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Abstract: Polar codes have established themselves as a cornerstone in modern error correction coding
due to their capacity-achieving properties and practical implementation advantages. However,
decoding polar codes remains a computationally intensive task. In this paper, we introduce a novel
approach to improve the decoding efficiency of polar codes by integrating the threshold-based
SC-Creeper decoding algorithm, originally designed for convolutional codes. Our proposed decoder
with an additional cost function seamlessly merges two established decoding paradigms, namely the
stack and Fano approaches. The core idea is to leverage the strengths of both decoding techniques to
strike a balance between computational efficiency and performance, with an additional method of
controlling movement along a code tree. Simulations demonstrate the superiority of the proposed
improved SC-Creeper decoder with tuned parameters. The improved SC-Creeper decoder achieves
the performance of the CA-SCL-8 decoder in terms of high code rates and overcomes it in terms of
the N = 1024 code length, while simultaneously surpassing the efficiency of the traditional Fano
decoding algorithm.

Keywords: polar codes; successive cancellation decoding; Fano decoding; stack decoding;
Creeper; threshold

1. Introduction

Polar codes [1] achieve near-Shannon-limit performance while maintaining low en-
coding and decoding complexity, making them ideal for resource-constrained devices.
However, their practical utility for short to moderate code lengths has been hampered [2]
by the comparative inefficiency of the Successive Cancellation (SC) decoder. The Succes-
sive Cancellation List (SCL) decoder, introduced by Tal and Vardy [3], follows a similar
path-wise traversal strategy as SC but maintains a list of up to L candidate paths for further
exploration. The Successive Cancellation Stack (SCS) decoder [4] offers improved error
correction ratios and throughput; however, this achievement comes with the trade-off of
heightened space complexity. Another noteworthy development is the SC-Fano decoding
algorithm [5], which integrates sequential decoding concepts into the polar decoding traver-
sal procedure. Importantly, some of the strategies employed in these decoding algorithms
have their origins in the field of convolutional coding [6], showcasing the interplay between
diverse coding techniques.

In this study, we investigate an alternative approach to polar code decoding—the
Creeper algorithm [7], originally explored for convolutional codes. The SC-Creeper decoder
is engineered for low decoding complexity, making it amenable to resource-constrained
environments. The SC-Creeper approach [8,9] represents a novel decoding algorithm,
offering an enticing blend of enhanced performance and low computational complexity,
rendering it a compelling candidate for practical implementation. This work explores
the utilization of the SC-Creeper algorithm for polar decoding and introduces a modified
version, leveraging additional threshold values for special nodes in the coding tree, to
significantly improve its error correction capabilities.
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2. Preliminaries
2.1. Polar Codes

Polar codes harness channel polarization, wherein initially identical independent
channels evolve into two distinct sub-channel types: highly reliable and highly unreliable.
Through iterative transformations, these sub-channels converge into two polarized ex-
tremes: noisy and nearly noise-free. For finite code lengths N, polarization is not complete,
resulting in sub-channels of varying reliability between the extremes. The challenge is
to select a subset I of K sub-channels from 0, 1, . . . , N − 1 to encode K information bits,
while the rest form the frozen sub-channels, denoted as F . A binary (N, K) polar code is
defined by the information index set I and its complement F with |I| = K, |F | = N − K,
and N = 2n, where n ∈ N. For some message d = (d0, . . . , dN−1) and for some codeword
x = (x0, . . . , xN−1), the encoding process is the basic equation xN−1

0 = dN−1
0 GN , where

d, x ∈ {0, 1}N , and GN is the generator matrix of N-th order, formed as GN = F⊗n, with F
being Arikan’s standard polarizing kernel F ≜

[
1 1
0 1

]
and

⊗
n is the n-th Kronecker power

of the matrix F.

2.2. Successive Cancellation Techniques

Successive Cancellation (SC) treats the decoding process as a tree traversal, with each
node representing a bit decision.

It decodes the i-th bit by maximizing the likelihood function W(i)
n (yN

1 , ûi−1
1 |ui), with

yN
1 = (y1, y2, . . . , yN) representing the received log-likelihoods vector (LLR) from

the channel.

