
Citation: Kuo, C.-T. Development of

Circuits for Antilogarithmic

Converters with Efficient

Error–Area–Delay Product Using the

Fractional-Bit Compensation Scheme

for Digital Signal Processing

Applications. Appl. Sci. 2024, 14, 1487.

https://doi.org/10.3390/

app14041487

Academic Editors: Sheng-Joue Young,

Shoou-Jinn Chang and Liang-Wen Ji

Received: 31 December 2023

Revised: 5 February 2024

Accepted: 9 February 2024

Published: 12 February 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Development of Circuits for Antilogarithmic Converters with
Efficient Error–Area–Delay Product Using the Fractional-Bit
Compensation Scheme for Digital Signal
Processing Applications
Chao-Tsung Kuo

Department of Electrical Engineering, National Quemoy University, Kinmen 89250, Taiwan; ctkuo@nqu.edu.tw;
Tel.: +886-82-313562; Fax: +886-82-313569

Abstract: Digital signal processing (DSP) has been widely adopted in sensor systems, communication
systems, digital image processing, artificial intelligence, and Internet of Things applications. However,
these applications require circuits for complex arithmetic computation. The logarithmic number
system is a method to reduce the implementation area and transmission delay for arithmetic compu-
tation in DSP. In this study, we propose antilogarithmic converters with efficient error–area–delay
products (eADPs) based on the fractional-bit compensation scheme. We propose three mathematical
approximations—case 1, case 2, and case 3—to approximate the accurate antilogarithmic curve with
different DSP requirements. The maximum percentage errors of conversion for case 1, case 2, and
case 3 are 1.9089%, 1.7330%, and 1.2063%, respectively. Case 1, case 2, and case 3 can achieve eADP
savings of 15.66%, 80.80%, and 84.61% compared with other methods reported in the literature. The
proposed eADP-efficient antilogarithmic converters can achieve lower eADP and digitalized circuit
implementation. The hardware implementation utilizes Verilog Hardware Description Language
and the digital circuits are created via very-large-scale integration by the Taiwan Semiconductor
Manufacturing Company with 0.18 µm CMOS technology. This proposed antilogarithmic converter
can be efficiently applied in DSP.

Keywords: antilogarithmic converter; fractional-bit compensation; error–area–delay product; very-
large-scale integration; digital circuits; digital signal processing

1. Introduction

Digital signal processing (DSP) has been widely adopted in the Internet of Things
(IoT), sensor systems, communication systems, digital image processing, and artificial
intelligence (AI). Mobile handheld electronic devices, such as mobile phones, tablets, and
notebooks, involve new technology and applications such as three-dimensional computer
graphics and real-time systems in DSP. These require circuits for complex arithmetic com-
putations such as multiplication, division, square root, squaring, and powering, which
entail additional hardware costs and longer latency. To reduce the hardware costs and
transmission delays, recent studies have developed novel methods to replace the complex
arithmetic computations, such as the CORDIC algorithm [1], the table-based algorithm us-
ing rectangular multipliers [2], and the logarithmic number system (LNS) [3–22] to handle
arithmetic computations. The CORDIC algorithm [1] uses an iterative method, and is not
suitable for three-dimensional real-time DSP because of the limitation of operation speed.
The table-based algorithm using rectangular multipliers [2] requires quite a large hardware
memory for storage. The logarithmic number system (LNS) [3–22] reduces the implementa-
tion area and transmission delay for arithmetic computations in DSP. LNS-based arithmetic
computation can simplify the complex operations by transforming multiplication to addi-
tion, division to subtraction, square root to right shifts, squaring to left shifts, powering

Appl. Sci. 2024, 14, 1487. https://doi.org/10.3390/app14041487 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14041487
https://doi.org/10.3390/app14041487
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app14041487
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14041487?type=check_update&version=2

Appl. Sci. 2024, 14, 1487 2 of 16

to continuous addition, and reciprocals to complementing. Table 1 shows the LNS-based
operations.

Table 1. LNS-based operations for arithmetic computations.

Arithmetic Computation Arithmetic Operation LNS-Based Operation

Multiplication out = a·b A + B

Division out = a/b A − B

Square root out =
√

a A >> 1

Squaring out = a2 A << 1

Powering out = ab A + A + + A

Appl. Sci. 2024, 14, 1487 2 of 17

multiplication to addition, division to subtraction, square root to right shifts, squaring to

left shifts, powering to continuous addition, and reciprocals to complementing. Table 1

shows the LNS-based operations.

Table 1. LNS-based operations for arithmetic computations.

Arithmetic Computation Arithmetic Operation LNS-Based Operation

Multiplication out = a·b A + B

Division out = a/b A − B

Square root out a= A >> 1

Squaring out = a2 A << 1

Powering out = ab
.....

b

A A A+ + +

Reciprocal out = 1/a −X

The LNS consists of three main units: the logarithmic converter, simple arithmetic

unit (SAU), and antilogarithmic converter, as shown in Figure 1. The logarithmic con-

verter is used to convert two binary inputs (e.g., a and b in Table 1) into the logarithmic

system format (log2 a and log2 b). The SAU uses the shifter, complement, adder, or sub-

tractor operations to perform a simple mathematical computation in the logarithmic sys-

tem format. The antilogarithmic function is used to convert the final arithmetic computa-

tion result of the logarithmic system and simple arithmetic unit into a fixed-point binary

output. The present study focuses on antilogarithmic converters with efficient error–area–

delay products (eADPs) using the fractional-bit compensation schemes.

In recent years, many schemes have been proposed for antilogarithmic conversion

systems, such as the straight-line method [3], look-up table method [7,15], shift-and-add

method [5,11], bit correction scheme [13], and constant compensation scheme [16]. In 1962,

Mitchell [3] first used an approximation method to approximate the antilogarithmic con-

verter, which adopted out = 1 + m to approximate an out = 2m curve. Although this method

produces considerably large antilogarithmic conversion, it is simple and uses little hard-

ware area. Nam et al. [7,15] used the look-up read-only memory (ROM) method to imple-

ment the antilogarithmic converter. This method obtains highly accurate antilogarithmic

conversion values from the SAU and logarithmic converter. However, the look-up table

scheme demands additional hardware area. Abed and Siferd [5] and Loukrakpam and

Choudhury [11] used the shift-and-add scheme to approximate an out = 2m curve. This

method improved the performance in terms of the approximation error, hardware area,

and delay, though it had further scope for improvement. Juang et al.’s [13] bit-correction

scheme to approximate antilogarithmic conversion showed considerable scope for im-

provement in approximation error. Kuo and Juang [16] proposed the constant compensa-

tion scheme to approximate an out = 2m curve, which had scope of improvement in terms

of hardware cost and latency. The above-mentioned shift-and-add method, bit correction

scheme, and constant compensation scheme are ROM-free, and use mathematical func-

tion mapping to replace the look-up table method. However, the performance of these

methods is not efficient enough for the design of antilogarithmic converters. The proposed

eADP-efficient antilogarithmic converters based on the fractional-bit compensation

scheme is expected to achieve high performance, considerably low approximation error,

small hardware area, and short latency.

b

Reciprocal out = 1/a −X

The LNS consists of three main units: the logarithmic converter, simple arithmetic
unit (SAU), and antilogarithmic converter, as shown in Figure 1. The logarithmic converter
is used to convert two binary inputs (e.g., a and b in Table 1) into the logarithmic system
format (log2 a and log2 b). The SAU uses the shifter, complement, adder, or subtractor
operations to perform a simple mathematical computation in the logarithmic system format.
The antilogarithmic function is used to convert the final arithmetic computation result
of the logarithmic system and simple arithmetic unit into a fixed-point binary output.
The present study focuses on antilogarithmic converters with efficient error–area–delay
products (eADPs) using the fractional-bit compensation schemes.

