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Abstract: In the context of mountain tunnel mining through the drilling and blasting method, the
recognition of lithology from palm face images is crucial for the comprehensive analysis of geological
conditions and the prevention of geological risks. However, the complexity of the background in the
acquired palm face images, coupled with an insufficient data sample size, poses challenges. While the
incorporation of deep learning technology has enhanced lithology recognition accuracy, issues persist,
including inadequate feature extraction and suboptimal recognition accuracy. To address these
challenges, this paper proposes a lithology recognition network integrating attention mechanisms
and a feature Brownian distance covariance approach. Drawing inspiration from the Brownian
distance covariance concept, a feature Brownian distance covariance module is devised to enhance
the network’s attention to rock sample features and improve classification accuracy. Furthermore, an
enhanced lightweight Convolutional Block Attention Module is introduced, with upgrades to the
multilayer perceptron in the channel attention module. These improvements emphasize attention
to lithological features while mitigating interference from background information. The proposed
method is evaluated on a palm face image dataset collected in the field. The proposed method was
evaluated on a dataset comprising field-collected images of a tunnel rock face. The results illustrate a
significant enhancement in the improved model’s ability to recognize rock images, as evidenced by
improvements across all objective evaluation metrics. The achieved accuracy rate of 97.60% surpasses
that of the current mainstream lithology recognition neural network.

Keywords: lithology recognition; deep residual network; feature Brownian distance covariance;
attention mechanism; deep learning

1. Introduction

Lithology identification stands as a critical research domain within geology, resource
exploration, and the mitigation of adverse geological conditions for tunnels and under-
ground engineering [1–3]. In mountain tunnel mining utilizing the drilling and blasting
method, encountering safety hazards, such as unstable rock layers or internal fissures, is
inevitable. Therefore, the lithology identification of palm face images holds paramount
significance for preventing potential geological risks. Traditional lithology identification
methods, including visual analysis, electromagnetic techniques, and rock sheet analysis,
predominantly rely on expert experience and necessitate sophisticated experimental instru-
ments and controlled working environments [4]. These factors collectively impede the swift
and accurate execution of lithology identification. Accurate identification of the physical
and mechanical properties of geotechnical materials, coupled with precise selection, consti-
tutes the foundational and core aspects of geotechnical engineering construction. Within
this domain, lithology identification and parameterization emerge as pivotal elements,
where the precision of results significantly impacts the safety and economy of engineering
endeavors [5]. In the context of highway tunnel projects, the construction process contends
with dynamic geological conditions, especially the intricate lithological complexities intro-
duced by adverse effects. The complexity of highway tunnel construction, with its myriad
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technological intricacies and challenging labor environments, is compounded when faced
with adverse geological and topographical features, such as karst formations, high-stress
zones, fault fracture areas, and rock bursts. The excavation of highway tunnels, typically
characterized by expansive spans and flattened shapes, necessitates stringent drainage
requirements throughout the digging process. Presently, the predominant method for
highway tunnel excavation involves drilling and blasting. While effective, this method can
disrupt the surrounding rock significantly, increasing the risk of tunnel collapse incidents.
The associated challenges in tunnel construction, particularly when dealing with adverse
geological features, pose elevated demands on the design, construction, and management
of highway tunnels. Despite advancements in tunnel excavation methods, some profes-
sional skills pertinent to highway tunnel construction remain underutilized. The prevalent
use of the New Austrian Method, encompassing surface blasting technology, spray anchor
support technology, and perimeter rock deformation measurement technology, underscores
the need for practical expertise and comprehensive research within tunnel construction
teams. The absence of a practical mastery of these techniques, coupled with a lack of
understanding of the underlying principles, can result in unnecessary waste during tunnel
excavation, ultimately inflating project costs and diminishing economic benefits [6].

