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Abstract: With the development of the Internet, the content that people share contains types of
text, images, and videos, and utilizing these multimodal data for sentiment analysis has become
an important area of research. Multimodal sentiment analysis aims to understand and perceive
emotions or sentiments in different types of data. Currently, the realm of multimodal sentiment
analysis faces various challenges, with a major emphasis on addressing two key issues: (1) inefficiency
when modeling the intramodality and intermodality dynamics and (2) inability to effectively fuse
multimodal features. In this paper, we propose the CCDA (cross-correlation in dual-attention)
model, a novel method to explore dynamics between different modalities and fuse multimodal
features efficiently. We capture dynamics at intra- and intermodal levels by using two types of
attention mechanisms simultaneously. Meanwhile, the cross-correlation loss is introduced to capture
the correlation between attention mechanisms. Moreover, the relevant coefficient is proposed to
integrate multimodal features effectively. Extensive experiments were conducted on three publicly
available datasets, CMU-MOSI, CMU-MOSEI, and CH-SIMS. The experimental results fully confirm
the effectiveness of our proposed method, and, compared with the current optimal method (SOTA),
our model shows obvious advantages in most of the key metrics, proving its better performance in
multimodal sentiment analysis.
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1. Introduction

Multimodal sentiment analysis (MSA) is an important branch in the field of artificial
intelligence. It aims to capture and understand human sentiment or emotion contained in
text, speech, images, or other types of data, usually including positive, negative, neutral, or
more specific emotional states such as joy, sadness, and anger [1]. In recent years, with the
popularity of online social platforms, a large amount of multimodal data has emerged on
the Internet. By analyzing data containing multiple modalities, computers can perceive
human sentiment in the data [2]. Multimodal sentiment analysis has attracted widespread
attention and it is widely applied in social media analysis [3,4], market research [5,6], and
human-computer interaction [7,8].

In early studies on multimodal sentiment analysis, researchers have mainly used
the following approaches to process multimodal data: The first one is early fusion, by
concatenating different unimodal features and subsequently processing the features using
different classifiers or models. For example, Morency et al. [9] used an HMM to process
three unimodal features simultaneously. Poria et al. used CNN- [10] and LSTM-based [11]
models to explore the contextual relationships between modalities. Zadeh et al. [12]
used Multi-Attention Block(MAB) and Long-Short Term Hybrid Memory(LSTHM) to
capture and store dynamics in multimodal features separately. Haohan et al [13]. used
a Select Additive Learning based on CNN to improve the generalization performance of
the model. The second method is late fusion, by training modality-specific classifiers for
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each modality and then predicting sentiment according to the weight of the classifier’s
results. For example, Glodek et al. [14] used Kalman filters as combiners for decision-
making. Cai et al. [15] first used several different CNNs and subsequently vectorized and
fused the output of the features from each CNN. Alam et al. [16] used Sequential Minimal
Optimization (SMO, a variant of SVM) with different kernel functions and fused their
results in decision-making.

Although these two methods were relatively simple, when dealing with modal fea-
tures, the model is unable to capture intra- and intermodality dynamics efficiently, which
may lead to poor model performance. The researchers then combined the advantages of
early and late fusion and proposed hybrid fusion. Poria et al. [17] used deep CNNs to
extract features and fused multimodal features using MKL and determine the weights of
textual modalities using a decision fusion approach in the final stage. Kumar et al. [18] used
gating mechanisms to selectively learn cross-modal interaction information and used the
results for sentiment prediction. Zhang et al. [19] used a multihead attention mechanism to
extract semantic and sentiment analysis, then train multiple base classifiers and ultimately
fuse the decisions of the base classifiers.

Word-level fusion fuses different modalities in a temporal step to obtain cross-modal
correlations. For example, Zadeh et al. [20] proposed a memory fusion network (MFN),
by simulating interactions within modalities and generalizing the temporal relationships
between different modalities, the sequence is ultimately unified based on the relationships
between unimodal word-level features. Subsequently, in [21], they proposed a Graph-
Memory Fusion Network and performed word-level fusion by using a dynamic fusion
graph. Paul et al. [22] proposed an LSTHM-based model to obtain cross-modal interac-
tions by performing a multi-stage fusion of modalities features between each time step.
Wang et al. [23] proposed a Recurrent Attended Variation Embedding Network (RAVEN),
by modeling the fine-grained structure in word segments and transforming word represen-
tations based on nonverbal dynamic information.