ûi =

{
ui∈{0,1}W(i)

n (yN
1 , ûi−1

1 |ui), if i ∈ I ,
0, otherwise.

(1)

The Successive Cancellation List (SCL) decoding method takes a different approach
compared to SC. Instead of directly estimating the message vector, SCL creates a list of
potential candidates and determines [10] the correct one in the final step. To identify the
path closest to the source word in terms of probability, additional Cyclic Redundancy
Check (CRC) bits are used [11]. These CRC bits are appended to the end of the source word
and retained during decoding. This method is known as CRC-aided SCL (CA-SCL) and
significantly enhances the performance and path selection accuracy.

The Successive Cancellation Stack (SCS) algorithm [12] is an optimization of the SCL
decoder, designed to reduce the decoding complexity (memory and computational) with
basic list size and stack size (D) parameters.

Operating on the principle of successive cancellation, the SCS decoder recursively
processes the received data to decode the original message. It employs a stack-based
approach to efficiently manage the decoding process, maintaining a stack of partially
decoded bits to optimize the computation. By iteratively traversing this stack and cancelling
out unreliable bits, this decoder achieves a low-complexity decoding process.

2.3. Creeper Decoding Concepts

The Convolutional Creeper approach merges aspects of stack-based decoding with the
Fano algorithm. Traditionally applied to convolutional codes, the Fano algorithm employs
a sequential decoding method within a code tree structure. During each decoding step,
it navigates the tree, opting for either the parent predecessor node or a designated child
node. This hybrid approach, integrating stack-based techniques and the Fano algorithm’s
sequential strategy, offers a nuanced decoding process for efficient error correction and
data retrieval in communication systems.

The key components of Fano decoding include two constraints: the step size ∆ and
the dynamic threshold T. The search process continues along a code path as long as the
Fano metric [13] increases.
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Let us assume that for each i-th virtual channel, there is a channel error probability
value pi. SC-Fano employs a path metric called the Fano metric (PMF). It starts from
PMF−1 = 0 and calculates iteratively as follows:

PMFi = PMFi−1 + log2
Pr(ui|yN−1

0 , ûi−1
0 )

(1 − pi)
, (2)

It measures the discrepancy between the likelihood of the current received symbol
being associated with each possible codeword and the likelihood of obtaining the correct
codeword. A smaller Fano metric indicates [14] a better match between the received symbol
and the corresponding codeword. This metric is also applicable for code tree path pruning,
which provides a more flexible decoding process.

It is worth noting that the choice of ∆ significantly impacts SC-Fano’s ability to
move backward through the tree. A large ∆ may limit backward movement, resem-
bling basic SC decoding, while a very small ∆ may improve the performance but hinder
backward traversal.

Assuming that the current node is v(t)i , where t represents the level, SC-Creeper stores
only the current node (address and value), its children and its ancestors only.

The stack N in SC-Creeper uses two mappings, V : N → ν and Pos : N → pν,
to obtain the header node’s element and the position of node ν, respectively. When the
PMF metric for a node falls below the threshold T, this node is labeled as “excluded”.
Conversely, if the PMF metric surpasses T, it is referred to as a “valid node”. All of the
actual valid nodes are stored in the T stack. In cases where both children of a node are
valid, and the PMF metric of one child exceeds any other metric calculated thus far, this
particular node is designated as a T-node. To manage these T-nodes, SC-Creeper employs a
dedicated second stack.

3. Our Contribution
3.1. Cost Function

In the original version, the decoder moves along the branches of the code tree under
the control of the dynamic threshold T. In the modified algorithm, similar control is carried
out by the cost function Γ, which, in the general case, may not produce T-nodes. In this case,
however, the equality always holds. The current movement of the decoder is controlled by
the current cost γi = Γ(vi), where vi is the number of the last (current) vertex. Thus, the
current threshold may not change at every node of the branch being viewed, but only at
some of them.

Let us assume that we have found two T-nodes such that each is an ancestor for the
current vertex and their PMF metrics have not yet been updated. In this case, we will call
such metrics the first and second thresholds.