Appl. Sci. 2024, 14, 1487 3 of 17

Logarithmic

Converter

(Log2)

Logarithmic

Converter

(Log2)

a b

Simple Arithmetic Unit (SAU)

(Add/Subtract/Shifter/Complement)

log2a log2b

Antilogarithmic Converter

log2out

out

Figure 1. Logarithmic number system.

This paper is organized as follows. The methods reported in the literature are de-

scribed in Section 2. The algorithm for the converter design incorporating the proposed

eADP-efficient antilogarithmic converter is described in Section 3. Section 4 presents the

results and comparisons of the various methods. Finally, the conclusions are presented in

Section 5.

2. Antilogarithmic Conversion Methods

For antilogarithmic conversion, out = 2m, m can be written as m = i + f, where i denotes

the integer part and f is the fraction part. Thus, 2m = 2(i+f) = 2i2f. For simplified computation,

consider the integer part i to be zero and the fraction part f to be between 0 and 1 (

0 1f ). Taking 20.4 as an example, let the input value be 0.4 = 0 + 0.4, where i = 0 and f

= 0.4. The output will be 20.4 = 20  20.4 = 20.4  1.319. In 1962, Mitchell [3] proposed out =

1 + f to approximate 2f. This method is quite simple and has quite a low hardware cost.

However, it produces a large approximation error. The maximum approximation error

occurs at f = 0.52877, as shown by:

difference() [(1) 2]ff f= + − (1)

difference() [(1) 2] 1 ln 2 2f fd d
f f

df df
= + − = −  (2)

1 1 1
 1 ln 2 2 0, 2 = , ln() 0.52877

ln2 ln 2 ln2

f fLet f−  = =   (3)

The conversion error of Mitchell’s [3] straight-line out = 1 + f and the accurate antilog-

arithmic curve out = 2f are shown in Figure 2.

Figure 1. Logarithmic number system.

In recent years, many schemes have been proposed for antilogarithmic conversion
systems, such as the straight-line method [3], look-up table method [7,15], shift-and-add
method [5,11], bit correction scheme [13], and constant compensation scheme [16]. In
1962, Mitchell [3] first used an approximation method to approximate the antilogarithmic
converter, which adopted out = 1 + m to approximate an out = 2m curve. Although this
method produces considerably large antilogarithmic conversion, it is simple and uses little
hardware area. Nam et al. [7,15] used the look-up read-only memory (ROM) method to

Appl. Sci. 2024, 14, 1487 3 of 16

implement the antilogarithmic converter. This method obtains highly accurate antiloga-
rithmic conversion values from the SAU and logarithmic converter. However, the look-up
table scheme demands additional hardware area. Abed and Siferd [5] and Loukrakpam
and Choudhury [11] used the shift-and-add scheme to approximate an out = 2m curve. This
method improved the performance in terms of the approximation error, hardware area, and
delay, though it had further scope for improvement. Juang et al.’s [13] bit-correction scheme
to approximate antilogarithmic conversion showed considerable scope for improvement
in approximation error. Kuo and Juang [16] proposed the constant compensation scheme
to approximate an out = 2m curve, which had scope of improvement in terms of hardware
cost and latency. The above-mentioned shift-and-add method, bit correction scheme, and
constant compensation scheme are ROM-free, and use mathematical function mapping
to replace the look-up table method. However, the performance of these methods is not
efficient enough for the design of antilogarithmic converters. The proposed eADP-efficient
antilogarithmic converters based on the fractional-bit compensation scheme is expected
to achieve high performance, considerably low approximation error, small hardware area,
and short latency.

This paper is organized as follows. The methods reported in the literature are described
in Section 2. The algorithm for the converter design incorporating the proposed eADP-
efficient antilogarithmic converter is described in Section 3. Section 4 presents the results
and comparisons of the various methods. Finally, the conclusions are presented in Section 5.

2. Antilogarithmic Conversion Methods

For antilogarithmic conversion, out = 2m, m can be written as m = i + f, where i
denotes the integer part and f is the fraction part. Thus, 2m = 2(i+f) = 2i2f. For simplified
computation, consider the integer part i to be zero and the fraction part f to be between 0
and 1 (0 ≤ f < 1). Taking 20.4 as an example, let the input value be 0.4 = 0 + 0.4, where i = 0
and f = 0.4. The output will be 20.4 = 20 × 20.4 = 20.4 ≈ 1.319. In 1962, Mitchell [3] proposed
out = 1 + f to approximate 2f. This method is quite simple and has quite a low hardware
cost. However, it produces a large approximation error. The maximum approximation
error occurs at f = 0.52877, as shown by:

difference(f) = [(1 + f)− 2 f] (1)

d
d f

difference(f) =
d

d f
[(1 + f)− 2 f] = 1 − ln 2 × 2 f (2)

Let 1 − ln 2 × 2 f = 0, 2 f =
1

ln 2
, f =

1
ln 2

× ln(
1

ln 2
) ≈ 0.52877 (3)

The conversion error of Mitchell’s [3] straight-line out = 1 + f and the accurate antilog-
arithmic curve out = 2f are shown in Figure 2.

Over the past sixty years, many antilogarithmic conversion methods have been de-
veloped to improve the performance of approximation, latency, and hardware area for
antilogarithmic converters. Among them, Abed and Siferd’s shift-and-add scheme [5],
Nam et al.’s ROM-based look-up table [7,15], Juang et al.’s bit correction scheme [13], Kuo
and Juang’s constant compensation scheme [16], and Loukrakpam and Choudhury’s shift-
and-add method [11] are some of the most efficient methods. In 2003, Abed and Siferd [5]
proposed antilogarithmic converters with two-region, six-region, and seven-region shift-
and-add linear approximation methods to reduce antilogarithmic conversion errors. Their
two-region equation is:

Y′ = 2m′ ≈
{

[m + 3
16 × m7MSBits +

13
16 + 1

1024 + 1
2048], 0 ≤ m < 0.5;

[m + (3
16)× m7MSBits +

13
16], 0.5 ≤ m ≤ 1;

(4)

where mqMSBits is represented as 1 − mqMSBits − (1/2q) and mqMSBits is the first q most
significant bits after the point of binary input.

