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Abstract: With the advancement of sensor technology, distributed processing technology, and wireless
communication, Visual Sensor Networks (VSNs) are widely used. However, VSNs also have flaws
such as poor data synchronization, limited node resources, and complicated node management. Thus,
this paper proposes a sensor placement optimization method to save network resources and facilitate
management. First, some necessary models are established, including the sensor model, the space
model, the coverage model, and the reconstruction error model, and a dimensionality reduction
search method is proposed. Next, following the creation of a multi-objective optimization function to
balance reconstruction error and coverage, a clever optimization algorithm that combines the benefits
of Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) is applied. Finally, comparison
studies validate the methodology presented in this paper, and the combined algorithm can enhance
optimization effect while relatively reducing running time. In addition, a sensor coverage method for
large-range target space with obstacles is discussed.

Keywords: visual sensor networks; sensor placement problem; multi-objective optimization; coverage;
reconstruction error

1. Introduction

With the rapid development of the Internet of Things (IoT) and 4G/5G networks,
Wireless Sensor Networks (WSNs) are widely used in many scenarios due to their high
degree of flexibility, fault tolerance, autonomy, and rapid deployment [1,2]. However,
the monitoring information of most WSNs is limited to scalar data such as temperature,
pressure, vibration, humidity, etc. in the environment, which is, after all, limited and
insufficient to support the application of WSNs in more complex scenarios. In contrast,
Visual Sensor Networks (VSNs) have the advantages of contactless measurement, rich
dimensions of sensory information, and strong anti-interference capability. The VSNs are
distributed perception networks that can track targets and achieve wide-area coverage,
and they are composed of multiple smart camera nodes. At the moment, VSNs are widely
used in surveillance [3,4], object detection [5], indoor patient monitoring [6], autonomous
driving [7], smart city [8] and Unmanned Aerial Vehicles [9,10]. But the emergence of VSNs
also brings with it a number of difficulties. For instance, there are many nodes dispersed
extensively throughout the networks, which makes node administration challenging. Addi-
tionally, the resources available to camera nodes, such as processing, storage, and network
connection bandwidth, are limited, and data synchronization is subpar. Therefore, while
building VSNs, variables like sensor number, location, and orientation, i.e., the sensor
placement optimization problem, have a significant impact on coverage and can alter the
ability of the sensor networks to identify and monitor objects.
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The original sensor placement research is based on the well-known Art Gallery Prob-
lem (AGP), which is concerned with determining the smallest number of guards required
to cover the inside of an art gallery room [11,12]. By adding some special constraints,
AGP can be extended into a sensor placement problem. Thus, the art gallery problem is
often regarded as the predecessor of the sensor placement problem [13]. Many variable
parameters and constraints need to be considered, such as the location constraints of each
sensor, the coverage requirements of a specific area, different types of vision sensors, and
different sorts of obstacles. Therefore, this type of problem is more complicated than the
traditional AGP.

A number of studies on sensor coverage optimization have been conducted recently.
Altahir et al. [14] tackle the camera placement problem based on an inverse modeling
taxonomy. Kelp et al. [15] suggest a pilot project that uses multiresolution dynamic mode
decomposition to determine where PM2.5 sensors should be placed for the best results. In
order to address the optimal camera placement problem, Chebi [16] suggests a technique
based on the Dragonfly Algorithm, which is motivated by the motion and behaviors of
artificial objects in the environment. With the use of high-resolution 3D grids as a model,
Puligandla et al. [17] present a multi-resolution technique that makes it possible to apply
current optimization algorithms to expansive real-world issues. Ali et al. [18] propose a
camera placement method to ensure extensive coverage while maintaining high-quality
images and minimizing overlap between cameras. Zhang et al. [19] introduce a novel
field-of-view model resembling the human eye. They solve the optimization problem of
visual sensor placement using a nonlinear programming algorithm.

There are two main types of representative discrete optimization algorithms: integer
programming and heuristics algorithms. When some or all of the optimization variables
are restricted to pure integers, it can be abstracted as an integer programming problem.
And if part of the variables are not restricted to integers, this becomes a Mixed Integer
Programming (MIP) problem [20]. The binary programming problem is a special case of the
integer programming problem [21,22], in which variables are limited to zero or one. Such a
binary problem is common in sensor placement applications. However, there is also a more
realistic probabilistic sensing model in which the coverage in the sensor’s sensing range is
described as a probability function [23]. Each point in the space is assigned a probability,
indicating the probability for the point to be covered. Sometimes, some variables in
the layout problem are binary (such as whether or not the camera is placed), and some
variables are integers (such as the number of cameras). This kind of problem can be treated
as an MIP problem. There is also a large class of discrete optimization algorithms called
heuristic algorithms, which are usually used in combinatorial optimization. Although these
algorithms cannot guarantee optimal solutions, they can produce a satisfactory outcome
within reasonable time. Heuristic algorithms include Simulated Annealing (SA) [24],
Genetic Algorithm (GA) [25,26], Particle Swarm Optimization (PSO) [27,28] and so on.