Deep learning-based recognition methods have demonstrated the potential to en-
hance result objectivity and alleviate the workload of analyzers compared to traditional
methods [7]. Over the years, the continuous evolution of deep learning technology has
notably elevated the accuracy of rock properties recognition [8,9]. Zhang Ye et al. [10]
successfully employed a convolutional neural network algorithm to classify three rock
properties—granite, kilomagnet, and breccia—with a recognition accuracy of 90%. Ren
Wei et al. [11] utilized a self-learning intelligent algorithm for the automatic classification
of nine rock sample images. Bai Lin et al. [12] developed a rock recognition model based
on convolutional neural networks, achieving a recognition accuracy of 63% for 15 common
rock sample images. Xu Zhenhao et al. [13] established an intelligent recognition method
for rock properties using transfer learning of rock images, recognizing 30 rock types with
an accuracy rate of 90.21% and demonstrating robustness and generalization. Ma Zedong
et al. [14] proposed a multi-scale lithology recognition method based on deep learning of
rock images, achieving a recognition accuracy exceeding 85%. Despite these advancements,
current deep learning-based rock properties recognition methods face challenges [15–17],
including (1) insufficient data sample sizes affecting feature learning during model training
and (2) complexities in the background of tunnel rock face images, including illumination
and shadows, hindering accurate recognition of rock properties.

This paper addresses the challenges associated with lithology recognition by proposing
a Feature Convolutional Attention Residual (FC-Res) network. The network employs
ResNet18 as the backbone network, integrating a feature Brownian distance covariance
(FBDC) module and an improved Convolutional Block Attention Module (CBAM). The key
contributions of this paper are outlined as follows:

• Design of the feature Brownian distance covariance module: We propose a FBDC mod-
ule inspired by the concept of depth Brownian motion distance covariance. This mod-
ule is designed to quantify the disparity between the joint eigenfunctions of embedded
features and the edge product, aiming to enhance the attention to sample features.

• Improvements to the CBAM: An improved CBAM is proposed, which mitigates the
interference of background information by a multilayer perceptron (MLP) in the rising
channel attention module.

• Application of FC-Res network: The proposed FC-Res network was employed for the
identification of rock properties at construction sites, specifically in the Kangding, Laoling-
gang, Xingdongshan, and Yigong tunnels. This application can greatly solve the problem
of poor prediction results due to insufficient training samples at construction sites.
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2. Methodology

This paper introduces the FC-Res network as a novel approach for rock properties
recognition. Leveraging ResNet18 as its backbone network, the FC-Res network incorpo-
rates the feature Brownian distance covariance (FBDC) module and an improved Convo-
lutional Block Attention Module (CBAM), both integrated into the ResNet18 architecture.
The network structure of FC-Res is illustrated in Figure 1.
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Figure 1. The overall architecture diagram of the FC-Res network model.

The input rock image pixels are 256 × 256 × 3. After the initial degradation and feature
extraction of the rock image by convolutional and pooling layers, a rock feature map of
size 64 × 64 × 64 is obtained. Then, through a module consisting of four layers of residual
modules and attention modules, an improved CBAM attention mechanism is inserted after
each of the first three residual modules, i.e., an elevated multilayer perceptual machine
structure is designed in the channel attention module, which has a more powerful ability
to capture the important features in the image and gives the model a better expressive
ability and generalization ability. After passing through the fourth layer of residual blocks,
a feature map of size 512 × 8 × 8 is output. Next, it passes through the FBDC module,
which calculates the similarity of each type of test set by calculating the inner product of the
BDC matrix of the input image and the average BDC matrix of the test set. Finally, the rock
feature maps extracted by the network are input into the Softmax classifier to output the
corresponding classifications of the rock images, and, finally, complete the rock lithology
analysis and prediction of the rocks. The parameters of the FC-Res network structure are
shown in Table 1.

Table 1. RImprove network structure parameters.

Layer Type Output Size Layer Type Output Size

Conv 64 × 128 × 128 Res_a3 256 × 16 × 16
MaxPool 64 × 64 × 64 Res_b3 256 × 16 × 16
Res_a1 64 × 64 × 64 Improved CBAM 256 × 16 × 16
Res_b1 64 × 64 × 64 Res_a4 512 × 8 × 8

Improved CBAM 64 × 64 × 64 Res_b4 512 × 8 × 8
Res_a2 128 × 32 × 32 ConvAvgPool 512 × 1 × 1
Res_b2 128 × 32 × 32 FBDC 512 × 1 × 1

