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Abstract: In this paper, we propose a method for estimating the classes and directions of static audio
objects using stereo microphones in a drone environment. Drones are being increasingly used across
various fields, with the integration of sensors such as cameras and microphones, broadening their
scope of application. Therefore, we suggest a method that attaches stereo microphones to drones for
the detection and direction estimation of specific emergency monitoring. Specifically, the proposed
neural network is configured to estimate fixed-size audio predictions and employs bipartite matching
loss for comparison with actual audio objects. To train the proposed network structure, we built an
audio dataset related to speech and drones in an outdoor environment. The proposed technique for
identifying and localizing sound events, based on the bipartite matching loss we proposed, works
better than those of the other teams in our group.

Keywords: deep learning; sound event localization and detection; convolutional neural network;
bipartite matching loss

1. Introduction

The advancement of drone technology has revolutionized traditional observation
methods. Drones have transcended beyond mere recreational activity to become vital
tools in a wide range of applications spanning industries, research, and safety sectors [1].
Specifically, the attachment of advanced sensors to drones has significantly improved the
efficiency and effectiveness of surveillance, inspection, and data collection tasks. One of
the capabilities that drones have acquired, thanks to advancements in sensor technology, is
object detection [2]. Utilizing visual sensors like cameras, drones can identify, track, and
analyze specific objects. For instance, in agriculture, drones are used to monitor the health
of crops, while in wildlife protection, they can detect poaching activities [3]. In urban
environments, their applications vary from analyzing traffic flow and detecting parking
violations to even monitoring crowds during large events. However, the scope of drone
applications does not stop at visual surveillance. Recently, the capability for sound event
detection using auditory sensors like microphones has gained attention. This technology
enables drones to collect information based on sound, allowing them to detect specific
noises such as abnormal sounds like emergency sirens, gunshots, or screams in urban
settings for emergency monitoring [4].

Sound event detection plays a crucial role in transforming drones into monitoring
tools for emergency situations [5]. Drones can collect sounds from hazardous areas without
direct entry, analyzing them in real time to assess emergencies. Such an analysis can
provide valuable information for human rescue, crime response, and disaster management.
For example, in the event of natural disasters, drones can be used to capture sounds
necessary to find survivors and to identify their locations. This information can help rescue
teams allocate resources more effectively and respond swiftly. Moreover, this technology
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is also useful in noisy environments. In places like airports, railway stations, or large
factories where background noise is prevalent, drones can recognize specific noise patterns
to distinguish between normal operational sounds and those indicative of emergencies or
malfunctions. By integrating sound detection capabilities, drones not only enhance visual
assessments but also add an auditory dimension to environmental monitoring, making
them even more versatile as tools for ensuring public safety and efficient response to
critical situations.

The advent of deep learning significantly revolutionized sound event detection (SED)
research [6,7]. The introduction of convolutional neural networks (CNNs) and recurrent
neural networks (RNNs) facilitated the processing of complex sound patterns, leading
to enhanced detection accuracies [8,9]. This period was also characterized by the devel-
opment of larger and more diverse datasets, like UrbanSound8K [10] and ESC-50 [11],
which allowed for the training of more robust models capable of recognizing a wide range
of sound events. Consequently, SED began to find real-world applications in various
domains, ranging from smart home systems to urban soundscapes, focusing on detecting
specific sound events pertinent to areas like security, healthcare, and environmental moni-
toring. Recent advancements in SED research have involved the adoption of more complex
model architectures, including convolutional recurrent neural networks (CRNNs) and
transformers [8,9,12]. These architectures effectively combine the spatial feature extraction
capabilities of CNNs with the temporal processing strengths of RNNs or the attention
mechanisms of transformers. A significant focus of contemporary research is polyphonic
SED, where multiple sound events occur simultaneously [8,9]. Researchers have developed
techniques such as multi-label classification and sound source separation to address this
challenge. Moreover, the integration of SED with other technologies, such as drones and IoT
devices, has broadened its application scope, encompassing areas like emergency response,
wildlife monitoring, and industrial inspection.

