger than the number of users, the running time of IPCC will be greatly increased
compared with UPCC. The above shows that the memory-based collaborative filtering
approach is greatly affected by the size of data sparsity and the size of the data volume.
Surprisingly, the PMF has the lowest prediction performance among the two indicators.
The main reason is that when the data sparsity is too small and the data volume is too large,
the low-dimensional matrix decomposed by the scoring matrix cannot finally converge.
This leads to an increase in the error, and it also shows that the model-based collaborative
filtering approach does not perform well when the data sparsity is too small. The following
DeepFM, DCN, and WDL combine the deep neural network, relatively fully utilizing the
feature of the data and the influence of the feature interaction information from high- to
low-order, so the prediction performance on the two QoS indicators of TP and RP is better
than those traditional models. However, due to the fact that sufficient training of deep
neural networks requires a sufficient amount of data, the prediction performance is not
optimal in sparse data, while LDIF uses the multi-size of the local feature scan mechanism
in the deep forest to effectively alleviate the problem of sparse data, and special interactive
computing improves its ability to represent different-order feature interaction informa-
tion. Thereby, especially in the case of more sparse data, its prediction performance is
significantly better than other methods.

Looking at the data in Tables 2 and 3 from the perspective of horizontal comparison,
it can be observed that when the matrix density becomes smaller, the MAE and RMSE
will still increase regardless of the approach. This phenomenon shows that although data
sparsity will have different influences on various web service recommendation methods,
its influence cannot be eliminated. This paper will evaluate the impact of data sparsity on
LDIF models in detail in Section 4.5.

4.5. The Impact of Data Sparsity

This experiment evaluates the impact of data sparsity on prediction performance by
setting different matrix densities to represent the sparsity of the data. By observing Figure 4,
it can be seen that the prediction performance of the four traditional collaborative filtering
algorithms gradually decline when the data sparsity gradually becomes smaller. The three
methods combined with deep neural networks are less affected by data sparsity than
traditional algorithms. Regardless of the sparsity, the prediction performance is always
higher than the traditional methods. However, the LDIF approach proposed in this paper
has the best performance regardless of the data sparsity, and the prediction performance is
relatively stable. This phenomenon shows that this approach is relatively less affected by
the data sparsity and can effectively alleviate the data sparsity problem.

In order to view the impact of data sparsity in more detail, we compare this approach
under different data sparsity conditions separately. As can be seen from Figure 5, both in
MAE and RMSE indicators, the prediction accuracy shows a trend of improvement as the
data sparsity increases. But at the same time, we can also see that in the RMSE indicator
on TP, the prediction accuracy fluctuates slightly when the data sparsity is 25%. After
many experimental analyses, we can conclude that prediction performance may fluctuate
within a controllable range when the data sparsity increases, but the overall performance
is improving.
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(a) TP-MAE (b) TP-RMSE

(c) RT-MAE (d) RT-RMSE

Figure 4. Comparison of prediction performance. (a–d) represent the prediction performance of all
methods on MAE and RMSE metrics in TP and RT, respectively.

(a) TP-MAE (b) TP-RMSE

(c) RT-MAE (d) RT-RMSE

Figure 5. Show impact of data sparsity. (a–d) represent the prediction performance of LDIF methods
on MAE and RMSE metrics in TP and RT, respectively.
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4.6. The Effectiveness of the Scan Interaction Structure

In order to verify the effectiveness of scan interaction structure (SIS) in alleviating the
impact of sparse data and extracting feature interaction information, we design control
experiments based on the above experimental preparation and work: select the DCN model
specifically for the sparse data environment, and use the original features and the features
output through single-layer SIS to predict RT and TP. We perform a total of 10 replicates on
each different piece of sparse data. The average of all experimental results is used as the
final prediction. The experimental results are shown in Tables 4 and 5.

Table 4. Comparison of TP prediction performance between DCN and SIS + DCN.

Approach Density = 0.05 Density = 0.10 Density = 0.15 Density = 0.20 Density = 0.25 Density = 0.30
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

DCN 24.64 55.44 22.37 51.82 20.57 51.03 19.41 50.72 19.09 48.96 18.94 49.21

SIS + DCN 17.63 51.01 17.41 49.27 15.75 48.70 15.39 48.29 15.64 49.67 15.31 49.55

Table 5. Comparison of RT prediction performance between DCN and SIS + DCN.