Tensor fusion uses different tensor-based computation methods to allow different
modalities to interact. Zadeh et al. [24] proposed Tensor Fusion Network (TFN), modal
correlations are obtained by computing the outer product between the feature tensors.
Zhun et al. [25] proposed Low-rank Multimodal Fusion (LMF) to solve the problem of
excessive complexity in tensor computation. Barezi et al. [26] introduced a modality-specific
deconstruction method in the model to reduce information redundancy. Liang et al. [27]
proposed a regularization method to learn cross-time and cross-mode correlations in low-
rank tensors. Tao et al. [28] correlated features at the same time step and further proposed
a dual low-order multimodal fusion method. Jin et al. [29] used LSTM-based and tensor-
based CNN networks to capture intra- and intermodal dynamic information encapsulated
in asynchronous sequences.

In recent years, a number of attention-based approaches have emerged. Through the
attention mechanism, the model can be made to acquire inter- and intramodal correlations
more efficiently. Poria et al. [11] used attention units to capture dynamics across modalities.
In [30-34], multihead and self-attention were used to perform cross-modal interactions,
respectively, and perceive emotional information that is not within the modality. In ad-
dition, the researchers used other attention-based methods such as Gate Recursive Units
(GRUs) [35,36] and Graph Convolutional Networks (GCNs) [37].

Nevertheless, there are still two main challenges in current multimodal sentiment
analysis research. The first one is inefficiency in modeling the intramodality and inter-
modality dynamics. Multimodal sentiment analysis requires processing data from different
modalities and correlating them to capture sentiment. It also needs to deal with sentiment
dependencies within a single modality to help the model understand sentiment more
accurately. The second one is the way in which different modal features are fused. Effective
integration of features from different modalities can improve the accuracy and robustness of
the model, which is crucial for the reliability of sentiment analysis in practical applications.
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In this paper, we use a transformer-based approach to capture sentiment information
and extract dynamics within and between modalities, and we introduce the relevant coeffi-
cient for the fusion of multimodal features. In addition, we propose a new cross-correlation
loss function for investigating the correlations between different levels of attention mecha-
nisms. Specifically, we obtain the intermodality dynamics between the global representation
and unimodal representation by using the cross-attention mechanism, which is the com-
ponent of the Transformer, so that they can strengthen themselves by learning about each
other in this process. At the same time, we obtain the intramodality information by using
the self-attention mechanism for three unimodal features, respectively. In addition, in
our research, we hypothesized that there is some correlation between different levels of
attention mechanisms, so we propose the cross-correlation loss to assess the interrelation-
ship between cross-attention and self-attention. The contributions of this paper can be
summarized as follows:

*  We propose CCDA, a hierarchical model that studies intra- and intermodality correla-
tions by using self-attention and cross-attention, respectively. Moreover, we introduce
a new method to fuse multimodal features efficiently.

*  Weinnovatively introduce a new cross-correlation loss function to study the correlation
between different levels of attentional mechanisms in more depth. The objective
function is minimized to cut down redundant information, which can help our model
to better perceive sentiment information.

*  Extensive experiments demonstrate the effectiveness of our proposed methodology.
Our model achieves comparable results to the state-of-the-art (SOTA) approach in all
evaluation metrics on the CMU-MOSI, CMU-MOSEI, and CH-SIMS datasets.

2. Related Works

Multimodal sentiment analysis aims to obtain sentiment information from different
types of data. It provides additional sources of information for affective computing and
enables computers to understand and perceive human sentiment more accurately [1-4].
A key challenge in this area is determining how to efficiently fuse data from different
modalities so that the model can recognize sentiment precisely. This section presents
related works on multimodal sentiment analysis, including early fusion, late fusion, hybrid
fusion, word-level fusion, tensor-based fusion, attention-based methods (Table 1 provides
a brief description of several of these methods), and other recent research approaches.

Early fusion combines all of the features from different modalities (text, audio, and
visual) into a single feature vector, which is then used for sentiment prediction using a
classification algorithm or model. Morency et al. input three unimodal features into the
HMM model simultaneously [9]. Poria et al. proposed a method using CNN networks [10],
by feeding unimodal features into a multikernel learning classifier. Following this, [11]
proposed an LSTM-based model to deal with different unimodal features and explored the
contextual relationships between modalities. Zadeh et al. [12] concatenated the multimodal
features at each time step, used Multi-Attention Block to capture the dynamics between
different modalities, and used a Long-short Term Hybrid Memory to store the dynamic
information associated with each modality. Haohan et al. [13] proposed a Select Additive
Learning based on CNN model (SAL-CNN) to improve the generalization performance
of the model. The advantages of these approaches are that they can take into account the
correlation between different modality features at the early stage. However, premature
fusion of unimodal features can prevent the model from capturing information about
the dynamics within the modalities, which can affect the model’s ability to perform fine-
grained classification.