Sound event localization and detection (SELD) is a task that combines sound event
detection (SED) and sound source localization (SSL) [13–17]. SED classifies acoustic events
occurring within an audio signal and identifies the start and end points of these classified
events. SELD, as a fusion of SED and SSL, not only classifies and detects the activation of
sound events within an audio signal but also estimates the location of these activated events.
The ability of SELD to discern acoustic events and their locations makes it a valuable tool in
scenarios where visual information is absent or inadequate. Therefore, systems equipped
with SELD technology are apt for detecting crimes and emergency situations in spaces
where individual privacy is paramount. One approach to implementing SELD is to perform
SED and SSL independently and then to combine the results from each task. This method
can involve a blend of classical algorithms or the application of deep learning models.
However, when combining the outcomes of these tasks, a tracking challenge emerges,
especially when multiple overlapping events occur simultaneously [18]. This challenge
necessitates the correct linkage of the results from each task to their corresponding events.
To circumvent this issue, methods that concurrently perform SED and SSL have been
developed. These methods can also employ traditional techniques or be based on deep
learning algorithms. The advancement and improvement of deep learning algorithms have
spurred various research endeavors in the field of deep learning-based SELD, offering
potential solutions to previously challenging problems [19].

The end-to-end detection transformer (DETR) represents an innovative paradigm
in object detection, predominantly utilized for identifying the positions and classes of
objects within images [20]. Distinct from traditional object detection methodologies, DETR
circumvents the necessity for anchor boxes and complex post-processing stages [21]. The
framework is grounded in the transformer architecture, initially employing a CNN to
extract features from images. These features are subsequently fed into the transformer,
which concurrently predicts information regarding the object’s location and class. This
process incorporates the Hungarian algorithm for bipartite matching, culminating in the
final prediction [22]. DETR offers a simplistic yet efficient alternative to conventional,
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intricate object detection systems, demonstrating exceptional performance, particularly in
scenarios involving large-scale objects or scenes.

In this paper, we present a novel neural network architecture for static sound event
localization and detection, inspired by the principles of detection transformer (DETR)
applied in the auditory domain. Specifically, our method is the use of the ResNet-50 model
within a CNN framework [23], tailored to process audio signals segmented into 30-second
intervals. Unlike traditional object detection methods in computer vision, which rely on
numerous grids and anchors, leading to redundant detections refined through techniques
like non-maximum suppression (NMS), our approach is anchor- and NMS-free. It infers
a fixed-size set of audio predictions, exceeding the actual count of audio objects in the
mel-spectrogram, ensuring all audio objects are captured without relying on image-based
post-processing methods. This approach is further augmented by bipartite matching using
the Hungarian algorithm, aligning the order of audio predictions with the actual audio
objects and efficiently handling the classification, localization, and detection (onset and
offset) of audio events. This innovative methodology provides a bespoke solution for sound
event localization and detection, leveraging advancements in object detection and adapting
them creatively to the auditory context.

The structure of our paper is organized as follows: Following the introduction,
Section 2 delves into the methodology of sound event localization and detection based on
bipartite matching loss. In Section 3, we discuss the experiments conducted to evaluate the
performance of our proposed method. Finally, Section 4 concludes the paper, summarizing
our findings and contributions to the field of sound event localization and detection.

2. Proposed Static Sound Event Localization and Detection Using Bipartite
Matching Loss

The proposed neural network architecture in this paper for static sound event local-
ization and detection is illustrated in Figure 1. Specifically, it utilizes a stereo audio signal
with a sampling rate of 48 kHz, which is converted into a mel-spectrogram by performing
a 2048-point short-time Fourier transform (STFT), with the hop length and mel-filterbanks
meticulously set to 512 and 128, respectively. The architecture fundamentally adopts a
convolutional neural network (CNN) framework, within which the ResNet-50 model is ac-
tively utilized [23]. Audio signals are meticulously segmented into 30 s increments. Within
this framework, a single audio signal may contain only one distinct sound event, or it may
not contain any at all. Additionally, there may be instances where multiple distinct sound
events are present, and while these events may overlap, we have scrupulously constructed
the audio samples to ensure that no more than two sound events overlap simultaneously.
Furthermore, the audio signals have been designed with the capacity to contain up to a
maximum of nine distinct sound events.