Appl. Sci. 2024, 14, 1487 4 of 16

Appl. Sci. 2024, 14, 1487 4 of 17

Figure 2. The conversion error of Mitchell’s [3] straight-line out = 1 + f and the accurate antilogarith-

mic curve out = 2f.

Over the past sixty years, many antilogarithmic conversion methods have been de-

veloped to improve the performance of approximation, latency, and hardware area for

antilogarithmic converters. Among them, Abed and Siferd’s shift-and-add scheme [5],

Nam et al.’s ROM-based look-up table [7,15], Juang et al.’s bit correction scheme [13], Kuo

and Juang’s constant compensation scheme [16], and Loukrakpam and Choudhury’s

shift-and-add method [11] are some of the most efficient methods. In 2003, Abed and

Siferd [5] proposed antilogarithmic converters with two-region, six-region, and seven-re-

gion shift-and-add linear approximation methods to reduce antilogarithmic conversion

errors. Their two-region equation is:

7
'

7

3 13 1 1
[+ + +], 0 0.5;

16 16 1024 2048
' 2

3 13
[() +], 0.5 1;

16 16

MSBits
m

MSBits

m m m

Y

m m m


+   

=  
 +   


 (4)

where qMSBitsm is represented as 1 − mqMSBits − (1/2q) and mqMSBits is the first q most signif-

icant bits after the point of binary input.

The mathematical model of Loukrakpam and Choudhury’s [11] two-region shift-

and-add scheme is:

7

7

1 1 1 2047
[-() +], 0 0.5;

8 32 64 2048
' 2

1 1 1 1696
[() +], 0.5 1;

8 32 64 2048

MSBits
f

MSBits

f f f

Y

f f f


+ +   

=  
 + + +   


 (5)

The mathematical model of Juang et al.’s [13] bit correction scheme is:

Figure 2. The conversion error of Mitchell’s [3] straight-line out = 1 + f and the accurate antilogarithmic
curve out = 2f.

The mathematical model of Loukrakpam and Choudhury’s [11] two-region shift-and-
add scheme is:

Y′ = 2 f ≈
{

[f−(1
8 + 1

32 + 1
64)× f7MSBits +

2047
2048], 0 ≤ f < 0.5;

[f + (1
8 + 1

32 + 1
64)× f7MSBits +

1696
2048], 0.5 ≤ f ≤ 1;

(5)

The mathematical model of Juang et al.’s [13] bit correction scheme is:

Y′ = 2m ≈
{

[1+m−(m−2
16 + m−3∨m−2

32 + m−4
64 + m−3

128)], 0 ≤ m < 0.5;

[1+m−(m−2
16 + m−3∨m−2

32 + m−4
64 + m−3

128)], 0.5 ≤ m ≤ 1;
(6)

where ∨ is the logic OR gate and ∧ is the logic AND gate. For the antilogarithmic converter’s
constant compensation scheme, Kuo and Juang’s [16] 14-region constant compensation
scheme is given by:

Y′ = 2m ≈



[1+m], 0 ≤ m < 1
32 ;

[1+m − (1
128)],

1
32 ≤ m < 2

32 ;
[1+m − (2

128)],
2

32 ≤ m < 3
32 ;

[1+m − (3
128)],

3
32 ≤ m < 4

32 ;
[1+m − (4

128)],
4

32 ≤ m < 5
32 ;

[1+m − (5
128)],

5
32 ≤ m < 6

32 ;
[1+m − (6

128)],
6

32 ≤ m < 8
32 ;

[1+m − (8
128)],

8
32 ≤ m < 12

32 ;
[1+m − (10

128)],
12
32 ≤ m < 22

32 ;
[1+m − (8

128)],
22
32 ≤ m < 24

32 ;
[1+m − (7

128)],
24
32 ≤ m < 26

32 ;
[1+m − (5

128)],
26
32 ≤ m < 28

32 ;
[1+m − (3

128)],
28
32 ≤ m < 30

32 ;
[1+m], 30

32 ≤ m < 1;

(7)

The antilogarithmic conversion methods in the literature still have scope for improvement
in terms of the approximation error, area cost, and delay time of antilogarithmic conversion.
The eADP-efficient antilogarithmic converter using the fractional-bit compensation scheme

Appl. Sci. 2024, 14, 1487 5 of 16

proposed in this study is expected to minimize the approximation error, area cost, and delay
time further. Section 3 describes the proposed algorithm of the fractional-bit compensation.

3. Proposed Algorithm for Fractional-Bit Compensation

This section discusses the proposed eADP-efficient antilogarithmic converters using
the fractional-bit compensation schemes. To design an efficient antilogarithmic converter,
we first compare Mitchell’s [3] straight-line out = 1 + f with the accurate antilogarithmic
curve out = 2f and analyze the percentage conversion error, as shown in Figures 3 and 4,
respectively. The percentage conversion error is defined as 100% × (conversion error
divided by 2f):

Percentage Conversion Error = Conversion Error
2 f

= ((1+ f)−2 f)

2 f × 100% , 0 ≤ f < 1
(8)

Appl. Sci. 2024, 14, 1487 7 of 17

Figure 3. Comparison of Mitchell’s [3] straight-line out = 1 + f and the accurate antilogarithmic curve

out = 2f.

Figure 4. Percentage conversion error of Mitchell’s [3] straight-line out = 1 + f and the accurate anti-

logarithmic curve out = 2f.

The process of optimizing eADP is shown in the flowchart in Figure 5. In the algo-

rithm shown in Figure 3, we first consider the upper bound of each partition region for

different fractional bits n. After determining the desired maximum percentage error, the

compensation precision for 2−k (k = 3, 4, 5, …, 26) is selected and adjusted. In this work, we

adopt the Q6.26 format, which contains 6 bits of the integer part and 26 fractional bits. It

should be noted that the smaller the partition number and the larger the compensation

precision, the smaller the hardware area and the shorter the delay time, respectively. To

Figure 3. Comparison of Mitchell’s [3] straight-line out = 1 + f and the accurate antilogarithmic curve
out = 2f.

The maximum percentage error is defined as 100% × (sum of absolute value of
maximum positive percentage error and minimum negative percentage error):

Maximum Percentage Error
= (|Maximum positive percentage error|+|Minimum negative percentage error|

2 f)× 100% , 0 ≤ f < 1
(9)

For the fractional-bit compensation method, we found that the first region and the last
region could not be compensated by Figure 3. The compensated region is divided by the 2n

region, where n denotes the first most significant bits (MSB). For example, n = 4 is divided
by 16 compensated regions. That is, f−1, f−2, f−3, and f−4 bits in the fraction part are used
to partition 16 regions.