The current literature on sensor coverage rarely considers both reconstruction error
and coverage; instead, the majority of studies concentrate on the 1-coverage problem for a
target point, which states that it is sufficient to require that the object point be covered by a
single sensor. However, in practical applications, it is sometimes necessary to make the tar-
get area covered by multiple sensors. For reconstruction of spatial points by multi-camera
systems, it is usually required that the spatial points are captured by multiple cameras at
the same time, i.e., the requirement of at least two coverage points must be satisfied. By
striking a balance between coverage and reconstruction error, the system is able to capture
scene information and provide high-quality reconstruction. Therefore, in this paper, we con-
sider the reconstruction error constraints of the visual tracking task and comprehensively
consider the compromise balance of maximizing coverage and minimizing reconstruction
error as the objective function. The significant contributions of this paper are as follows:

• Detailed mathematical models of the sensor placement optimization problem are built.
• A search approach for dimensionality reduction is proposed.
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• A multi-objective optimization function is proposed that considers reconstruction
error in addition to coverage.

• A combination of PSO and GA algorithms is used to avoid the local optima while
increasing optimization speed.

• A sensor coverage method for large-range target space with obstacles is discussed.

The rest of the paper is structured as follows: in Section 2, we provide a mathematical
formulation about the sensor placement problem and also a few basic models, including
sensor model, space model, coverage model, and reconstruction error model and propose a
dimensionality reduction search method. Next, in Section 3, a multi-objective optimiza-
tion function is established to consider the space coverage and reconstruction error for
2D spaces, followed by a suitable multi-objective optimization algorithm. In Section 4,
extensive comparison experiments are carried out to evaluate the given camera position
optimization algorithms. Finally, Section 5 summarizes the conclusions and proposes plans
for future research.

2. Problem Formulation

The sensor placement optimization of VSNs is a practical engineering problem which
aims to determine the optimal deployment of sensors in the actual physical space. Dur-
ing the research process, it is necessary to abstract the real camera and physical space as
mathematical models for quantitative analysis purposes. In this section, the problem is first
described as mathematical optimization with some necessary assumptions. Then, we estab-
lish some fundamental models as the mathematical foundation of the optimization process,
including the sensor model, the space model, the coverage model, and the reconstruction
error model, and propose a dimensionality reduction search method.

2.1. Problem Statement

The main objective of this proposal is to determine the optimal deployment of the
sensors in the actual physical space. First, we make the assumption that the camera
type and parameters are the same, i.e., that the unified camera perception model is used.
Subsequently, we further assume that the coverage area is a 2D rectangle and the sensor
model is a sector. After the type and number of cameras and the coverage area are given, the
position and orientation of each camera can be found. This sensor placement optimization
problem can be mathematically explained as follows:

arg
Π

max G(Π), subject to C given R (1)

where Π = {π1, . . . πN} is the placement of N ∈ Z+ cameras. R is an arbitrary connected
local region. If the region is not connected, then it can be easily decomposed into smaller,
individual regions. C is a set of constraints, which may include spatial location constraints
of R and sensor constraints (sensor type and number, etc.). And the placement optimization
challenge is to find the best way to arrange a group of cameras in a specified region, R,
while maximizing the specified objective function, G, and satisfying the constraints, C.

2.2. Sensor Model

In the 2D problem, the available sensing area of a specific camera could be identified
as a circular, triangular, sector, or trapezoid. In this study, as seen in Figure 1, the sensor
model is reduced to a sector. The area enclosed by the sector is the camera’s field of view.
Consequently, any target object inside the sector is regarded as covered by the camera.

The camera is located at the vertex of the sector with coordinates
(
cx, cy

)
. do f (depth

of field) and f ov (field of view), respectively, denote the distance and angle range that a
camera is capable of capturing. Azimuth angle φ of the camera is described by the angle
between the angular bisector of angle f ov in the sector area and the positive half of the
x axis. Thus, ternary parameter C = (Cp, φ) can be used to represent the state of a given
type of camera, and Cp =

(
cx, cy

)
.
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Based on the mathematical derivation, the following three linear inequality constraints
can be used to express the coverage area of a specific camera sensor:√

(x − cx)
2 +

(
y − cy

)2 ≤ do f (2a)

− sin(φ)(x − cx) + cos(φ)
(
y − cy

)
≤ tan( f ov/2)

(
cos(φ)(x − cx) + sin(φ)

(
y − cy

))
(2b)

− sin(φ)(x − cx) + cos(φ)
(
y − cy

)
≥ − tan( f ov/2)

(
cos(φ)(x − cx) + sin(φ)

(
y − cy

))
. (2c)

Figure 1. Camera sensor model.