In contrast to early fusion, late fusion employs independent classifiers separately for
unimodal data and then fuses the outputs of each model to generate the final multimodal
representation, or votes on the results of each model. Glodek et al. [14] used the Kalman
filter as the combiner for temporally ordered classifier decisions. It is a linear dynamical
system based on a Markov model which is well suited for real-time classifier fusion.
Cai et al. [15] used text CNN, image CNN, and multi CNN to process unimodal features
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and multimodal features, respectively; they used logistic regression as a classifier with
the vectorized features in the penultimate layer of different CNNs. In [16], Alam et al.
generated their classification models using Sequential Minimal Optimization(SMO, which
is a variant of SVM) for each feature set, and different kernel functions were used for
different feature sets. Finally, the results of classifiers for different feature sets were fused
using decision fusion. While late fusion helped the model to better integrate semantic
information. However, the model is not able to obtain the interactions between modalities
during the training process, which would prevent the model from capturing cross-modal
dynamic information. In addition, it is usually accompanied by a more complex model
structure and a larger number of parameters.

Table 1. Related works in multimodal sentiment analysis.

Method Type

Description

Advantages

Flaws

Early fusion

Combines all of the features from
different modalities into a vector.

Realizes modal interactions at the
early stage.

Time asynchrony and
information redundancy.

Late fusion

Employs independent classifiers
separately for each modality.

Helps model to better integrate
semantic information.

Usually involves more complex
model structures.

Hybrid fusion

Combines the advantages of early
fusion and late fusion

Balance the model’s complexity.

Inefficiencies arising from the
limitations of the
backbone network.

Word-level fusion

Fuses word representation in the
temporal dimension.

Helps model to understand the
intrinsic relation of
multimodal data.

Insufficient generalization.

Tensor-based

Utilizes various tensor-based
methods to integrate information
from different modalities.

Integrate multimodal data
effectively and address the
complexity and noise issues.

Excessive computation and lack
of interpretability.

Attention-based

Learns the semantic and relevant
information using different
attention mechanisms or

More flexible and accurate in
processing temporal information
and capturing interactions

Correlations between different
attention mechanisms cannot

be captured.

Transformer. between different modalities.

Hybrid fusion combines the advantages of early fusion and late fusion, capitalizing
on their strengths and compensating for their weaknesses, respectively. Poria et al. [17]
proposed a method for extracting text features using deep CNNs and fusing multimodal
heterogeneous features using MKL, in addition to a decision-level fusion method that
determines the weights of the text modalities by the coupling of the sentiment modalities.
Kumar et al. [18] used gating mechanisms to selectively learn cross-modal interaction
information and utilized post-interaction results for sentiment prediction. Zhang et al. [19]
used multihead attention to extract accurate semantic and affective information in the rep-
resentation fusion stage, followed by training multiple base classifiers to make independent
judgments on different unimodal representations in the decision fusion stage, and finally
fusing base classifiers’ decisions. The core idea of this approach is to allow features to be
fused at different stages of the model while avoiding some of the potential problems of
early fusion and late fusion. However, the limitations of the baseline model itself at that
time made this type of fusion method not perform well enough.

Word-level fusion is a method that fuses word representations in the temporal dimen-
sion to capture the interrelationships between different modalities. This approach empha-
sizes word-level information interactions and helps to understand the intrinsic structure
and semantic relatedness of multimodal data in more detail. In [20], Zadeh et al. proposed
a Memory Fusion Network (MFN); they first modeled interactions within modalities and
generalized temporal relationships across modalities, ultimately unifying sequences based
on relationships between unimodal word-level features. Subsequently, in [21], they used a
Graph-Memory Fusion Network to perform unimodal, bimodal, and trimodal word-level
fusion for unimodal features, and captured intermodal interactions by using a dynamic
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fusion graph. Paul et al. [22] proposed an LSTHM-based model, obtaining cross-modal
interactions by performing multiple stage fusion of modalities features between each
time step. Wang et al. [23] proposed Recurrent Attended Variation Embedding Network
(RAVEN) by modeling the fine-grained structure in word segments and transforming word
representations based on nonverbal dynamic information. Word-level fusion enables the
integration of affective information from different modalities in word representations. How-
ever, this approach may result in the loss of specific affective information in the original
modality, and the complexity of word-level fusion increases further when multiple different
modalities are involved.

Tensor fusion utilizes various tensor-based methods to integrate information from
different modalities. These methods can effectively integrate multimodal data and address
the complexity and noise issues in the data. The tensor fusion network (TFN) [24] obtains
the dynamic correlation between modes by calculating the outer product of bimodal
and trimodal features. Zhun et al. [25] proposed a Low-rank Multimodal Fusion (LMF)
method to solve the problem of excessive computational complexity in TEN, and utilized
modality-specific low-rank factors for multimodal fusion to improve the efficiency. The
Modality-based Redundancy Reduction Fusion (MRRF) [26] introduces a modal-specific
decomposition method into the model, which removes redundant information from the
dependency structure and leads to fewer parameters with minimal loss of information.
Liang et al. [27] proposed a regularization method to minimize the rank of the tensor and
learn correlations across time and modes in low-rank tensors. Tao et al. [28] correlated the
features of a single time step between multiple modalities and further proposed a dual
low-order multimodal fusion method to reduce computational complexity. Jin et al. [29]
used LSTM-based and tensor-based CNN networks to discover intra- and intermodal
dynamics, and encapsulated them in an asynchronous sequence. However, tensor fusion
is often accompanied by high-dimensional data representations, which, again, increases
computational complexity while causing data sparsity. On the other hand, tensor fusion
reduces the interpretability of the model, which may limit the credibility and acceptance of
the model in practical applications.