Let us introduce the concept of a new and an old node. A node is considered new if it
has never been visited before during the decoding process or was visited but did not have
continuation (i.e., it was an open node). Otherwise, the node is considered old. During
operation, the decoder identifies the nodes of the branch being viewed in accordance with
the gradation—new or old. For any node, the inequality γi+n < γn is always true: the
values of the current thresholds for different visits to the node (the difference is i). It follows
from this that, to identify a node, it is enough to know whether it was visited during the
penultimate analysis of the current branch, and, if so, with which threshold.

Having monitored the operation of the Creeper decoder over time, we can draw the
following conclusions. The decoder always either continues the branch with a metric not
less than the metrics of previously viewed branches (if it is stored in the decoder memory),
or restores the branch with the maximum metric (if it was previously viewed and trimmed).
Until the moment at which any of the edges of the code tree begins to be viewed again, the
operation of the decoder is similar to that of the SCS decoder, which affects the performance
of the entire decoding.



Appl. Sci. 2024, 14, 1847 4 of 13

The main reason is a serious consequence of the algorithm that can occur when moving
through the same branches of the code tree repeatedly—when re-analyzing the code subtree
rooted at the next T node, the decoder will repeat exactly the same operations as in the
first pass. The developed cost metric allows us to avoid repeated passes and cycles, which
slightly reduce the performance of the algorithm.

In Figure 1, it is shown that after defining two thresholds, the T-nodes will be updated
to find nodes with a threshold value that becomes “old”. In this case, a situation arises
wherein the costs of two vertices a and b will coincide (Γ(a) = Γ(b)), since they are between
two threshold values. After the PMF update process in the old node, however, the cost
equality may not hold. The current thresholds for decoder control were indicated in red
and T-Nodes in blue. Arrows indicate the transition from one vertex to another in the tree.
Thus, the transition from the old threshold value corresponding to vertex a to the new
threshold value at vertex b through the T-Node is possible due to the calculation of the cost
metric at each movement step.

First threshold

Second threshold

T-Node

T-Node
Old node

Г(a)

Г(b)

Figure 1. SC-Creeper scheme with cost metric Γ.

The cost function allows [15,16] the decoder to make informed decisions about which
path to take in the decoding tree and to discard decoding paths that are deemed less
promising. Paths with higher costs can be pruned (or bypassed, as we did in this study) to
focus the computational resources on more likely paths, thereby improving the efficiency
of the decoding process.

3.2. SC-Creeper and Additional Threshold

The recurrent procedure for the identification of nodes when moving forward is as
follows. Let it be known for some node whether it is new or old. If a node is new, then all
its descendants are, by definition, new nodes. If a node is old, then its descendants retain
this gradation as long as their metrics are greater than or equal to the current µ′

i value (here,
µ′

i is the current threshold with which node i was visited the penultimate time). The first
child of a node whose metric has a value less than the cost of the given one µ′

i is new. Then,
the recurrent procedure is repeated. As a criterion for changing the value at a vertex when
moving forward, we can use one of the following conditions: either the parent vertex is a
new node or a neighboring vertex in the tree, or the vertex itself will become a new node
and update the cost by +∞. Suppose that, for some node i, in addition to the metric µ′

i,
the metric γi from the Γ-function is also known. Then, for the sibling’s metric of the cost
function, the following equation is correct:
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γ′
i =

{
∞, i-th node is new,
µ′

i, otherwise.
(3)

As a controlled functional Γ, it is necessary to consider models that satisfy the follow-
ing relations:

• Γ(l) = Γ(l′) = T(l′), l′ ≤ l (maintaining the direction of movement of the decoder);
• Γ(l) = −∞, l < 0 (positive certainty);
• Γ(l) = Γ(l − 1) if and only if the cost function is not updated (hence, T(l) = T(l − 1)).

A detailed description of SC-Creeper with cost function is contained in the Algorithm 1.
This algorithm is based on the basic SC-Creeper, but steps are specified that include manipula-
tion of metrics and stack recalculation.

Algorithm 1: SC-Creeper with cost function

Require: yN−1
0 —received output LLRs, ∆—Creeper step parameter, Γ(.)—cost

function definition, T(.)—threshold function definition;
Ensure: estimated codeword with the path νi.