2.3. Space Model

As shown in Figure 2, the space model of this problem can be abstracted as a rectangle.
Boundary B and measuring area M comprise the two components of target space R, and
they satisfy conditions B ∪M = R,B ∩M = ∅. A point in the target space is called a
working point, denoted by Wp. Since this paper focuses on the coverage and reconstruction
problems inside the measurement area, we have Wp ∈ M. In fact, when we optimize
coverage for a given target area, the sensor can only be placed on the boundary, i.e., Cp ∈ B.

Ideally, the layout of the sensors is a continuous problem, i.e., C, Wp are continuous
variables and can take any value in constraint set C. The results obtained by solving
continuous optimization problems are generally accurate global solutions, but the algorithm
complexity is high. Therefore, considering that the number of sensors is an integer and
the sensors’ positions can be sampled, we describe the problem as a discrete optimization
problem. Although the optimal solution cannot be guaranteed in this way, a reasonable
solution can be found within reasonable time. By sampling the target space into a grid of
points, continuous problems can be transformed into discrete problems.

Using the uniform grid sampling model, boundary B, measurement area M and
azimuth angle φ are uniformly sampled, and the sampling intervals are ∆b ∈ R+, ∆m ∈ R+

and ∆φ = 2π/sφ respectively. And sφ is the number of sampling points in azimuth angle
φ. It is considered that ∆b≤ ∆m in order to guarantee the accuracy of the layout plan.
Boundary B has sxb ∈ Z+ and syb ∈ Z+ sample points on the x and y axes, respectively,
whereas measurement area M has sxm ∈ Z+ and sym ∈ Z+ sampling points on the x and y
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axes, respectively, once the sampling interval is determined. It is shown in Figure 2 that
∆b = 1 m, ∆m = 5 m, sφ = 4. Therefore, the value ranges of C, Wp could be a finite set of
discrete points, and the continuous problem is transformed into a discrete problem.

b

m

2 s

Figure 2. Uniform sampling of a 2D rectangle target space.

2.4. Coverage Model

The study uses the 0/1 coverage model, which indicates that a space point is either
covered and represented as 1 or not covered and represented as 0. In this paper, space
points that satisfy Formula (2) are covered, and otherwise are not covered. The degree of
coverage for the target space can also be expressed as follows: the degree of coverage for
any point in the target space region is k if at least k sensor nodes are covering it at the same
time. Considering the need to implement the object tracking and localization task as well
as the image reconstruction principle, it is required that the moving object be captured by
at least two cameras at the same time, i.e., the sensor network degree of coverage k ≥ 2 is
required. Subsequent modeling and experimental procedures provide scenario-specific k
according to the specific scenario.

2.5. Reconstruction Error Model

As shown in Figure 3, a simple rectangular environment with two cameras placed
opposite each other at the boundary edges is given to clarify the influence of sensor spatial
position uncertainty on reconstruction results. The vision sensor can be considered as an
orientation sensor to measure the azimuthal angle to the target point, and the uncertainty
range of angle measurement is indicated by a light blue triangle. Based on the measure-
ments of the two sensors, the reconstructed coordinates of the target point can be obtained
by solving the triangulation method. The two triangular overlapping regions indicate the
reconstruction region of this target point, and the size of the region characterises the size
of the uncertainty in the position reconstruction, i.e., the reconstruction error. In this case,
the dark blue region on the line connecting the two sensors indicates low reconstruction
accuracy, while the smaller blue regions in the upper and lower halves indicate high recon-
struction accuracy [20]. It can be seen that the positional uncertainty on the straight line
between the two sensors is high due to the geometric properties of the sensors. Therefore,
if the target point is located in this region, the reconstruction error is higher.

The relationship between the reconstruction error and the camera placement strategy
is explained in the preceding qualitative analysis. In order to obtain the reconstruction
error model resulting from the geometric features of the sensor placement in greater detail,
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in [29], Kelly defined a geometrical precision factor (GDOP, Geometric Dilution of Precision)
to map sensor measurement error to triangulation reconstruction error, which is a measure
of positioning uncertainty of each point in the working space caused by the two sensors
observing it.

C C

small reconstruction 

error

large reconstruction error

Figure 3. The reconstruction uncertainty of two camera sensors, where C stands for camera.