Improved CBAM 128 × 32 × 32 Conv 6 × 1 × 1

2.1. ResNet18 Backbone

ResNet18 has gained extensive utilization within the domain of computer vision,
particularly excelling in tasks such as image classification, target detection, and image
segmentation [18]. Its exceptional performance stems from its adept utilization of residual
connections, a feature that effectively optimizes the gradient flow during training and
mitigates the risk of overfitting [19]. Moreover, the ResNet18 architecture boasts a moderate
number of layers and exhibits rapid convergence, making it a well-suited choice for appli-
cations demanding real-time processing and high accuracy, such as lithology recognition
tasks. Hence, ResNet18 has been selected as the backbone network for this study, with the
network structure depicted in Figure 2.
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The main structure of the ResNet18 network is four stacked residual blocks, and the
residual block structure is shown in Figure 2, which connects the input feature information
to the output of the residual block through a 1 × 1 convolution, which mitigates the gradient
disappearance and explosion of the deep network during training. The input network is
a 256 × 256 three-channel RGB image, which outputs six rock categories after a series of
residual blocks as well as pooling operations. The input rock image is feature-extracted
and downsampled by a convolutional layer to obtain a feature map of size N × 6 × 8 × 8
(N is a mini-batch size), which is then continued to be downsampled by an 8 × 8 adaptive
average pooling layer, continuing sampling to obtain an N × 6 × 1 × 1 size feature map,
and, finally, the extracted rock features are input into a Softmax classifier to calculate the
rock category prediction probability.

2.2. Improvements to the CBAM

To enhance the classification accuracy of the model, mitigate the extraction of irrele-
vant features, and bolster the network’s capacity to discern rock features, we propose an
enhanced Convolutional Block Attention Module (CBAM) attention mechanism.

The conventional CBAM attention mechanism employs two modules, namely channel
and spatial, to jointly regulate feature mapping. In the original Channel Attention Module
(CAM) [20], input feature maps undergo extraction through two parallel branches involving
global maximum pooling and global average pooling. These processes compress the feature
maps into a 1 × 1 × C format. Subsequently, the number of channels is compressed to
the original 1 × 1 × C/p through a multi-perceptual layer mechanism. The channels
are then expanded back to their original count, and the outputs from the two parallel
branches undergo summation, ultimately yielding the CAM output through the Sigmoid
activation function. Finally, this result is multiplied with the input feature map. Within the
shared neural network, the dimensionality reduction multilayer perceptron (MLP) operates
as follows: firstly, the 1 × 1 × C feature map undergoes dimensionality reduction to a
1 × 1 × C/p feature map, and subsequently, it is upgraded to a 1 × 1 × C size. While
this dimensionality reduction operation effectively reduces computational load and model
parameters, it introduces a significant loss of detail information from the feature map.
This loss interferes with the generation of channel attention feature weights, rendering the
mechanism incapable of attenuating interference from background information.

For the intricate lithology recognition task, the nuances of rocks, including their
shape, color, and texture, are intricately linked to their lithological composition. Thus, the
extraction of detailed features holds paramount importance in lithology recognition. The
ascending MLP demonstrates superior capability in retaining and extracting intricate image
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details, thereby augmenting classification accuracy by mapping low-dimensional features
to high-dimensional space. To bolster the extraction of detailed features from rock surface
imagery, this study proposes an enhancement to the CBAM channel attention module. This
enhancement entails transforming the original CBAM’s reduced-dimensional MLP into
an ascending multilayer perceptron structure. The structure of the enhanced CBAM is
illustrated in Figure 3.
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Initially, the feature map F, characterized by dimensions H × W × C, serves as the
input. As the feature map traverses the improved channel attention module, the ascending
multilayer perceptron operation transforms the 1 × 1 × C feature map into 1 × 1 × pC,
followed by a reduction to the original 1 × 1 × C feature map through a descending
operation. This dimensionality-raising multilayer perceptron adeptly preserves and extracts
detailed image information by mapping low-dimensional features to high-dimensional
space, thereby enhancing the accuracy of lithology recognition.

Subsequently, the output feature map from the channel attention module becomes
the input for the Spatial Attention Module (SAM). Through maximum pooling and mean
pooling operations on the channel, the input feature map undergoes extraction of global and
local information in the spatial dimensions, yielding two two-dimensional feature maps: the
mean-pooled feature and the maximally pooled feature. These features are concatenated,
followed by transformation into a 1-channel feature map through convolution operations.
Application of the Sigmoid activation function produces the final output result of SAM.
Finally, this result undergoes element-wise multiplication with the input feature map,
extracting crucial image feature information and yielding the output F’ of the improved
CBAM. The dimension of F’ aligns with that of the input feature map.