Table 2 shows the maximum conversion error and percentage error for the uncompen-
sated first region and last region, where n is set to 3 to 8. The partition region is considered
to be a uniform partition. Table 2 presents the local errors and local percentage errors
for the first and last regions. The larger values of the first region and the last region are
considered to be the absolute maximum errors and absolute maximum percentage errors.
Table 2 presents the important indexes for deciding the partition and compensation values.
Taking n = 4 for example, the partition number is 16 regions. The upper bound of the
maximum percentage conversion error is 1.7327%. That is, a designed maximum percent-

Appl. Sci. 2024, 14, 1487 6 of 16

age conversion error below 1.7327% cannot be achieved for 16 uniform regions, even if a
full-precision fractional-bit compensation value is used.

Appl. Sci. 2024, 14, 1487 7 of 17

Figure 3. Comparison of Mitchell’s [3] straight-line out = 1 + f and the accurate antilogarithmic curve

out = 2f.

Figure 4. Percentage conversion error of Mitchell’s [3] straight-line out = 1 + f and the accurate anti-

logarithmic curve out = 2f.

The process of optimizing eADP is shown in the flowchart in Figure 5. In the algo-

rithm shown in Figure 3, we first consider the upper bound of each partition region for

different fractional bits n. After determining the desired maximum percentage error, the

compensation precision for 2−k (k = 3, 4, 5, …, 26) is selected and adjusted. In this work, we

adopt the Q6.26 format, which contains 6 bits of the integer part and 26 fractional bits. It

should be noted that the smaller the partition number and the larger the compensation

precision, the smaller the hardware area and the shorter the delay time, respectively. To

Figure 4. Percentage conversion error of Mitchell’s [3] straight-line out = 1 + f and the accurate
antilogarithmic curve out = 2f.

Table 2. Maximum conversion errors and percentage errors for the uncompensated first region and
last region.

f−1–f−n

Uniform
Partition
Numbers

Key
Uncom-

pensated
Region

Local
Error

Local
Percentage

Error

Absolute
Maximum

Error

Absolute
Maximum
Percentage

Error

n = 3 8
First

region 0.0342 3.1427%
0.0410 3.1427%

Last region 0.0410 2.2351%

n = 4 16
First

region 0.0181 1.7327%
0.0221 1.7327%

Last region 0.0221 1.1551%

n = 5 32
First

region 0.0093 0.9083%
0.0115 0.9083%

Last region 0.0115 0.5883%

n = 6 64
First

region 0.0045 0.4502%
0.0057 0.4502%

Last region 0.0057 0.2873%

n = 7 128
First

region 0.0021 0.2126%
0.0027 0.2126%

Last region 0.0027 0.1347%

n = 8 256
First

region 0.0009 0.0916%
0.0012 0.0578%

Last region 0.0012 0.0578%

Appl. Sci. 2024, 14, 1487 7 of 16

The process of optimizing eADP is shown in the flowchart in Figure 5. In the algo-
rithm shown in Figure 3, we first consider the upper bound of each partition region for
different fractional bits n. After determining the desired maximum percentage error, the
compensation precision for 2−k (k = 3, 4, 5, . . ., 26) is selected and adjusted. In this work,
we adopt the Q6.26 format, which contains 6 bits of the integer part and 26 fractional bits.
It should be noted that the smaller the partition number and the larger the compensation
precision, the smaller the hardware area and the shorter the delay time, respectively. To
obtain the truth table for the compensation bits, MATLAB software R2017b is used to
simulate the percentage conversion error. Finally, the Karnaugh map is used to simplify
the circuit of the truth table. Subsequently, we obtain two regions of the coarse equation for
eADP-efficient antilogarithmic converters using fractional-bit compensation schemes. The
hardware area and delay time for circuit implementation via very-large-scale integration
(VLSI) are obtained using the coarse equation. If the product of error, hardware area,
and delay time is larger than the desired target, then the process is repeated until the
desired value is achieved. After the fine-tuning process, the eADP-efficient antilogarithmic
converter using fractional-bit compensation schemes is designed.

Appl. Sci. 2024, 14, 1487 8 of 17

obtain the truth table for the compensation bits, MATLAB software R2017b is used to sim-

ulate the percentage conversion error. Finally, the Karnaugh map is used to simplify the

circuit of the truth table. Subsequently, we obtain two regions of the coarse equation for

eADP-efficient antilogarithmic converters using fractional-bit compensation schemes. The

hardware area and delay time for circuit implementation via very-large-scale integration

(VLSI) are obtained using the coarse equation. If the product of error, hardware area, and

delay time is larger than the desired target, then the process is repeated until the desired

value is achieved. After the fine-tuning process, the eADP-efficient antilogarithmic con-

verter using fractional-bit compensation schemes is designed.

Refer Table 2 and

determine the desired

design percentage error

According to design percentage error,

Adjust the compensation precision

for 2-k (k=3,4,5...26)

Using Matlab simulation,

Obtain the truth table of

compensation value

VLSI implementation and

obtain the parameter of

area and delay

Obtain the final result

 Is EADP optimized?

Yes

No

Figure 5. Flowchart for optimization of eADP in the range 0 ≤ f < 1.0.

According to the above algorithm, we propose three different specifications for

eADP-efficient antilogarithmic converters using fractional-bit compensation schemes. We

denote the three equations as case 1, case 2, and case 3. For n = 3 (m−1–m−3), the maximum

percentage error is larger (3.1427%), so it is not used in the proposed algorithms. First, we

use n = 4 (m−1–m−4) to give sixteen regions and the compensation values of 2−4, 2−5, 2−6, and

2−7, considering the hardware cost and latency. Note that 2−1, 2−2, and 2−3 are not used, ow-

ing to their larger step compensation values. Table 3 shows the truth table and compensa-

tion bits for case 1. The corresponding partition regions and compensation values are

shown in Table 4. After simplification of the Karnaugh map from Table 3, the proposed

Figure 5. Flowchart for optimization of eADP in the range 0 ≤ f < 1.0.

According to the above algorithm, we propose three different specifications for eADP-
efficient antilogarithmic converters using fractional-bit compensation schemes. We denote
the three equations as case 1, case 2, and case 3. For n = 3 (m−1–m−3), the maximum

Appl. Sci. 2024, 14, 1487 8 of 16

percentage error is larger (3.1427%), so it is not used in the proposed algorithms. First,
we use n = 4 (m−1–m−4) to give sixteen regions and the compensation values of 2−4, 2−5,
2−6, and 2−7, considering the hardware cost and latency. Note that 2−1, 2−2, and 2−3 are
not used, owing to their larger step compensation values. Table 3 shows the truth table
and compensation bits for case 1. The corresponding partition regions and compensation
values are shown in Table 4. After simplification of the Karnaugh map from Table 3, the
proposed equation of the eADP-efficient antilogarithmic converter is given by Equation
(10). The maximum percentage error of case 1 is 1.9089%.

out = 2 f ≈


[1+ f−((f−2∧ f−3)∨(f−2∧(f−3⊕ f−4))