The pose of the target object can be defined by the following vector:

x(t) = [ x(t) y(t) θ(t) ]T ∈ R3. (3)

The visual measurements are represented by vector z ∈ Rm, which is connected to the
state vector using a general nonlinear function:

z = h(x). (4)

In some particular cases, the relationship may be linear or invertible (state x is de-
termined as an explicit function of measurement z), and the above measurement Model
(4) is applicable more generally. It is noted that each element of the measurements poses
a constraint on the estimated state. Therefore, the system state can be solved when suf-
ficient constraints are available. However, it is expected that the measurements may be
corrupted by additive errors such as noises and disturbances. We suppose that the visual
measurements are disturbed by error δz(t):

z′(t) = z(t) + δz(t) (5)

where error δz(t) may be a systematic measurement error or a random error. We let
H = ∂h/∂x ∈ Rm×3 be the Jacobian matrix of the measurement model. The relationship
between measurement error δz and system state error δx is as follows:

δz = Hδx (6)

In general, attention needs to be paid to how the sensor measurement error is amplified
into the pose parameter error to be estimated. In this way, a geometric precision factor can
be loosely defined as

GDOP = ∥δx∥/∥δz∥ (7)

where ∥δx∥ and ∥δz∥, respectively, represent the measurement of sensor pose error and
observation error under any quantitative standard. The mapping between the sensor error
and the pose error is in the form of a matrix, and any norm of the matrix can measure the
relative magnification of the mapping. The Jacobian determinant is a convenient choice
among the available norms because it avoids the calculation of eigenvalues. The Jacobian
determinant, then, denotes a scalar multiplier when the Jacobian matrix is square, and it
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converts the differential volume in the pose space to the corresponding differential volume
in the measurement space, which is described as

vol(δz) = |det(H)| · vol(δx)
vol(δx) = |det

(
H−1)| · vol(δz) = 1

|det(H)| · vol(δz) (8)

where vol(δx) = |δx1δx2δx3|, vol(δz) = |δz1δz2δz3| represent the absolute value of the
product of the components in pose error vector δx and observation error vector δz, respec-
tively, and are a measure of the error range. |det(H)| is the absolute value of the Jacobi
determinant; then,

GDOP = |det
(

H−1
)
|. (9)

It is noted that the relationship between determinants and the volume of parallel
polyhedra is used here, and the following theorem is available in the literature [30], p. 232.

Assuming that A ∈ Rn×n, matrix transformation T: Rn → Rn meets T(x) = Ax. If S
denotes any region in Rn, then we have

vol(T(S)) = |det(A)| · vol(S) (10)

where T(S) denotes the mapping of region S after matrix transformation T, and vol(S)
denotes the region volume.

In a more general case, the measurements are implicit functions as

f (x, z) = 0. (11)

Similarly, when the system is fully determined, we have the definition as

|det(H)| = |det( fx)|/|det( fz)|
GDOP = |det

(
H−1)| = 1

|det(H)|
(12)

where fx = ∂ f /∂x and fz = ∂ f /∂z are Jacobian matrices, which are both square.

2.6. Reduced Dimensional Search

Based on the analysis above, the sensor position information in a 2D target space can
be denoted by (cx, cy, φ), where (cx, cy) represents the sensor position and φ represents the
azimuth angle. This positional information determines sensor coverage and the reconstruc-
tion error of the target point covered by this sensor. Therefore, in the study of the sensor
layout problem, the rational planning of this parameter combination is the key to solve it.

However, most environments have restrictions on the location of sensors, such as in
our article, where sensors can only be deployed on four sides of a rectangle. Therefore,
in this paper, we design a method to search for sensor location information using one-
dimensional parameters to represent sensor location information in the solution space
dimensionality reduction search method.

We set the origin of the rectangular coordinate system as the starting point, and move
counterclockwise along the boundary of the target space; then, each discrete point on the
boundary uniquely corresponds to moving forward distance d. With the previous direction
distance representing the position information of the sensor, 2D position parameters can
be reduced to 1D distance parameters. This method can reduce optimization parameters
and improve running speed. In addition, since the sensor position is defined by only
one parameter of the forward distance, for an irregularly shaped space, as long as the
mathematical expression of the space boundary is known, the dimensionality reduction
technique can take effect as well.

3. Optimization Algorithms

This section uses the basic models introduced above to establish the coverage rate and
reconstruction error functions for a 2D space. Then, based on the characteristics of the two
objective functions, a method for establishing a multi-objective optimization function is
proposed, followed by a suitable multi-objective optimization algorithm to solve the sensor
placement optimization problem.
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3.1. Coverage

One goal of this optimization problem is to maximize the coverage of the sensor
network. After the target space is discretized sampled, binary variable c(i1, j1, φ1, i2, j2) is
defined using the discretized sensor pose parameters and measuring point coordinates:

c(i1, j1, φ1, i2, j2) =


If a camera at the grid point

1 (i1, j1) with orientation φ1

covers grid point (i2, j2)
0 Otherwise

(13)

where i1 ∈ [0, sxb − 1], j1 ∈ [0, syb − 1], i2 ∈ [0, sxm − 1], j2 ∈ [0, sym − 1], φ1 ∈ [0, sφ − 1].
sxm and sym represent the number of sampling points along the x-axis and the y-axis, respectively.
After converting the above discrete values into coordinates and angles in the continuous target
space, the value of c(i1, j1, φ1, i2, j2) can still be calculated by Inequalities (2). During the
simulation process, all values c(i1, j1, φ1, i2, j2) are calculated in advance and stored in
a matrix.