ν0—the root of tree, µ0 = T(ν0), Γ(ν0) = γ0;
N = T = ∅, i = 0, t = −∞, t′ = ∞;
while i < N or µi > t + ∆ do

i = i + 1;
Calculate PMF values µi, µ′

i and cost metrics γi, γ′
i ;

Current node is νi: t′ = γi;
if γi < t + ∆ then

Update T , N stacks with the basic Creeper algorithm;
push(T , µ′

i), push(N , γ′
i);

else
push(T , µi), push(N , γi);
if −t′ = ∞ then

t = T(i);
else

t = Γ(i);
end if

else
Go to alternative node, i-th level: νalt = Pos(N );
t′ = γ′

i ;
if T(i) < γi−1 + ∆ then

t = γi−1;
end if
Update T , N stacks with the basic Creeper algorithm;

end if
end while

When viewing the branches of the code tree once, the operation of the decoder com-
pletely coincides with decoding according to the original algorithm. With repeated passes
of the same branches, the control thresholds are lowered (there is some similarity here with
the adaptive Fano algorithm [17]). This eliminates the side effect of the original version.

At each iteration, updated Creeper decoding performs a local search within a neigh-
borhood of the current decoding solution. This search explores nearby candidate solutions,
evaluating their likelihood based on the received symbols and the properties of the error-
correcting code. This version of the Creeper algorithm also provides a better “lookup”
ability to return to vertices that the original Creeper would have already eliminated from its
stack. It allows the decoder to backtrack to previous decision points and explore different
branches of the decoding tree, increasing the likelihood of finding the correct solution.
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Additional procedures for the refining of movement by nodes significantly refine the
choice of the final path in the Creeper algorithm. Since backward tree movement in the
case of polar codes is not as reliable a procedure as forward tree movement, an additional
metric is introduced to control backward movement.

Thus, in addition to the more accurate decoding of nodes and a more complete
traversal through the tree, it is possible to obtain optimization in two parameters at once.

- Number of operations. If, in the original version of decoding, the number of passes
through the different nodes of the tree (as well as the T-node architecture as a whole)
depended only on the step width ∆, then, here, it becomes possible to avoid unneces-
sary passes and cycles, reducing the number of operations (since the cost function will
signal that the cyclic node does not need to be entered again).

- Performance. Since searching by the Fano metric requires a certain level of precision
and an understanding of the “closeness” in decoding, the cost function can also point
to those paths that contain the smallest value of the Γ metric. Recall that information
about the old node is stored until the metrics for each possible path are calculated,
i.e., at each stage, there is either a “bypass” (if the metric is too high) or a bypass. This
allows us to construct the most probable codeword in the most accurate way.

Importantly, while the algorithm’s sophistication and effectiveness are heightened, its
memory consumption remains consistent. This is attributable to the utilization of the same
two stacks employed in the original Creeper algorithm, ensuring the efficient use of the
computational resources without necessitating additional memory overhead.

However, the decoding efficiency is strongly tied to how the threshold and cost
functions are defined. Thus, for example, with an exponential threshold and linear cost
functions, it is impossible to build an effective decoding model, since most nodes will not
be considered during such a traversal (e.g., they will not satisfy the threshold condition).

3.3. Key Difference from Basic SC-Creeper Decoder

When considering SC-Creeper with a cost metric, one may consider the fundamental
differences between the proposed approach and the basic SC-Creeper algorithm. In this
subsection, we list the key differences in the two approaches.

1. Penalty for the wrong node: The basic SC-Creeper has the ability to move in the
opposite direction, but backward movement does not always help to find the correct
T-node or a valid node. In this case, an algorithm with an additional metric may
decide not to use backward movement, but, for example, to continue moving in the
direction of the largest LLRs.

2. Memory optimization: Although an additional metric must be calculated periodically,
this action prevents the decoder from following a potentially incorrect path. Thus,
instead of storing the stack of the entire path and recalculating it at a later stage, it is
necessary to store only two values of the Γ(˙) metric in order to control and optimize
the variation of the stack.