Approach Density = 0.05 Density = 0.10 Density = 0.15 Density = 0.20 Density = 0.25 Density = 0.30
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

DCN 2.639 4.004 1.816 2.719 1.565 2.323 1.462 2.108 1.092 1.709 1.012 1.626

SIS + DCN 0.498 1.375 0.438 1.376 0.405 1.379 0.385 1.451 0.356 1.470 0.335 1.479

From the above results, it can be clearly seen that when the scanning interaction
structure is fused, the prediction performance of the DCN model for RT and TP is greatly
improved when the data are more sparse. In addition, carefully looking at Figure 6, it can
be found that the original DCN model will show higher error with the higher data sparsity,
and its rising slope is larger. When the DCN model fuses the scanning interaction structure,
although there is still a rising error, the rising slope is obviously stable. The above two
phenomena strongly illustrate that the SIS structure has an obvious mitigation effect on
alleviating the impact of sparse data. And the SIS structure can significantly improve the
prediction performance of the model for QoS values.

4.7. The Impact of Word-Embedding Dimensions

This experiment evaluates the effect of a word-embedding dimension on prediction
performance by comparing this algorithm prediction performance under different word-
embedding dimensions. We separately set the embedding dimension as 50, 200, and
300 dimensions to simulate most situations in reality. Since the effect of expressing the
prediction performance of the QoS value is the same whether it is TP or RP, this experiment
only uses TP as the target QoS value. The same as the six data sparsities taken in the above
experiments, Table 6 uses the MAE metric, and Table 7 uses the RMSE metric, and the
average values under the six data sparsities are calculated. Experiments show in Figure 7
that with the increase in the word-embedding dimension, MAE and RMSE are relatively
stable and the relative improvement effect is not significant. Besides that, we found that
when the word-embedding dimension increases, it increases the time overhead of data
preprocessing, which will increase the overall running time of the experiment. Therefore,
this paper suggests that it is more reasonable to set the word-embedding dimension as 50.
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(a) TP-MAE (b) TP-RMSE

(c) RT-MAE (d) RT-RMSE

Figure 6. Comparison of prediction performance between DCN and (SIS + DCN). (a–d) represent the
prediction performance of DCN and (SIS + DCN) on MAE and RMSE metrics in TP and RT, respectively.

Table 6. Comparison of TP prediction performance in different word-embedding dimensions
on MAE.

Approach Density = 0.05 Density = 0.10 Density = 0.15 Density = 0.20 Density = 0.25 Density = 0.30 Average
MAE MAE MAE MAE MAE MAE MAE

LDIF-50 17.29 15.82 15.42 15.15 14.98 14.71 15.56

LDIF-200 17.23 15.80 15.58 15.18 14.98 14.78 15.59

LDIF-300 17.21 15.85 15.54 15.19 14.97 14.71 15.58

The average values are highlighted in bold. The following tables are the same.

Table 7. Comparison of TP prediction performance in different word-embedding dimensions
on RMSE.

Approach Density = 0.05 Density = 0.10 Density = 0.15 Density = 0.20 Density = 0.25 Density = 0.30 Average
RMSE RMSE RMSE RMSE RMSE RMSE RMSE

LDIF-50 51.14 48.53 48.84 49.65 48.71 48.70 49.26

LDIF-200 50.89 48.52 48.71 48.53 48.75 48.77 49.03

LDIF-300 50.64 48.33 48.81 48.50 48.59 48.74 48.93
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(a) TP-MAE (b) TP-RMSE

Figure 7. Comparison in different word-embedding dimensions. (a,b) represent the prediction
performance of different word-embedding dimensions on MAE and RMSE metrics in TP, respectively.