After determining the parameter combination
(
∆b, ∆m, sφ

)
and sensor layout scheme,

we define matrix V =
(
vij

)
, where the elements are

vij =

{
1 If the ith camera covers the grid point j
0 Otherwise

(14)

where vij can be calculated using Formula (13). After that, the quantity of sensors covering
the jth point can be expressed as

nj = ∑i vij. (15)

Additionally, we let a binary variable represent whether or not grid point j complies
with the k-coverage criterion, which is described as

bj =

{
1 nj ≥ k
0 nj < k.

(16)

Consequently, the total number of sampling points in the measurement region that are
covered by at least k sensors is

Nc = ∑j bj. (17)

Lastly, the ratio of the number of sampling points covered to the total number of
sampling points defines the coverage r of the target space,

r =
Nc

sxmsym
. (18)

This results in the establishment of a quantitative criterion for evaluating the target
space’s coverage. Maximizing r (i.e., maximizing Nc when sxm and sym already determined)
in Equation (18) is necessary to guarantee that the target space is covered to the greatest
extent possible.

3.2. Reconstruction Error

A two-camera system triangulation scheme is described in Figure 4 to explain the
reconstruction principle of VSNs in a 2D space. As a kind of directional sensor, the
camera can measure the target point’s azimuth angle with respect to itself. Thus, the
target point must be the intersection of two rays with known azimuth angles starting from
the two cameras. With the two angle constraints, the target point is reconstructed by a
triangulation method.

As shown in Figure 4, the coordinates of the two visual sensors are (x1, y1) and (x2, y2),
and the azimuth angles of the target point relative to themselves are θ1 and θ2. Here, angles
θ1 and θ2 are defined as the counterclockwise angle from the positive semi-axis of the
x axis, and the ranges are in [0, 2π]. We define r1 and r2 as the distance vectors of the
two vision sensors relative to the target point, and their modulus lengths are |r1|=r1 and
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|r2| = r2. According to the derivation process in reference [29], the intersection meets the
following constraints: {

sin(θ1)(x1 − x)− cos(θ1)(y1 − y) = 0
sin(θ2)(x2 − x)− cos(θ2)(y2 − y) = 0.

(19)

The measurement model is an implicit function as Equation (11) with definition
x = [ x y ]T ∈ R2 and z = [ θ1 θ2 ]T ∈ R2. Then, the Jacobian matrix is square, and the
Jacobian determinant is calculated as

∥H∥ =

∥∥∥∥ −s1 c1
−s2 c2

∥∥∥∥/
∥∥∥∥ c1∆x1 + s1∆y1 0

0 c2∆x2 + s2∆y2

∥∥∥∥ (20)

where ∆x1 = x1 − x, ∆y1 = y1 − x, c1 = cos(θ1), s1 = sin(θ1). Then, the determinant has
the form of

∥H∥ = sin(θ2 − θ1)/
∥∥∥∥ r1 0

0 r2

∥∥∥∥ = sin(θ)/r1r2 (21)

where θ is defined as convergence angle and θ = θ1 − θ2.

 2 2Camera2 : ,x y

 1 1Camera1: ,x y

o

y

r

x

 Point: ,x y

2r
1r


1

2

Figure 4. Schematic diagram of the principle of 2D spatial reconstruction.

Therefore, the GDOP is calculated as

GDOP =
∥∥∥H−1

∥∥∥ =
r1r2

sin(θ)
. (22)

Based on the above derivation, GDOP is equal to the product of the distance from
the two vision sensors to the target point and the cosecant value of convergence angle θ.
When the target point is on the line connecting the two sensors (θ = 0), the GDOP tends to
infinity; when the convergence angle between the two sensors becomes larger, the GDOP
decreases. GDOP reaches its minimum when the convergence angle of the two sensors is a
right angle, and the target is close to the sensor.