3. Purpose of threshold values: For SC-Creeper, values such as ∆ and T are the algorithm
step and the degree of quantization when moving to a new tree node. However, in the
modified version, the step plays a less significant role (that is, for different values of ∆,
the performance variation is much lower), however, instead of the constant variable T,
the function T()̇ is used, which serves as an upper threshold value for the searching
of T-nodes. A more flexible search allows us to achieve better performance results.

4. Simulation Results

Let us conduct a comprehensive performance evaluation of the proposed SC-Creeper
decoder, comparing it with four other decoding methods: SC, SCL (L = 8), SCS (L = 8,
D = 1024) and SC-Fano. The evaluation focuses on two critical aspects: performance and
normalized complexity. To accurately simulate the channels, the authors use Additive
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White Gaussian Noise (AWGN [18,19]) with Binary Phase Shift Keying (BPSK). Performance
is evaluated with the Frame Error Rate (FER) metric.

For CRC checking, we utilize a polynomial with an additional 16 bits, defined as
g(x) = x16 + x15 + x2 + 1. A CRC code with 16 bits provides a higher level of error
detection compared to shorter CRC codes. This is important in polar decoding because
it helps to identify and correct errors more effectively. Moreover, it is a common choice
in many communication standards and protocols. In this work, we study the 5G NR
strategy [20] to perform polar codes and to construct a reliable set.

In the case of SC-Creeper, the parameter ∆ = 1 is chosen, so movement along the tree
(in both directions) occurs in steps of approximately one vertex. For the additional cost
function, the iterative procedure presented below is chosen:

Γ(i) =


−∞, i ≤ 0,
Γ(i − 1) + 2, if node is new,
i, otherwise.

(4)

Moreover, for the first realization, we assume that T ≡ Γ, so the threshold function
has the same properties and limitations as a cost function.

Next, in Figures 2–4, we provide the simulation result for codes with length
N = {256, 512, 1024}, a high rate R = 3

4 , a moderate rate R = 1
2 and a low rate R = 1

4 .
The number of blocks to test the performance of the decoders is chosen to be 106, and the
number of maximum failed decoding attempts at one SNR point is equal to 30.

1 2 3
Eb/N0
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−4
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−3
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−2
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−1
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0
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R

(256, 64)-code

1 2 3
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−4
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−3
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−2

10
−1

10
0

(256, 128)-code

1 2 3
Eb/N0
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−4

10
−3

10
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−1

10
0
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SC
SCL (L=8)

SCS (L=8,D=10)
SC-Fano (T=1)

SC-Creeper (T=1)
SC-Creeper (cost function)

Figure 2. Comparison of FER values, N = 256.
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SC-Creeper’s performance is comparable to that of SCL with list size L = 8. However,
using the additional cost metric improves the performance, so the modified SC-Creeper
has a stronger correction ability. Thus, the option of using an algorithm without a list with
two stacks appears to be more optimal in terms of performance (and also more optimal
than the basic SCS decoder, which has only one stack). One can also notice that at low and
moderate R ≤ 1

2 , the modified Creeper algorithm, as well as its main version, perform
worse than, for example, the SCL-8 decoder. This is due to the fact that a frozen set is
growing, for which there is no clear definition of the threshold values and cost functions.
It is possible that, with additional regularization at low rates, it will be possible to obtain
higher performance, taking into account the modification of the frozen set F .

2 4
Eb/N0
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−5
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10
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10
−1

10
0

FE
R

(512, 128)-code
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(512, 256)-code
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Eb/N0
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−4

10
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10
−2

10
−1

10
0

(512, 384)-code

SC
SCL (L=8)

SCS (L=8,D=10)
SC-Fano (T=1)

SC-Creeper (T=1)
SC-Creeper (cost function)

Figure 3. Comparison of FER values, N = 512.

Comparing the performance of various polar decoding algorithms in relation to the
Frame Error Rate (FER) at different Eb/N0 values provides valuable insights into their
effectiveness across different scenarios. Let us analyze the characteristics and performance
of each algorithm.