In object detection tasks commonly employed within computer vision, the number
of grids and anchors typically results in an abundance of redundant detections, which
are then refined to unique results through techniques such as non-maximum suppression
(NMS). However, such techniques are tailored to image information like intersection-over-
union (IoU) and may not be as effective for audio information, such as mel-spectrograms.
Therefore, to adopt anchor- and NMS-free approaches, the neural network is designed
to infer the detection of an exact number of N audio predictions. This circumvents the
dependency on traditional image-based post-processing methods, presenting a tailored
solution for the auditory domain. Here, N is typically set to a number greater than the
actual count of audio objects present in the mel-spectrogram. If N is less than the number
of audio objects, it becomes challenging to infer all audio objects within that particular
audio signal accurately. By choosing a sufficiently large N, it is implied that when there are
fewer audio objects than the number set for N, the remaining predictions can be considered
as padding with ∅ (no objects). This approach ensures that the network is always primed
to detect up to the maximum expected number of audio objects without the risk of missing
any due to an underestimation of N.
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Figure 1. Overview of proposed sound event localization and detection method using bipartite
matching loss. Our method uses the ResNet-50 model within a CNN framework and infers a fixed-
size set of audio predictions. This method is enhanced by employing bipartite matching through the
Hungarian algorithm, which aligns audio predictions with their corresponding actual audio objects.
It effectively manages classification, horizontal localization, and the detection of the beginning and
end of audio events.

If N is sufficiently large, ŷ will infer a fixed-size set of N results, some of which may
be padded with ∅ (no objects) to fill the quota. To align the order of the inferred N audio
predictions with the actual audio objects, y, the bipartite matching is conducted. This
process involves finding a permutation of the N elements that result in the lowest loss. The
equation for this matching process is formalized as follows:

σ̂ = arg min
σ

N

∑
i=1

Lmatch(yi, ŷσ(i)), (1)

where Lmatch(yi, ŷσ(i)) is a pair-wise matching cost between the actual audio objects and
the predictions with index σ(i). This optimal assignment can be computed efficiently with
the Hungarian algorithm [22].

In calculating the matching cost, three components can be considered: the classification
prediction of the audio object, the inference of localization, and the inference results
for detection (onset and offset). For the classification of audio objects, four classes are
considered: male, female, child, and ∅ (no object). Localization involves estimating the
azimuthal angle on a horizontal plane, discretized into ten classes representing directions
at 20-degree intervals from 0 to 180 degrees. For detection, onset and offset information is
estimated in a regression manner akin to bounding box estimations in the object detection
task. The composite loss equation that incorporates these elements might be represented
as follows:

Lhungarian(y, ŷ) =
N

∑
i=1

[
− log p̂σ̂(i)(ci) + 1{ci ̸=∅}Lloc(li, l̂σ̂(i)) + 1{ci ̸=∅}Ldet(di, d̂σ̂(i))

]
, (2)

where σ̂ is the optimal assignment computed from the Hungarian algorithm. Here, when
ci corresponds to ∅ (no objects), it is common practice to assign a smaller weight to such
instances to avoid the model biasing towards predicting ∅ (no objects). In DETR [20], they
may assign a weight as low as one-tenth for ∅ (no objects); however, this paper opts for a
relatively larger weight, specifically half that of the other classes. This adjustment is due to
the DETR model typically setting N to around 100, which results in a significant number of
∅ (no objects) predictions. Contrarily, by setting N to 15, this paper limits the number of
∅ (no objects) instances and therefore experimentally employs a higher weight for these
instances. The justification for this approach is based on the reduced relative frequency of
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∅ (no objects) cases, allowing for a slight increase in weight without overwhelming the
learning process with an excessive focus on the ∅ (no objects) class.

The overall architecture is surprisingly simple and illustrated in Figure 1. In the
proposed architecture, a straightforward feed-forward network (FFN) is appended to the
fundamental structure of a ResNet-50. This enhancement is designed to process and refine
the features extracted by the ResNet-50 for the task at hand, enabling a more sophisticated
interpretation of the data pertinent to the objectives of the neural network, specifically for
static sound event localization and detection.