Based on Equation (22), GDOP measures the degree to which the sensor measurement
error is amplified into the reconstruction error during the reconstruction process. Therefore,
the quality of the reconstruction result can be represented by the reciprocal of GDOP. To
confine the quality function to [0, 1], a suitable scale factor, dscale, is chosen, and sensors i
and i′ to target location j’s reconstruction quality function can be obtained as follows:

qii′ j = dscale
sin(θ)
|ri||ri′ |

vijvi′ j. (23)
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The expression of vij, vi′ j is shown in Equation (14), and these values guarantee the
reconstruction quality to be zero when sample point j is not 2-coverage. It is worth
mentioning that the above quality function can be extended based on the basic model
employed. For example, if a probability coverage model rather than a binary coverage
model is used, the coverage probability can multiply. In addition, more than two cameras
may cover the target point at the same time. Reconstruction quality of target point j is set
to the highest of all potential camera pairs that can cover in order to increase the average
reconstruction quality. Thus, we can obtain

qj = max
i,i′∈B

(qii′ j) (24)

where reconstruction quality qii′ j of each pair of sensors to the target point is defined
in Formula (23). After traversing each sampling point in the target space, the average
reconstruction quality of the whole area can be found as follows:

q =
∑j qj

sxmsym
. (25)

We note that average reconstruction quality q is inversely proportional to the average
reconstruction error. The higher the average reconstruction quality, the smaller the average
reconstruction error. So both variables reflect the measurement accuracy of the system. In
order to unify the optimization method with the coverage function, this paper takes the
maximization of average reconstruction quality q as an optimization objective.

3.3. Multi-Object Optimization

Based on the mathematical models established in the previous parts, as well as 2D
space coverage r and average reconstruction quality q, the primary purpose of this subsec-
tion is to establish a multi-objective optimization function that takes the characteristics of
these two objective functions into account. At the same time, an appropriate multi-objective
optimization method is constructed to handle the sensor placement optimization problem.

In practical applications, it is often necessary to consider both coverage and reconstruction
error. The coverage and reconstruction quality can be calculated by Formulas (18) and (25),
respectively. As can be observed, the two evaluation index values, coverage r and recon-
struction quality q, have the same order of magnitude and fall inside the range of [0, 1].
Thus, a multi-objective optimization function is established to comprehensively evaluate
the performance of the system by calculating their weighted sum:

e = ωr + (1 − ω)q (26)

where the degree to which the coverage is subject to the evaluation criteria is indicated by
weighting coefficient ω ∈ [0, 1]. When ω = 1, the evaluation criterion is to maximize the
coverage; when ω = 0, it is to maximize the reconstruction quality, i.e., to minimize the
reconstruction error.

To sum up, the sensor placement optimization problem in this paper can be abstracted
as the following nonlinear optimization problem:

arg
Π

max G(Π), s.t., ∀Cp ∈ B, Wp ∈ M (27)

where Π=
{

cx,1, cy,1, φ1, ......, cx,N , cy,N , φN
}

, G = r, q, or e, N is the number of cameras.
The above process converts sensor pose parameters into discrete variables through

an equidistant sampling of space and angle. Meanwhile, the target space is uniformly
sampled into a set of grid points. By applying geometric relations to calculate the coverage
and reconstruction error of each sampling point, we thus establish a discrete model of the
sensor layout problem. This method can simplify the model, speed up the calculation, and
then maintain the accuracy required for the task.

In order to tackle the discrete optimization problem (27), this research suggests com-
bining the GA and PSO algorithms. GA has been proven to be an effective method for
optimizing sensor configuration and for determining the position of attitude sensors. The
optimization process of GA does not rely on gradients or other additional information,
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and the search results can be used as the near-optimal solution to the problem. Still, these
results depend on the initial value (initial population). When the initial value is not cor-
rectly selected, the algorithm’s performance may be affected. On the other hand, PSO is
one of the best-known nature-inspired algorithms, inspired by information loops and social
behaviors such as bird flocking and fish flocking. This is a global optimization algorithm,
especially suitable for solving problems where the optimal solution is a multi-dimensional
space parameter. Each particle in the group represents a solution in the solution space. The
algorithm solves the problem intelligently through the movement of individual particles
and the exchange of information within the group. Due to its simplicity in implementation
and fast convergence speed, PSO is widely used. But it still suffers from problems such as
dimensionality explosion, and it can easily fall into a local optimum since it convergences
too fast.

Through the above analysis, it is shown that both GA and PSO have advantages and
disadvantages. Therefore, in this section, a combined algorithm is proposed to merge the
advantages of the PSO and the GA. First, the PSO is used, and the result is taken as the
initial value of the GA, which can reduce the running time, improve the efficiency of the
algorithm, and avoid the algorithm falling into the local optimal solution as far as possible.
Figure 5 is a flowchart illustrating the combined algorithm.

Figure 5. Flowchart of the combined algorithm.