16

+ (f−2∧ f−3)∨(f−2∧ f−3∧ f−4)
32 + (f−2∧ f−4)∨(f−2∧ f−3∧ f−4)

64)], 0 ≤ f < 0.5;

[1+ f−(f−2
16 + f−2∧ f−3

32 + f−2∧ f−3∧ f−4
64 + f−2∧ f−3

128)], 0.5 ≤ f < 1;

(10)

Table 3. Truth table and compensation bits of case 1.

f−1–f−4
Compensation Bit

f−1–f−4
Compensation Bit

2−4 2−5 2−6 2−7 2−4 2−5 2−6 2−7

0000 0 0 0 0 1000 1 0 0 0

0001 0 0 1 0 1001 1 0 0 0

0010 0 1 0 0 1010 1 0 0 0

0011 0 1 1 0 1011 1 0 0 0

0100 0 1 1 0 1100 0 1 0 1

0101 1 0 0 0 1101 0 1 0 1

0110 1 0 0 0 1110 0 0 1 0

0111 1 0 0 0 1111 0 0 0 0

Table 4. Partition regions and compensation values of case 1.

Partition
Items

Partition
Region

Compensation
Value

Partition
Items

Partition
Region

Compensation
Value

1 [0, 1/16) 0 5 [5/16, 12/16) −8/128

2 [1/16, 2/16) −2/128 6 [12/16,
14/16) −5/128

3 [2/16, 3/16) −4/128 7 [14/16,
15/16) −2/128

4 [3/16, 5/16) −6/128 8 [15/16, 1) 0

Table 5 shows the truth table and compensation bits for case 2. The corresponding
partition regions and compensation values are shown in Table 6. After simplification of the
Karnaugh map from Table 5, the proposed equation of the eADP-efficient antilogarithmic
converter is given by Equation (11). The maximum percentage error of case 2 is 1.7330%.

out = 2 f ≈


[1+ f−((f−2∧ f−3)∨(f−2∧(f−3⊕ f−4))

16

+ (f−2∧ f−3)∨(f−2∧ f−3∧ f−4)
32 + (f−2∧ f−4)∨(f−2∧ f−3∧ f−4)

64

+ f−2∧ f−3∧ f−4
128)], 0 ≤ f < 0.5;

[1+ f−(f−2
16 + f−2∧ f−3

32 + f−2∧ f−3∧ f−4
64 + f−2∧ f−3

128)], 0.5 ≤ f < 1;

(11)

Appl. Sci. 2024, 14, 1487 9 of 16

Table 5. Truth table and compensation bits of case 2.

f−1–f−4
Compensation Bit

f−1–f−4
Compensation Bit

2−4 2−5 2−6 2−7 2−4 2−5 2−6 2−7

0000 0 0 0 0 1000 1 0 0 0

0001 0 0 1 0 1001 1 0 0 0

0010 0 1 0 0 1010 1 0 0 0

0011 0 1 1 0 1011 1 0 0 0

0100 0 1 1 1 1100 0 1 0 1

0101 1 0 0 0 1101 0 1 0 1

0110 1 0 0 0 1110 0 0 1 0

0111 1 0 0 0 1111 0 0 0 0

Table 6. Partition regions and compensation values of case 2.

Partition
Items

Partition
Region

Compensation
Value

Partition
Items

Partition
Region

Compensation
Value

1
2
3
4
5

[0, 1/16)
[1/16, 2/16)
[2/16, 3/16)
[3/16, 4/16)
[4/16, 5/16)

0
−2/128
−4/128
−6/128
−7/128

6
7
8
9

[5/16, 12/16)
[12/16,
14/16)
[14/16,
15/16)

[15/16, 1)

−8/128
−5/128
−2/128

0

Table 7 shows the truth table and compensation bits of case 3. The corresponding
partition regions and compensation values are shown in Table 8. After simplification of the
Karnaugh map from Table 7, the proposed equation of the eADP-efficient antilogarithmic
converter is given by Equation (12). The maximum percentage error of case 3 is 1.2063%. In
Equations (10)–(12), ∨ represents the logic OR gate, ∧ represents the logic AND gate, ¯
represents the logic NOT gate, and ⊕ represents the logic Exclusive OR gate.

out = 2 f ≈



[1+ f−((f−2∧ f−3)∨(f−2∧ f−4)∨(f−2∧ f−5)
16

+ (f−2∧ f−3)∨(f−2∧ f−3∧ f−4∧ f−5)
32 + (f−2∧ f−4)∨(f−2∧ f−3∧ f−4∧ f−5)

64

+ (f−2∧ f−5)∨(f−2∧ f−3)∨(f−2∧ f−4)∨(f−2∧ f−5)
128)], 0 ≤ f < 0.5;

[1+ f−((f−2∧ f−3)∨(f−2∧ f−4)∨(f−2∧ f−5)
16 + (f−2∧ f−3)∨(f−2∧ f−3∧ f−4∧ f−5)

32

+ (f−2∧ f−4)∨(f−2∧ f−3∧ f−4∧ f−5)
64 + f−2∨ f−3∨ f−4

128)], 0.5 ≤ f < 1;

(12)

Under the different error tolerances of specific applications of DSP, digital image process-
ing, or AI, the three cases present three different approaches to reducing circuit complexity.
However, the more fractional bits there are, the less the maximum percentage error and
approximation error will be. The circuit complexity of case 1 (Equation (10)) is simpler than
that of case 2 (Equation (11)) and case 3 (Equation (12)). Therefore, case 1 will have larger
approximation error. Case 3 uses more fractional bits to compensate for the approximate error,
so it has larger hardware cost and longer delay time. The three proposed equations that can be
employed under the different error tolerances of eADP-efficient antilogarithmic converters are
easy to implement in a digital VLSI circuit with ROM-free requirements. In the next section,
we discuss the simulation results using MATLAB software, the hardware implementation,
and VLSI synthesis using Verilog Hardware Description Language (HDL) and we compare
the system performance with previous schemes.

Appl. Sci. 2024, 14, 1487 10 of 16

Table 7. Truth table and compensation bits of case 3.

f−1–f−5
Compensation Bit f−1–f−5

Compensation Bit

2−4 2−5 2−6 2−7 2−4 2−5 2−6 2−7

00000 0 0 0 0 10000 1 0 0 1

00001 0 0 0 1 10001 1 0 0 1

00010 0 0 1 0 10010 1 0 0 1

00011 0 0 1 1 10011 1 0 0 1

00100 0 1 0 0 10100 1 0 0 1

00101 0 1 0 1 10101 1 0 0 1

00110 0 1 1 0 10110 1 0 0 1

00111 0 1 1 1 10111 0 1 1 1

01000 0 1 1 1 11000 0 1 1 1

01001 1 0 0 0 11001 0 1 1 1

01010 1 0 0 1 11010 0 1 0 1

01011 1 0 0 1 11011 0 1 0 1

01100 1 0 0 1 11100 0 0 1 1

01101 1 0 0 1 11101 0 0 1 1

01110 1 0 0 1 11110 0 0 0 0

01111 1 0 0 1 11111 0 0 0 0

Table 8. Partition regions and compensation values of case 3.