2.3. Design of the FBDC Modules

To enhance the accuracy of rock identification models, this study introduces the Feature
Brownian distance covariance (FBDC) algorithm, drawing inspiration from the concept of
Brownian distance covariance (BDC) [21,22]. This algorithm precisely assesses the similarity
among rock features by computing the inner product between respective BDC matrices [23].
These BDC matrices effectively capture the nonlinear relationships between channels,
representing these relationships through the Euclidean distance nonlinear correlation. The
FBDC module is integrated into the network as a pooling layer, strategically employed to
sharpen the focus on features within rock sample images.
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For the lithology recognition task, the network receives a color rock image z = R3 as
input, embedded into the feature space as a tensor of dimensions h × w × d, where h and w
denote the height and width of the feature map, and d represents the number of feature
channels. Subsequently, the tensor undergoes reshaping into a matrix X ∈ Rhw×d, wherein
each column xk ∈ Rhw or row xj ∈ Rd can be interpreted as an observation of X [24–26].

Considering xk as an instance of a casual observation, the process involves three main
steps. Initially, the computation of the squared Euclidean distance matrix Ã takes place.
Subsequently, the computation of the Euclidean distance matrix Â follows. Finally, the
BDC matrix A is derived by Â subtracting its row mean, column mean, and the mean of all
its elements, as illustrated in Equation (1).

Ã = 2(1
(

XTX ◦ I))sym − 2XTX

Â =
(√

ãkl

)
A = Â − 2

d (1Â)sym + 2
d2 1Â1

(1)

where ãkl is the squared Euclidean distance from the kth column to the lth column of the
matrix X. Furthermore, 1 denotes a matrix with 1 in each row and column, and I denotes
the unit matrix, which ◦ denotes the Hadamard product. sym is expressed as shown in
Equation (2).

(U)sym =
1
2
(U + UT) (2)

In this study, the rockiness recognition task comprises six classes of test sets denoted
as Sk,k ∈ (1, 6), each containing j images. The BDC averaging matrix Pk, corresponding to
each class of test set Sk, is calculated sequentially as illustrated in Equation (3).

Pk =
1
K ∑

(zj)∈Sk

A(Zj) (3)

Here, Zj represents the set of images within a specific class of test sets.
The BDC matrix of the input image undergoes an inner product with the BDC average

matrix Pk of the corresponding test set to derive the similarity, as outlined in Equation (4).

ρ(X, Y) =< A, Pk >= ATPk (4)

Following Equation (4), similarity values are computed for each type of test set. Subse-
quently, the prototype distance Softmax classifier outputs the classification corresponding
to the rock image. Specific matrix calculation parameters are compared to Table 2.

Table 2. Comparison table of matrix calculation parameters.

Parameters Significance

h High
w Wide
d Number of feature channels
Ã Square Euclidean distance matrix
Â Euclidean distance matrix
A BDC matrix
I Unit matrix
◦ Hadamard product
k Categorical quantity
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3. Experimental Results and Analysis
3.1. Experimental Dataset and Pre-Processing

The data utilized for model training in this study were gathered from the construction
sites of four drill-and-blast tunneling projects in China, namely Kangding, Laolingang,
Xingshandong, and Yigong Tunneling Districts. The geological profiles of the tunnel
construction sites are illustrated in Figure 4. The dataset comprises six categories of rock
image samples representing different lithologies, encompassing gneiss, granite, limestone,
marble, dolomitic tuff, and tuff, amounting to a total of 632 images. The number of rock
images in each category in the original dataset varies; for example, in this paper, data
enhancement can not only expand the dataset, but also make the number of images in the
six categories more evenly distributed. In this paper, random translation, random rotation,
changing brightness, mirror flip, and other methods are used to enhance the rock images,
and after enhancement, each category is expanded to 197 images (with the TUFF category,
which has the largest amount of data, as the benchmark), totaling 1182 images. The detailed
information of each category of rock images is shown in Table 3. The rock sample photos
collected at the construction sites were randomly cropped to 256 × 256 pixels for consistent
model training and testing [27]. Subsequently, the images were randomly partitioned into
a training set, testing set, and validation set with a ratio of 7:2:1. Figure 5 exemplifies a rock
sample image collected in the field.
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3.2. Experimental Setup and Evaluation Metrics

The hardware platform used for model training is Intel (R) CoreTM i7-12700H@2.30GHz
for CPU, 32 GB of RAM, and Nvidia RTX 3070Ti Laptop GPU for GPU. The software
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platform is Windows 11 operating system, the development language is Python, and the
deep learning framework is Pytorch. The resolution of input image is 256 × 256, the batch
size is 16, the total number of model iterations is 100 rounds, the initial learning rate is set
to 0.001, the label smoothing [28] cross-entropy loss function is used to suppress overfitting,
and the momentum stochastic gradient descent (SGD) optimizer is selected to update the
weight parameters of the network. Cross-entropy loss (CEL) is used for the loss values.