For the training of the neural network, the Adam optimizer was employed with the
learning rate set to 0.001 [24]. Upon observing that the validation loss stabilized and
plateaued, we manually reduced the learning rate by a factor of 10 and resumed the
training process. The batch size was configured to 64, and within the CNN architecture, a
dropout rate of approximately 0.1 was utilized to facilitate training [20,22]. This approach is
consistent with regularization strategies that prevent overfitting and encourage the model
to learn more robust features.

3. Experiments

We constructed an environment and collected the dataset for identifying audio signals
(male/female/child/no object) using the stereo microphone mounted on a drone. The
directional stereo microphone was utilized, and the data acquisition environment is as
illustrated in Figure 2. Ideally, attaching the microphone directly to the drone would have
been more representative of a real-world scenario; however, due to physical constraints, we
opted to place the microphone on a tripod, as shown in the figure, with a drone hovering
above them. The drone hovered at an altitude ranging between approximately 2.5 m
and 3.0 m, while the tripod was set up at a height of 1.7 m to position the microphone.
The loudspeaker was installed at distances of 5 m, 10 m, and 20 m from the microphone,
and considering that the speech signals might originate from a position lower than the
microphone, the loudspeaker was placed on the ground. Here, we utilized a SONY PCM-
A10 voice recorder as a microphone and a GENELEC 8010A as a loudspeaker. The model
proposed in this paper also predicts the horizontal angle; hence, it was possible to position
the loudspeaker from 0 degrees to 180 degrees at 20-degree intervals. Figure 3a displays
the configuration of the loudspeaker, while Figure 3b shows an actual photograph of the
recording site. Since rotating the microphone was much more feasible than changing the
physical location of the loudspeaker, the recordings were captured by adjusting the distance
of the loudspeaker and rotating the microphone to cover the required angles.

The recordings of speech and drone noise were carried out separately, and the collected
audio samples were mixed. Although 25 different models of drones were utilized, only
about 20 models were actually used in the creation of the dataset. The voice actors for men,
women, and children each comprised about 30 individuals, with children being defined as
those under the age of 13. This is because students attend elementary school until the age
of 13 in Korea. In addition, middle and high school students were not included as their
voices contain elements of both children and adults. Each speaker had a set of 20 sentences
related to distress situations (e.g., “Help me!”). These recorded voices were appropriately
edited and used, with recordings of individual voices created without overlap and any
overlapping instances were mixed randomly. Uncontrollable noises captured during
outdoor recordings, such as passing vehicles, were excluded from the mix. Only recordings
captured in as quiet an environment as possible were utilized, and after mixing various
voices, drone noises were also mixed in. Ultimately, a total of 50,000 audio samples each
lasting 30 s were created, with 500 samples set aside as a test dataset.
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Figure 2. The data acquisition configuration in an outdoor environment. Due to limitations in the
physical setup, we chose to mount the microphone on a tripod with a drone flying overhead. The
drone maintained a height varying between roughly 2.5 m and 3.0 m, whereas the tripod was adjusted
to a height of 1.7 m to properly place the microphone. The loudspeaker was positioned at varying
distances from the microphone, specifically at 5, 10, and 20 m, respectively.

(a) (b)
Figure 3. Recording configuration depending on speaker placement. (a) The loudspeaker is positioned
at intervals of 20 degrees, ranging from 0 to 180 degrees. (b) An actual photograph of the recording
site is displayed.

To evaluate the performance of our trained neural network model, we have established
a new metric. This proposed metric allows us to assess information about the class and
direction of the sound source simultaneously. First, to measure the performance of the
estimated direction of origin, we calculate the mean-squared-error (MSE) loss for the
directional vector. Here, if the estimated direction is not precise but predicts a neighboring
direction, we compensate for this by using a weighted moving average (WMA). The metric
for estimating the direction of origin is as follows:
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WMA(dj) = 0.05 · dj−2 + 0.1 · dj−1 + 0.7 · dj + 0.1 · dj+1 + 0.05 · dj+2, j ∈ [0, 9] (3)

Based on the compensation described in Equation (3), the performance regarding the
direction of origin is measured as follows:

Ddirection =
9

∑
j=0

(WMA(d̂j)− WMA(dj))
2 (4)

Here, note that our method involves estimating a total of ten azimuth angles at
20-degree intervals, ranging from 0 to 180 degrees. Consequently, we have ten distinct
azimuth angles, labeled from 0 to 9. Afterward, to estimate the performance of sound
localization, we structured the source distinction vector analogously to the directional
vector. Likewise, we employ the mean-squared-error (MSE) loss to evaluate the efficacy of
the sound localization. The corresponding equation is presented below.