Partition
Items

Partition
Region

Compensation
Value

Partition
Items

Partition
Region

Compensation
Value

1 [0, 1/32) 0 8 [7/32, 9/32) −7/128
2 [1/32, 2/32) −1/128 9 [9/32, 10/32) −8/128

3 [2/32, 3/32) −2/128 10 [10/32,
23/32) −9/128

4 [3/32, 4/32) −3/128 11 [23/32,
26/32) −7/128

5 [4/32, 5/32) −4/128 12 [26/32,
28/32) −5/128

6 [5/32, 6/32) −5/128 13 [28/32,
30/32) −3/128

7 [6/32, 7/32) −6/128 14 [30/32, 1) 0

4. Experimental Results and Hardware Implementation

We proposed three equations for eADP-efficient antilogarithmic converters based on
fractional-bit compensation schemes under different specifications and requirements for
DSP applications. In general, the larger the approximation and maximum percentage error,
the less the hardware area cost and delay time. Herein, we first sort the similar maximum
percentage errors of antilogarithmic converters reported in the literature as one group and
then compare their eADP efficiencies. Next, we compare the performances of the three
equations as three groups with those of the methods in the literature. The percentage
conversion errors of case 1, case 2, and case 3 are obtained using MATLAB and compared
with those of the previous schemes. The maximum percentage conversion errors of case
1, case 2, and case 3 are 1.9089%, 1.7330%, and 1.2063%, respectively. Figure 6 compares
case 1 with Juang et al.’s two-region bit correction [13]. Figure 7 compares case 2 with
Abed and Siferd’s two-region shift-and-add method [5] and Kuo and Juang’s 11-region
constant compensation scheme [16]. Figure 8 compares case 3 with Abed and Siferd’s

Appl. Sci. 2024, 14, 1487 11 of 16

six-region shift-and-add method [5], Loukrakpam and Choudhury’s two-region shift-and-
add method [11], and Kuo’s 14-region constant compensation scheme [16]. Figures 6–8
clearly show that the three cases yield considerably lower percentage conversion errors
than the previous methods. Figure 9 shows the approximated curve of case 3 compared
to the accurate antilogarithmic curve; it is noted that the two-region equation of case 3 is
extremely close to the accurate antilogarithmic curve.

Appl. Sci. 2024, 14, 1487 13 of 17

Figure 6. Comparison of the antilogarithmic percentage conversion errors of case 1 and Juang et al.’s

[13] 2-region bit correction scheme.

Figure 7. Comparison of the antilogarithmic percentage conversion errors of case 2 and Abed and

Siferd’s [5] 2-region shift-and-add and Kuo and Juang’s [16] 11-region bit constant compensation

schemes.

Figure 6. Comparison of the antilogarithmic percentage conversion errors of case 1 and Juang
et al.’s [13] 2-region bit correction scheme.

Appl. Sci. 2024, 14, 1487 13 of 17

Figure 6. Comparison of the antilogarithmic percentage conversion errors of case 1 and Juang et al.’s

[13] 2-region bit correction scheme.

Figure 7. Comparison of the antilogarithmic percentage conversion errors of case 2 and Abed and

Siferd’s [5] 2-region shift-and-add and Kuo and Juang’s [16] 11-region bit constant compensation

schemes.

Figure 7. Comparison of the antilogarithmic percentage conversion errors of case 2 and
Abed and Siferd’s [5] 2-region shift-and-add and Kuo and Juang’s [16] 11-region bit constant
compensation schemes.

Appl. Sci. 2024, 14, 1487 12 of 16

Appl. Sci. 2024, 14, 1487 14 of 17

Figure 8. Comparison of the antilogarithmic percentage conversion errors of case 3 and Abed and

Siferd’s [5] 6-region shift-and-add, Loukrakpam and Choudhury’s [11] 2-region shift-and-add, and

Kuo and Juang’s [16] 14-region bit constant compensation schemes.

Figure 9. Approximate curve of proposed case 3 compared to the accurate antilogarithmic curve.

Figure 8. Comparison of the antilogarithmic percentage conversion errors of case 3 and Abed and
Siferd’s [5] 6-region shift-and-add, Loukrakpam and Choudhury’s [11] 2-region shift-and-add, and
Kuo and Juang’s [16] 14-region bit constant compensation schemes.

Appl. Sci. 2024, 14, 1487 14 of 17

Figure 8. Comparison of the antilogarithmic percentage conversion errors of case 3 and Abed and

Siferd’s [5] 6-region shift-and-add, Loukrakpam and Choudhury’s [11] 2-region shift-and-add, and

Kuo and Juang’s [16] 14-region bit constant compensation schemes.

Figure 9. Approximate curve of proposed case 3 compared to the accurate antilogarithmic curve.

Figure 9. Approximate curve of proposed case 3 compared to the accurate antilogarithmic curve.

Comparisons of the results for VLSI hardware realization and maximum percentage
conversion errors for cases 1, 2, and 3 are presented in Tables 9–11, respectively. The
same hardware and software operation environments are used for all cases and reported
methods. For hardware implementation, we used Verilog HDL and had the digital circuits
created via VLSI by the Taiwan Semiconductor Manufacturing Company with 0.18 µm
CMOS technology. The percentage conversion error is simulated using MATLAB software.
In Tables 9–11, ADP is defined as the product of hardware area and delay time, while eADP

Appl. Sci. 2024, 14, 1487 13 of 16

is defined as the product of the approximation’s maximum percentage conversion error,
hardware area, and delay time. The approximation’s maximum percentage conversion
error is defined as the sum of the absolute value of the positive maximum percentage error
and the absolute value of the negative minimum percentage error. Tables 9–11 indicate
that case 1, case 2, and case 3 can achieve eADP savings of 15.66%, 80.80%, and 84.61%
compared with the other methods. The antilogarithmic percentage conversion error, delay
time, hardware area, and eADP savings of the proposed cases are superior to those of the
other reported methods.

Table 9. Comparison of percentage conversion errors and results for proposed case 1 and Juang
et al.’s [13] two-region bit correction schemes.

Compared Items Juang et al. [13] Proposed
Case 1

Compensation scheme Bit Fractional bits
Segment number 2 2
Significant fractional bit none none
Max. positive percentage error 1.72% 1.9089%
Min. negative percentage error −0.6% 0
Total percentage conversion error 2.32% 1.9089%
Area (µm2) 1729.62 1772.97
Delay (ns) 0.7 0.7
ADP 1210.734 1241.079
ADP saving 0 −2.51%
eADP 28.0890 23.6910
eADP saving 0 15.66%

Table 10. Comparison of percentage conversion errors and results for proposed case 2 and Abed and
Siferd’s [5] two-region and Kuo and Juang’s [16] 11-region schemes.