4.8. The Impact of Highest Feature Interaction Order

By comparing the prediction performance under the different highest feature interac-
tion order, this experiment evaluates the effect of the highest feature interaction order in the
scan mechanism on the prediction performance. Here, the word-embedding dimension in
our experiment is set as 50 dimensions, then the highest interaction order in local features
will be set as 2, 3, 4, and 5, respectively. It will greatly increase the amount of computation
in the model and improve the running time of the model, so only the comparison exper-
iments of order 2–5 are selected. LDIF-2 in the methods in Tables 8 and 9 represents the
LDIF approach with the highest order of 2. Through the MAE and RMSE metrics under
the TP value in Figure 8, it can be found that with the increase in the highest interaction
order, the MAE does not improve obviously, but the RMSE has a trend of improvement,
which shows that with the increase in the highest interaction order in the local features, the
prediction accuracy has not improved, but the prediction performance has become more
stable. Similarly, since the increase in the highest interaction order will increase the running
time of the model, this paper proposes to set the maximum interaction order to 2, while
ensuring a certain stability and accuracy, and the running time of the model can be applied
to many practical situations.

Table 8. Comparison of TP prediction performance in different highest orders on MAE.

Approach Density = 0.05 Density = 0.10 Density = 0.15 Density = 0.20 Density = 0.25 Density = 0.30 Average
MAE MAE MAE MAE MAE MAE MAE

LDIF-2 17.04 15.67 15.37 15.13 15.03 14.73 15.49

LDIF-3 17.29 15.82 15.42 15.15 14.98 14.71 15.56

LDIF-4 17.33 15.92 15.48 15.12 15.07 14.77 15.62

LDIF-5 17.63 15.99 15.51 15.15 14.98 14.78 15.67

Table 9. Comparison of TP prediction performance in different highest orders on RMSE.

Approach Density = 0.05 Density = 0.10 Density = 0.15 Density = 0.20 Density = 0.25 Density = 0.30 Average
RMSE RMSE RMSE RMSE RMSE RMSE RMSE

LDIF-2 50.65 48.81 49.58 49.58 49.76 49.92 49.72

LDIF-3 51.14 48.53 48.84 49.70 48.71 48.70 49.26

LDIF-4 51.36 48.57 48.49 48.34 48.78 48.72 49.04

LDIF-5 51.29 48.62 48.91 48.50 48.47 48.80 49.10
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(a) TP-MAE (b) TP-RMSE

Figure 8. Comparison in different highest orders. (a,b) represent the prediction performance of
different highest orders on MAE and RMSE metrics in TP, respectively.

4.9. The Impact of Layer Depth

By comparing the prediction performance under different depths of layers, this experi-
ment evaluates the effect of the depths of layers on the prediction performance. Here, the
word-embedding dimension in our experiment is set as 50 dimensions, and the highest
interaction order in local features is set as 2. The result is shown in Figure 9. Through
the MAE and RMSE metrics under the TP value, it can be found that with the increase
in the depth of the layer, both of the metrics decrease. But if it still deepens the depth of
the layer, it shows no obvious decreasing trend, which means that stopping generating
the next layer in time can reduce the time cost and model complexity while keeping the
prediction accuracy. Experimental results demonstrate that the stop mechanism is effective
in our approach.

(a) TP-MAE (b) TP-RMSE

Figure 9. Comparison in different depths of layers. (a,b) represent the prediction performance of
layer depths on MAE and RMSE metrics in TP, respectively.

5. Conclusions

The location-aware deep interaction forest for web service QoS prediction approach
(LDIF) has the greatest performance regardless of the data sparsity. Firstly, we use word
vector embedding technology to enrich the feature information of users and services, and
consider the geographical similarity as the potential feature representation between them.
In this paper, a scanning interaction structure (SIS) is proposed based on a multigranularity
scanning mechanism. We extract local feature combinations of different sizes from the
interaction between user features and service features and use interaction calculation
to obtain feature interaction information. The dimension enhancement of the feature
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vector is realized through feature fusion, which effectively alleviates the impact of sparse
data. Furthermore, we demonstrate the effectiveness of the scanning interaction structure
(SIS). The layer-by-layer cascade composed by SIS effectively achieves the purpose of
fusing low- to high-order feature interaction information. Experiments demonstrated that
the performance of this approach has a certain improvement compared with traditional
approaches and deep learning approaches. In this paper, we fuse the feature interaction
information generated by each layer in a concatenation manner. Considering the connection
between layers may further improve the performance. Therefore, in the next step, we will
focus on mining the feature interaction information between each layer in the forest through
group convolution to further improve the performance and efficiency of the approach.
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