4. Experimental Evaluation

In this section, extensive simulation experiments are carried out to evaluate the proposed
camera placement optimization algorithm. All the simulation experiments are executed on a
laptop with the following specifications: Intel Core i7-1065G7 CPU @1.3GHz ×8, 16 GB RAM, in
which the environmental parameters, sensor parameters and objective functions are reasonably
selected according to specific requirements.
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4.1. Comparison between Different Objectives

Considering that in the application of VSNs, there may be different actual requirements
for different application scenarios corresponding to different optimization objectives, this
section assumes some possible real scenarios and conducts simulation experiments to verify
the correctness of the perceptual coverage model and the optimization algorithm. There
are three different scenario models, i.e., maximum 1-coverage, maximum 2-coverage, and
maximum both 2-coverage and reconstruction quality. We assume that the target space is
a 2D plane of 60 × 60 m without any obstacle and that the camera type and parameters
are the same. In this experiment, the sampling and camera parameters are set as ∆b = 5 m,
∆m = 5 m, sφ = 4, f ov = 37◦, do f = 65 m.

The first objective is a simple situation where only a simple monitoring is needed, that
is, each point in the target area only needs to be covered by at least one sensor, and no
constraints on the reconstruction accuracy are required. Figure 6a shows the effect of using
four cameras to achieve the maximum 1-coverage objective, and it can be observed that full
coverage is achieved with nearly no overlapping area, avoiding the waste of resources.

Figure 6. Comparisons of optimal camera placements under different objectives. (a) Maximized
1-coverage with four cameras; (b) maximized 2-coverage with six cameras; (c) maximized 2-coverage
and reconstruction quality with four cameras; (d) maximize the 2-coverage and reconstruction quality
with six cameras. We note that the red, black and blue star symbols represent the space points which
are simultaneously covered by no, one and two camera sensors, respectively. Solid blue dots represent
cameras, and the blue sector represents the coverage area of the cameras.
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The second objective considers the situation where a larger portion of the target space
needs to be covered by at least two sensors while no constraints on the reconstruction
accuracy are imposed. The effect of four cameras to achieve 2-coverage was tested, and it was
found that the coverage to satisfy 2-coverage could only rise up to 50% at most. Therefore,
it was necessary to increase the number of cameras to achieve the 2-coverage objective.
Figure 6b shows the effect of using six cameras to achieve the maximum 2-coverage objective.
It can be seen that the coverage of the whole target area is good (81% network coverage)
and mainly in the middle activity area; however, some sensors are close to each other
(e.g., 1 and 6), which may lead to larger reconstruction error in the overlapping areas of
their coverage. Since no evaluation metrics for reconstruction error were included, this
result is as expected.

Since the position of a space point can be reconstructed only when at least two camera
sensors observe it using the triangulation method, we select the maximum 2-coverage as
the third objective because we want to discuss reconstruction quality. Figure 6c,d show the
effects of using four and six cameras to achieve the third objective, i.e., maximizing the
2-coverage and reconstruction quality, respectively. As can be seen, the sensor layouts are
reasonable, and there are no instances of two cameras in close proximity. Furthermore, it is
clear that the coverage with six cameras is superior to the coverage with four cameras. The
results of the experiment show that the coverage with four cameras is 48%, while with six
cameras it is 75%.

4.2. Comparison between Different Approaches

This subsection discusses the results of comparative experiments with different opti-
mization algorithms, including the PSO, the GA, and their combined algorithms. Based
on experience and repeated experiments, the parameters of the GA are set as follows: the
crossover probability is 0.7, the mutation probability is 0.1, the population size is 50, and
the number of iterations depends on the size of the optimization problem. The parameters
of the PSO are set as follows: w = 0.7298, c1 = c2 = 1.4962, the number of populations is 50,
and the number of iterations depends on the size of the optimization problem. Three sets of
parameter combinations were designed to validate these algorithms for the 2D space, and
finally, their performances were compared. Three sets of different parameter combinations
are shown in Table 1.

Table 1. Different parameter combinations for comparison of the different approaches.

Space f ov dof N ∆b ∆m sφ Objective

1 60 × 60 35 60 4 5 5 4 1-coverage

2 80 × 80 90 80 2 5 5 4 1-coverage

3 80 × 60 60 60 6 5 5 4 2-coverage

For each parameter combination, the average running time, average coverage, and
standard deviation of the coverage are recorded in Table 2. It can be seen that the combined
algorithm consistently produces the best optimization results, and the standard deviations
are all smaller than the other two algorithms, which indicates that the combined algorithm
produces better and more stable optimization results. In addition, the average running
time of the combined algorithm is between that of the PSO and the GA, with a significant
reduction in running time compared to the GA. Among the three algorithms, PSO has
always had the lowest running time, as well as the lowest coverage, and the optimization
results are unstable, probably because PSO can easily fall into a local optimum and cannot
obtain the global optimal solution.
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Table 2. Experimental results for comparison of the different approaches.