The basic SC algorithm serves as the foundation, offering decent performance but
struggling with high code rates and long block lengths due to its sequential nature. SCL
algorithms, such as SCL-8, maintain lists of candidate solutions, which is why they are
effective across a range of code rates and block lengths, providing a good trade-off between
complexity and performance.
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SCS aims to simplify the decoding process while maintaining reasonable performance.
It may sacrifice some decoding accuracy for reduced complexity, making it suitable for
low-complexity applications.

SC-Fano introduces Fano metric-based decisions, improving upon SC but still falling
short of SCL in some cases. SC-Creeper employs iterative refinement, particularly beneficial
for high code rates, with potential complexity reductions compared to SCL.

The improved SC-Creeper builds upon the basic SC-Creeper algorithm, achieving
the best performance at high code rates. While it may exhibit poorer performance at low
code lengths and rates compared to SCL-8, it remains competitive and may surpass SCL-8
in certain cases. Despite its enhanced performance, the complexity of the improved SC-
Creeper is comparable to that of its basic version, with potential reductions in operations
for specific scenarios, leading to an overall complexity reduction.

2 4
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10
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10
−3

10
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10
−1

10
0
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SC
SCL (L=8)

SCS (L=8,D=10)
SC-Fano (T=1)

SC-Creeper (T=1)
SC-Creeper (cost function)

Figure 4. Comparison of FER values, N = 1024.

In summary, the performance of polar decoding algorithms varies based on factors
such as the code rate, block length and complexity constraints. While SCL-8 remains a
strong performer across a wide range of scenarios, algorithms like SC-Creeper and its
improved version excel in high-code-rate regimes, offering superior performance with
comparable complexity. However, for low code lengths and rates, SCL-8 and SCL-8-like
algorithms may still maintain a competitive edge, with SC-Creeper variants exhibiting
comparable performance.
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Figures 5–7 show the normalized complexity plots for all considered decoders, includ-
ing the new SC-Creeper. Complexity refers to the relative number of operations required to
successfully complete a decoding algorithm.
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Figure 5. Comparison of normalized complexity.
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Figure 7. Comparison of normalized complexity.

It can be noted that all methods are “between” SC (in other words, SCL-1) and SCL-8
in complexity. Thus, as Eb/N0 increases, we can say that the complexity of the SC-Creeper
approaches is comparable to that of an SC decoder using O(N log N) operations.

However, the modified SC-Creeper uses slightly more operations due to the appli-
cation of additional conditions and different stopping criteria compared to the original
SC-Creeper algorithm. Nonetheless, for ∆ = 0, both algorithms have similar complexity
and are identical.

5. Conclusions

In conclusion, our research has yielded significant advancements in the realm of polar
code decoding, culminating in the development of the improved SC-Creeper algorithm.
Through extensive experimentation and rigorous analysis, we have demonstrated the
efficacy of our approach in achieving notable performance improvements over conventional
decoding techniques. The enhanced SC-Creeper decoder not only rivals but surpasses
the capabilities of established methods such as CA-SCL-8 and traditional Fano decoding
algorithms. For large code lengths, the improvement in performance is obvious for any
length of the original message; the performance can not only overcome the value of SCL-8,
but also approach SCL-16. Thus, with the help of additional control functions (threshold,
cost), we can hypothetically increase the list of potential candidates for the correct codeword
from 8 to 16.

The new SC-Creeper uses a classic tree-moving scheme, as in the sequential Fano decod-
ing strategy. However, this scheme has been improved with the ability to traverse only those
nodes in the tree that lead to the most likely codeword. The cost function also allows us to
ignore repeated passes of nodes, which was unacceptable in the original SC-Creeper.

Our research is characterized by the application of innovative methods, including
iterative refinement techniques and adaptive cost metric calculations, which contribute to
the enhanced performance of the decoder. Through comprehensive experimental val-
idation, we have meticulously assessed the decoder’s effectiveness across a range of
communication scenarios.
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It can also be noted that decoding based on the structure of the tree and its modifica-
tions is a promising direction nowadays [21,22]. The development of more sophisticated
decoding strategies, coupled with enhanced computational efficiency and scalability, will
not only benefit high-throughput communication systems but also find application in a
wide array of fields, ranging from wireless communication to data storage and beyond.

6. Patents
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