The terms in the equation are defined as follows: TP represents the count of samples
correctly identified as positive. FP signifies the count of negative samples incorrectly
identified as positive. TN indicates the count of samples correctly identified as negative.
FN denotes the count of positive samples incorrectly identified as negative. The relevant
parameters of the base indicator are defined as shown in Table 4.

Table 4. Basic indicator definition.

Confusion Matrix
Prediction Value

Positive Negative

True value
Prediction correct TP FN

Prediction incorrect FP TN

In this paper, four kinds of indexes, accuracy (ACC), precision (P), recall (R), and F1
score (F1), are chosen to evaluate the effect of rockiness recognition. The ACC is computed
according to the formula presented in Equation (5).

ACC =
TP + TN

TP + TN + FP + FN
(5)

The precision rate P is calculated as Equation (6).

P =
TP

TP + FP
(6)

The recall rate R is calculated as Equation (7).

R =
TP

TP + FN
(7)

The F1 score represents the weighted average of P and R, and the formula is provided
in Equation (8).

F1 =
2P × R
P + R

(8)

The F1 score ranges from 0 to 1, where a value of 1 signifies the optimal model output,
and 0 indicates the poorest model performance.

3.3. Ablation Experiments

This section aims to validate the efficacy of the proposed method. Ablation experi-
ments are conducted to ascertain the enhancement brought by the improved CBAM and
the FBDC module in the rockiness recognition task.

3.3.1. Ablation Experiment of Improved CBAM

To assess the optimization impact of the improved CBAM attention mechanism on
network performance and determine the optimal CAM upscaling strategy, this study
conducted five experiments with varied MLP settings. All experiments were based on the
ResNet18 network and were cross-validated using different strategies. Model 2 integrates
the CBAM into the original ResNet18 network. In experiments denoted as Models 3 to 5, the
CBAM attention mechanism was upscaled to feature maps of sizes 1 × 1 × 3C, 1 × 1 × 4C,
and 1 × 1 × 6C, respectively. Subsequently, the feature maps from different upscaling
strategies were downscaled back to the size of 1 × 1 × C. The experiments employed the
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same rock dataset for both training and testing. The corresponding experimental results
are presented in Table 5.

Table 5. Performance analysis of CBAM model under different dimension-increasing strategies.

Model Strategy of
Upgrading

Feature Map
Size

Training
ACC/% Testing ACC/%

1 No CBAM added —— 92.63 91.70
2 CBAM 1 × 1 × C/2 95.37 95.12
3 1 × 1 × 3 1 × 1 × 3C 95.54 94.14
4 1 × 1 × 4 1 × 1 × 4C 96.60 95.79
5 1 × 1 × 6 1 × 1 × 6C 95.33 95.14

Text in bold indicates optimal indicators.

Analysis of the results presented in Table 2 reveals that Model 4 demonstrates the most
effective upscaling of the feature map to a size of 1 × 1 × 4C. The classification accuracy
exhibits notable improvements, with gains of 4.09%, 0.67%, 1.65%, and 0.65% compared
to Model 1, Model 2, Model 3, and Model 5, respectively. The operation of upgrading
the feature map proves beneficial in extracting detailed information from the rock images.
However, excessively high upgrading dimensions may amplify background noise in the
rock images, leading to a reduction in image recognition accuracy. In conclusion, the
enhanced attention mechanism featuring shared neural network dimension upgrading to
1 × 1 × 4C is deemed optimal.

3.3.2. Ablation Experiments on the FBDC Module

To assess the feasibility and effectiveness of the FBDC module in the context of rocki-
ness recognition, the following ablation experiments were conducted. Model 1 comprises
only the backbone network without the inclusion of the improved CBAM and FBDC mod-
ule. Building upon Model 1, Model 2 incorporates the improved CBAM. Subsequently,
Model 3 enhances Model 2 by adding the FBDC module. All experiments were conducted
and tested using the field collection dataset, and the corresponding experimental results
are presented in Table 6. Lithology recognition visualizations are depicted in Figure 6.