Average Running Time (s) Average Coverage Standard Deviation of Coverage

PSO GA Combined PSO GA Combined PSO GA Combined

1 20.82 148.607 85.453 0.820 0.840 0.846 0.017 0.008 0.002

2 19.204 106.570 47.483 0.846 0.850 0.851 0.004 0.002 0.000

3 18.347 173.23 132.873 0.726 0.745 0.753 0.033 0.023 0.003

4.3. Comparison between Different Sampling Parameters

In order to analyze the influence of sensor sampling parameters on optimization
results, this subsection uses different sampling parameters to compare the average running
speed and the average coverage rate of the space. Concretely, we discuss the influence of
sampling parameters ∆b, sφ on optimization results.

Qualitatively speaking, sensor position sampling interval ∆b determines the discrete
values of sensor coordinates that can take in the optimization. The smaller the ∆b, the
more discrete the coordinate values that can be taken, and, accordingly, the larger the
solution space to be searched. Similarly, the sampling number of sensor azimuth angle sφ

determines the discrete value that the sensor azimuth angle can take in the layout. The
larger the sφ, the more discrete values the azimuth can take, and accordingly the larger
the solution space the algorithm needs to search. To simplify the optimization process, we
choose the GA to be the algorithm and 1-coverage as the objective. But the conclusions
could also be applied to more complicated situations.

As shown in Figure 7a, as the sampling interval of the sensor position increases, there
is a general downward trend in average coverage due to degradation in model accuracy. It
is worth noting that the change in running time is not so noticeable. The possible reason is
that the sampling interval increases, the solution space that needs to be searched becomes
smaller, and then the search process seems to become faster. However, when there is
more than one optimal placement scheme, but with fewer search options available, some
solutions are missed, which reduces the number of optimal options available. Therefore, the
difficulty in searching increases, and the search time is not significantly reduced. Figure 7b
shows the results of different sampling numbers of the sensor azimuth angle. It is found
that, as the number of sensor azimuth sampling points increases, the average running time
increases, but the coverage does not increase steadily. The possible reason for this situation
is that the experiment uses a relatively simple rectangular unobstructed target space. The
four optional azimuths can already satisfy the necessary coverage requirements, so a slight
increase in sampling points cannot significantly improve optimization performance.
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4.4. An Obstruction Situation

The studies mentioned above take into account the scenario in which the target space
contains no of obstacles, however this is rarely the case in real life. In this research, we
present a sensor coverage approach using one corridor of Daxing Airport Terminal as an
example, which is a big target space containing obstacles.
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4.4. An Obstruction Situation

The studies mentioned above take into account the scenario in which the target space
contains no obstacles; however, this is rarely the case in real life. In this research, we present
a sensor coverage approach using one corridor of Daxing Airport Terminal as an example,
which is a big target space containing obstacles.

Daxing Airport Terminal is the second largest airport terminal in the world, with
a total floor area of 1.03 million square meters. And its architecture is unique, offering
travelers wide and comfortable waiting spaces as well as business and service facilities.
However, the area is densely populated and the passenger flow is large, which brings huge
pressure to security work. Therefore, it is of great significance to optimize camera coverage
in this area.

Figure 8 shows the optimization effect of camera coverage in the corridor. In this
experiment, the sampling interval is 15 m, and the green area represents the coverage of the
camera, where the do f of the camera is 60 m and the f ov is 37◦. By adjusting the layout of
the camera, full coverage of the target space with obstacles can be achieved. We can adjust
the sampling interval and the do f and f ov of the camera according to the actual needs. We
will conduct a more thorough investigation on this topic in the future; this is merely an
overview of the situation with obstacles.

Figure 8. The optimization effect of camera coverage in one corridor of Daxing Airport Terminal. The
various white irregular boxes in the figure represent the business and office area and other public
facilities. The five-pointed stars in the figure represent sampling points. Solid black dots represent
cameras, and the green sector represents the coverage area of the cameras.
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5. Conclusions

In this paper, we propose a sensor placement optimization method that conserves
network resources and improves facilities management. This proposed method first builds
some models as a basis for the optimization process and proposes a reduced dimensional
search method. Then, a multi-objective optimization function is designed to balance the
coverage and reconstruction error, and a combined optimization algorithm is used. Lastly,
comparative experiments are used to show the method’s effectiveness and reasonableness,
and a coverage optimization method for a wide target space with obstacles is presented.
However, the method proposed in this paper can be improved in a few ways. The current
research on this problem is still focused on the 2D level, but further research can extend the
proposed models and algorithms to the 3D domain. And scenarios with obstacles require
further study. But our method has very broad development prospects and can be used in
subway stations, airport terminals, and other densely populated areas of the camera layout.
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