Dclass =
2

∑
j=0

(ĉj − cj)
2 (5)

Here, the sound sources are categorized into three types: male, female, and child.
Thus, the classification range is from 0 to 2. Ultimately, the performance metrics for sound
localization and classification are aggregated with weights of 0.8 and 0.2, respectively, to
derive the final performance indicator. These weights have been internally determined
during the course of the project, such that

Dtotal = 0.8 · Ddirection + 0.2 · Dclass (6)

Based on the values in Equation (6), a model can be considered to perform better as the
number decreases. Table 1 presents the internal team rankings predicated on Equation (6).
It has been substantiated that the sound event localization and detection technique, predi-
cated on the proposed bipartite matching loss, exhibits a superior performance relative to
that of the other contending teams. Regrettably, an in-depth exploration into the method-
ologies employed by the competing teams for solving this problem lies beyond the scope
of this paper. Nevertheless, an objective assessment based on quantifiable metrics has
corroborated the commendable efficacy of the proposed approach. It is pertinent to note
that the evaluation dataset was meticulously constructed by teams not affiliated with this
internal competition.

Table 1. The internal team rankings predicated on Equation (6).

Teams Dtotal

Internal Team #1 3.75385
Internal Team #2 3.74085
Internal Team #3 3.69416
Internal Team #4 3.40980

Internal Team #5 (Ours) 3.15351

Figure 4 shows the results of performing SED using the proposed method in this
paper. Figure 4a illustrates the ground truth, and Figure 4b shows the predicted results
(only left channel), respectively. It is confirmed that the segments where speech is present
are detected with high accuracy. In terms of classification, the performance is moderately
accurate for males and females, but there were instances of confusion between males or
females for children. This is because the voice of a child can exhibit characteristics very
similar to those of males or females. Table 2 implies the confusion matrix for classification
performance. (a) represents the proposed method, while (b) refers to the results obtained
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from GoogLeNet [25]. As shown in the table, there are instances where children are
misclassified as male or female. It is observable that the proposed method demonstrates
relatively better performance compared to GoogLeNet.

(a)

(b)
Figure 4. The results of performing SED using the proposed method. (a) illustrates the ground truth,
and (b) shows the predicted results (only left channel).
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Table 2. Confusion matrix for the classification performance. (a) Confusion matrix for the classification
performance of the proposed SED method. (b) Confusion matrix for the classification performance
using GoogLeNet [25].

(a)

Actual
Pred.

Child Male Female

child 4023 127 251

male 98 3949 27

female 87 13 4028

(b)

child 3914 194 293

male 118 3930 26

female 162 16 3950

4. Conclusions

This paper introduced an innovative neural network architecture for static sound
event localization and detection, adapting the detection transformer (DETR) methodology
for auditory analysis. Our approach involves a novel application of the ResNet-50 model
within a CNN framework, processing stereo audio signals into mel-spectrograms. By
forgoing traditional anchor and non-maximum suppression methods common in visual
object detection, our system efficiently infers a set number of audio predictions. This
method, enhanced by bipartite matching and the Hungarian algorithm, ensures accurate
classification, localization, and detection of sound events. Our experimental findings, based
on a dataset created with diverse audio samples including drone noises and human speech,
validate the proposed model’s effectiveness in sound event localization and detection. The
research presents a significant contribution to the field, demonstrating a unique adaptation
of DETR principles to the auditory domain. The implications of this study extend to various
practical applications, notably in emergency response and environmental monitoring,
highlighting the model’s potential in real-world scenarios.

In the future, we will develop the proposed method to robustly detect and localize not
only static sound events but also dynamically moving sound events and conduct in-depth
comparative analysis with various SELD methods. It is implied that our method can be
utilized in systems capable of making appropriate responses using microphone signals
acquired from drones in disaster or hazardous environments.
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