Table 6. Results of FBDC module ablation experiments.

Model Resnet18 Improved
CBAM FBDC Training

ACC/%
Testing
ACC/%

1
√

92.63 91.70
2

√ √
96.60 95.79

FC-Res
√ √ √

97.96 97.60
Text in bold indicates optimal indicators.

Table 5 showcases the performance metrics, revealing that the highest accuracy
achieved by the model in this study is 97.60%. This marks a significant improvement,
with a 5.9% increase compared to Model 1 and a 1.61% increase compared to Model 2. The
results indicate that both the improved CBAM and the FBDC module effectively enhance
the network’s performance. Moreover, there is no exclusion or compatibility issue between
the two modules. Their combined integration yields the network’s optimal performance.
Additionally, the lithology identification visualization in Figure 6 illustrates that the FC-Res
model proposed in this paper provides superior prediction results.

3.4. Model Performance Comparison and Analysis

In the realm of lithology analysis, the demand for robust and efficient models is imper-
ative to precisely differentiate various rock types. Presently, mainstream lithology analysis
algorithms encompass the ResNet series, which addresses the challenge of gradient vanish-
ing during deep neural network training by introducing residual blocks. ResNet18 within
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the ResNet series exhibits a shallower network structure, rendering it suitable for resource-
limited environments. In contrast, ResNet50 features a deeper network structure [29],
demanding higher computational resources. The EfficientNet-B0 algorithm stands out for
its heightened computational efficiency [30]. SENet [31], akin to ResNet in its fundamental
structure, introduces an attention mechanism to enhance the network’s sensitivity to vital
features. MobileNet-V3 [32], on the other hand, stands as a lightweight convolutional
neural network tailored for mobile devices.
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To gauge the efficacy of the proposed FC-Res model in rockiness recognition, this paper
compares its algorithm against the original algorithms ResNet18, ResNet50, EfficientNet-
B0, SENet, and MobileNet-V3, utilizing the same dataset for training. A comprehensive
evaluation of model performance was conducted, considering Parameters, ACC, P, R, and
F1. The experimental results are detailed in Table 7.

Table 7. Comparison of rock recognition performance of different network models.

Model Parameters/M ACC/% P/% R/% F1/%

ResNet18 117.45 91.70 89.94 88.71 89.32
ResNet50 235.47 93.57 93.75 93.33 93.54

EfficientNet-B0 78.28 89.16 87.28 88.23 87.75
SENet 267.91 92.63 92.86 92.16 92.51

MobileNet-V3 34.82 89.23 86.89 86.11 86.50
Ours 135.15 97.60 97.43 97.46 97.44

Text in bold indicates optimal indicators.

As indicated in Table 7, ResNet50 and SENet exhibit larger parameter quantities,
whereas the FC-Res model has a parameter count of 135.15M, which is merely 49.8% and
43.8% of that of ResNet50 and SENet, respectively. Despite this reduction, the FC-Res model
demonstrates an improvement in accuracy by 4.03% and 4.97% compared to ResNet50 and
SENet, respectively. Conversely, ResNet18, EfficientNet-B0, and MobileNet-V3 models
possess fewer parameters but exhibit lower classification accuracy. Notably, the FC-Res
model outperforms EfficientNet-B0 and MobileNet-V3 models, showcasing an accuracy
improvement of 8.44% and 8.37%, respectively.

4. Conclusions

Addressing the challenges posed by the insufficient tunnel rock face image samples
and the limited accuracy of lithology recognition networks, this study enhances the effi-
ciency and precision of rock recognition. Our approach involves the design of an improved
Brownian distance covariance module to augment the attention to sample features and the
mitigation of background interference through an enhanced CBAM attention mechanism.
Numerous comparative experiments conducted on a rock tunnel rock face dataset collected
from the field reveal that the FC-Res network yields the most favorable results in lithol-
ogy recognition tasks. The proposed FC-Res lithology recognition network significantly
enhances accuracy, precision, recall, and F1 score, surpassing the performance of current
mainstream lithology recognition neural networks.

In future research endeavors, we aim to integrate the structural characteristics of
rocks in various types of tunnel rock face images into the lithology recognition network
design. This integration, coupled with an extensive dataset, will facilitate a more pro-
found exploration of lithology recognition models that strike a balance between efficiency
and precision.
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