Compared Items Abed & Siferd
[5,16]

Kuo & Juang
[16]

Proposed
Case 2

Compensation scheme Shift-and-Add Constant Fractional bits
Segment number 2 11 2
Significant fractional bit 7 none none
Max. positive percentage error 1.3310% 1.7327% 1.7330%
Min. negative percentage error −0.5631% −0.0992% 0
Total percentage conversion
error 1.8941% 1.8319% 1.7330%

Area (µm2) 3562.57 2807.48 1869.44
Delay (ns) 2 1.4 0.8
ADP 7125.14 3930.47 1495.55
ADP saving 0 44.84% 79.01%
eADP 134.9573 71.2594 25.9179
eADP saving 0 47.20% 80.80%

It should be noted that De Morgan’s law of logic circuits can be used to reduce the gate-
count number for hardware realization in Equations (10)–(12). Taking f−2∧ f−3∧ f−4∧ f−5
in Equation (12) as an example, f−2∧(f−3 ∨ f−4 ∨ f−5) can be used to save two gate-counts.
Hence, the hardware cost of the proposed eADP-efficient antilogarithmic converters can
be significantly reduced by the proposed algorithm of the fractional-bit compensation,
Karnaugh map and De Morgan’s law of logic circuits.

Appl. Sci. 2024, 14, 1487 14 of 16

Table 11. Comparison of percentage conversion errors and results for proposed case 3 and Abed
and Siferd’s [5] six-region, Kuo and Juang’s [16] 14-region, and Loukrakpam and Choudhury’s [11]
two-region schemes.

Compared Items Abed & Siferd
[5,16]

Kuo & Juang
[16]

Loukrakpam
[11]

Proposed
Case 3

Compensation scheme Shift-and-Add Constant Shift-and-Add Fractional bits
Segment number 6 14 2 2

Significant fractional bit 7 none 7 none
Max. positive percentage error 0.9572% 1.2% 1.5054% 1.1551%
Min. negative percentage error −0.5786% −0.1436% −0.0488% −0.0512%

Total percentage conversion error 1.5358% −0.1436% 1.5542% 1.2063%
Area (µm2) 6439.91 3319.75 5425.36 2122.24
Delay (ns) 6439.91 1.5 1.8 1.1

ADP 11,913.83 4979.63 9765.65 2334.46
ADP saving 0 58.20% 18.31% 80.41%

eADP 182.9726 66.9063 151.78 28.1606
eADP saving 0 63.43% 17.05% 84.61%

The circuit block diagram for hardware implementation for the three cases is shown
in Figure 10, where HS is a half subtractor, FS is a full subtractor, f−n (where n = 1 to 26)
is the uncompensated fractional bit, and f−n

* (where n = 1 to 26) is the compensated bit.
Two regions (0 ≤ f < 0.5 and 0.5 ≤ f < 1) of the equations are selected by f−1. The
block of logic gates for the compensation circuit (e.g., OR, AND, XOR, and NOT gates)
incorporates the combinational logic in the numerators of the equations. In Figure 10, f 1/16,
f 1/32, f 1/64, and f 1/128 are the compensated output values of 1/16, 1/32, 1/64, and 1/128 in
Equations (10)–(12), respectively. For the DSP applications of cases 1, 2, and 3, the more
fractional bits there are, the lower the maximum percentage error and approximation
error will be. However, more fractional bits will lead to larger hardware area and longer
delay time. Therefore, the maximum percentage conversion errors (1.9089%, 1.7330%,
and 1.2063%) of cases 1, 2, and 3 can be individually adopted for the error tolerances of
specific DSP, digital image processing, or AI applications. We should note that, in this
study, the circuit block of Figure 10 is implemented using Verilog HDL code and the digital
circuits are integrated by the Taiwan Semiconductor Manufacturing Company with 0.18 µm
CMOS technology. MATLAB software is used to display simulation results from Equations
(10)–(12) and the other reported methods.

Appl. Sci. 2024, 14, 1487 16 of 17

ADP saving 0 58.20% 18.31% 80.41%

eADP 182.9726 66.9063 151.78 28.1606

eADP saving 0 63.43% 17.05% 84.61%

HS HS HS HSFS FS FS

Combibational Logic for

Compensation

Circuit

f-1 f-4 f-5 f-6 f-7 f-8 f-9 f-26

f-1
*

f-4 f-5 f-6 f-7

f-2
* f-3

* f-4
* f-5

* f-6
* f-7

* f-8
* f-9

* f-26
*

f-2 f-3

f1/16 f1/64f1/32 f1/128

...

...

1

1

Figure 10. Circuit block diagram for hardware implementation.

5. Conclusions

We proposed three mathematical equations for antilogarithmic converters with effi-

cient error–area–delay product (eADP) using the fractional-bit compensation scheme. The

proposed converters achieved high performance in terms of lower approximation errors,

smaller hardware implementation areas, and shorter latency. We compared the proposed

algorithms with the previously reported shift-and-add, bit correction, and constant com-

pensation schemes, and found the proposed converters achieved faster result, lower hard-

ware implementation area, and efficient ADP compared to existing methods. The eADP

savings of case 1, case 2, and case 3 were 15.66%, 80.80%, and 84.61%, respectively. The

digital circuit for the proposed antilogarithmic converters is simple and easy to implement

with very-large-scale integration. The proposed eADP-efficient antilogarithmic converters

using the fractional-bit compensation scheme are superior to other methods and can be

effectively applied to digital signal processing with different specifications and require-

ments.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in the

article, further inquiries can be directed to the corresponding author.

Acknowledgments: This paper was partly supported by the Ministry of Science and Technology in

Taiwan, under grant number MOST 108-2221-E-507-010.

Conflicts of Interest: The author declares no conflicts of interest.

References

1. Walther, J.S. A Unified Algorithm for Elementary Functions. In Proceedings of the Spring Joint Computer Conference, Atlantic

City, NJ, USA, 18–20 May 1971; pp. 379–385.

2. Wong, W.F.; Goto, E. Fast Hardware-Based Algorithms for Elementary Function Computations Using Rectangular Multipliers.

IEEE Trans. Comput. 1994, 43, 278–294.

3. Mitchell, J.N. Computer multiplication and division using binary logarithms. IRE Trans. Electron. Comput. 1962, EC-11, 512–517.

4. Stine, J.E.; Schulte, M.J. The symmetric table addition method for accurate function approximation. J. VLSI Sig. Proc. 1999, 21,

167–177.

Figure 10. Circuit block diagram for hardware implementation.

Appl. Sci. 2024, 14, 1487 15 of 16

5. Conclusions

We proposed three mathematical equations for antilogarithmic converters with effi-
cient error–area–delay product (eADP) using the fractional-bit compensation scheme. The
proposed converters achieved high performance in terms of lower approximation errors,
smaller hardware implementation areas, and shorter latency. We compared the proposed
algorithms with the previously reported shift-and-add, bit correction, and constant compen-
sation schemes, and found the proposed converters achieved faster result, lower hardware
implementation area, and efficient ADP compared to existing methods. The eADP savings
of case 1, case 2, and case 3 were 15.66%, 80.80%, and 84.61%, respectively. The digital
circuit for the proposed antilogarithmic converters is simple and easy to implement with
very-large-scale integration. The proposed eADP-efficient antilogarithmic converters using
the fractional-bit compensation scheme are superior to other methods and can be effectively
applied to digital signal processing with different specifications and requirements.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Acknowledgments: This paper was partly supported by the Ministry of Science and Technology in
Taiwan, under grant number MOST 108-2221-E-507-010.

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Walther, J.S. A Unified Algorithm for Elementary Functions. In Proceedings of the Spring Joint Computer Conference, Atlantic

City, NJ, USA, 18–20 May 1971; pp. 379–385.
2. Wong, W.F.; Goto, E. Fast Hardware-Based Algorithms for Elementary Function Computations Using Rectangular Multipliers.

IEEE Trans. Comput. 1994, 43, 278–294. [CrossRef]
3. Mitchell, J.N. Computer multiplication and division using binary logarithms. IRE Trans. Electron. Comput. 1962, EC-11, 512–517.

[CrossRef]
4. Stine, J.E.; Schulte, M.J. The symmetric table addition method for accurate function approximation. J. VLSI Sig. Proc. 1999, 21,

167–177. [CrossRef]
5. Abed, K.H.; Siferd, R.E. VLSI implementation of a low-power antilogarithmic converter. IEEE Trans. Comput. 2003, 52, 1221–1228.

[CrossRef]
6. Juang, T.B.; Chen, S.H.; Cheng, H.J. A lower-error and ROM-free logarithmic converter for digital signal processing applications.

IEEE Trans. Circuits Syst. II Express Briefs 2009, 56, 931–935.
7. Nam, B.G.; Kim, H.J.; Yoo, H.J. Power and area-efficient unified computation of vector and elementary functions for handheld 3D

graphics system. IEEE Trans. Comput. 2008, 57, 490–504. [CrossRef]
8. Paul, S.; Jayakumar, N.; Khatri, S. A fast hardware approach for approximate, efficient logarithm and antilogarithm computations.

IEEE Trans. VLSI Syst. 2009, 17, 269–277. [CrossRef]
9. Liu, C.W.; Ou, S.H.; Chang, K.C.; Lin, T.C.; Chen, S.K. A low-error, cost-efficient design procedure for evaluating logarithms to be

used in a logarithmic arithmetic processor. IEEE Trans. Comput. 2016, 65, 1158–1164. [CrossRef]
10. Kuo, C.T. Design and realization of high performance logarithmic converters using non-uniform multi-regions constant adder

correction schemes. Microsyst. Technol. 2018, 24, 4237–4245. [CrossRef]
11. Loukrakpam, M.; Choudhury, M. Error-Aware Design Procedure to Implement Hardware-Efficient Antilogarithmic Converters.

Circuit Syst. Signal Process. 2019, 38, 4266–4279. [CrossRef]
12. Kuo, C.T. Design and Circuit Implementation of Area-Delay-Product-Efficient Logarithmic Converters Using Mantissa-Bit

Compensation Scheme. Circuit Syst. Signal Process. 2022, 41, 4266–4279. [CrossRef]
13. Juang, T.B.; Kuo, H.L.; Jan, K.S. Lower-error and area-efficient antilogarithmic converters with bit correction schemes. J. Chin.

Inst. Eng. 2016, 39, 57–63. [CrossRef]
14. Ha, H.; Lee, S. Accurate hardware-efficient logarithm circuit. IEEE Trans. Circuits Syst.—II Express Briefs 2017, 64, 967–971.

[CrossRef]
15. Kim, H.; Nam, B.G.; Sohn, J.H.; Woo, J.H.; Yoo, H.J. A 231-MHz, 2.18Mw 32-bit logarithmic arithmetic unit for fixed-point 3-D

graphics system. IEEE J Solid State Circuits. 2006, 41, 2373–2381. [CrossRef]
16. Kuo, C.T.; Juang, T.B. Area-efficient and highly accurate antilogarithmic converters with multiple regions of constant compensation

schemes. Microsyst. Technol. 2018, 24, 219–225. [CrossRef]
17. Chaudhary, M.; Lee, P. Two-stage logarithmic converter with reduced memory requirements. IET Comput. Digit. Tech. 2014, 8,

23–29. [CrossRef]

https://doi.org/10.1109/12.272429
https://doi.org/10.1109/TEC.1962.5219391
https://doi.org/10.1023/A:1008004523235
https://doi.org/10.1109/TC.2003.1228517
https://doi.org/10.1109/TC.2008.12
https://doi.org/10.1109/TVLSI.2008.2003481
https://doi.org/10.1109/TC.2015.2441696
https://doi.org/10.1007/s00542-018-3745-1
https://doi.org/10.1007/s00034-019-01062-9
https://doi.org/10.1007/s00034-022-02073-9
https://doi.org/10.1080/02533839.2015.1070692
https://doi.org/10.1109/TCSII.2016.2608967
https://doi.org/10.1109/JSSC.2006.882887
https://doi.org/10.1007/s00542-016-3238-z
https://doi.org/10.1049/iet-cdt.2012.0134

Appl. Sci. 2024, 14, 1487 16 of 16

18. Chaudhary, M.; Lee, P. An improved two-step binary logarithmic converter for FPGAs. IEEE Trans. Circuits Syst. II Express Briefs
2015, 62, 476–480. [CrossRef]

19. Pineiro, J.A.; Ercegovac, M.D.; Bruguera, J.D. Algorithm and architecture for logarithm, exponential, and powering computation.
IEEE Trans. Comput. 2004, 53, 1085–1096. [CrossRef]

20. Gutierrez, R.; Valls, J. Low cost hardware implementation of logarithm approximation. IEEE Trans. Very Large Scale Integr. Syst.
2011, 19, 2326–2330. [CrossRef]

21. Juang, T.B.; Meher, P.K.; Jan, K.S. High-performance logarithmic converters using novel two-region bit-level manipulation
schemes. In Proceedings of the 2011 International Symposium on VLSI Design, Automation and Test, Hsinchu, Taiwan, 25–28
April 2011.

22. Caro, D.D.; Petra, N.; Strollo, A.G.M. Efficient logarithmic converters for digital signal processing applications. IEEE Trans.
Circuits Syst. II Express Briefs 2011, 58, 667–671.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TCSII.2014.2386252
https://doi.org/10.1109/TC.2004.53
https://doi.org/10.1109/TVLSI.2010.2081387

	Introduction
	Antilogarithmic Conversion Methods
	Proposed Algorithm for Fractional-Bit Compensation
	Experimental Results and Hardware Implementation
	Conclusions
	References