Attention mechanism (Especially Transformer [38], proposed by Google in 2017) plays
a significant role in multimodal sentiment analysis; it helps models better understand
and leverage the interconnections and semantic information between different modalities,
and be more flexible and accurate in processing multimodal data. Chen et al. [39] and
Poria et al. [11] used an LSTM-based model as well as attentional units to capture the
dynamics across modalities. In [30-34], multihead and self-attention were used to capture
relevant information within or across modalities. In addition, the researchers additionally
used other methods, e.g., Gate Recurrent Unit (GRU) [35,36] and Graph Convolutional
Network (GCN) [37]. The Transformer exhibits strong generalization capabilities, making
it suitable for different types of multimodal sentiment analysis tasks.

In addition, there are other methods in multimodal sentiment analysis, such as multi-
task contrastive learning [40], dynamic filtering mechanism [41], bidirectional multimodal
dynamic routing mechanism [42], cross-modal hierarchical graph contrastive learning strat-
egy [43], supervised contrastive learning [20,44], dynamic refined sentiment words [45], etc.

Previous studies have viewed modality self-attention and cross-modal attention as
two separate units that cannot interact with each other. Therefore, in this study, we pro-
posed Cross-Correlation in Dual-Attention model (CCDA) to capture the correlations that
exist between the different attention layers, so that, after acquiring intra- and intermodal
information, respectively, the model can also enable them to exchange information that is
helpful for their respective learning. In addition, in the feature fusion stage, we propose a
strategy to help the model converge quickly, by calculating the relevant coefficients between
the unimodal self-attention features and the source feature representations to guide the
multimodal feature fusion.
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3. Methodology
3.1. Problem Definition

Multimodal sentiment analysis is a task that utilizes multiple modalities for the study
of human sentiment. Typically, it includes three modalities: text, speech, and images. We
define three modality feature sequences, X, = {X;;1, Xm2, ... Xmn}, and sample labels
Y = {y1,¥2, .. yn}, where the modality is represented as m € {t,a,v} (¢ stands for text, a
stands for audio, and v stands for visual) and n represents the number of samples in the
dataset. Our goal is to input modality features X,, € RT#*4nX" into a model to obtain an
accurate sentiment prediction label y € R!, where T,, and d,, represent the sequence length
and the dimension of modality features separately.

3.2. Model Structure

In this section, we provide a detailed overview of the architecture of the CCDA (Cross-
Correlation in Dual-Attention) model, as shown in Figure 1. We first use three unimodal
encoders to obtain the utterance representation Ugy"*" and embedding FJ"*#*" by using
feature sequences X, for each modality separately, which m € {t,a,v}, Ui >n originate
from the feature representation in each unimodal encoder. This helps the model understand
the semantic and sentiment information in each modality.

:
[ Prediction Module ]
f
G' $ [ m $ U, ﬁé

D : ' Relevant Coefficients
u; : Uy,

Cross-Correlation
Loss

O il |

Figure 1. The structure of CCDA. The global representation G consists of three unimodal represen-
tations {U;, Uy, Uy }. The model processes the global representation G and the unimodal features
Fy using the dual-attention to obtain new global and unimodal representations {G’, Uy, U,, U, } and
fuses these representations for sentiment prediction. The unimodal features {F?, F5, F5, Ptc ,ES, ESY
generated during this process are used to learn the correlation between the two attention mechanisms.
The final objective function consists of the MSE loss L£sr and the cross-correlation loss L. .
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Next, we delve into the dual-attention mechanism (which contains self-attention
and cross-attention), a core component of CCDA. By utilizing self-attention and cross-
attention, CCDA can capture sentiment information and dynamics within a single modality
(intramodality) and across different modalities (intermodality), respectively. This dual-
attention mechanism enables the model to comprehensively analyze multimodal data and
sentiment information, thereby improving the accuracy of sentiment analysis.

Following that, CCDA calculates cross-correlation losses between the embeddings gener-
ated by the two attention mechanisms while obtaining information about the intramodality
and intermodality dynamics. This contributes to the indirect interaction between the two
attention mechanisms and, thus, improves the model’s performance. CCDA then uses relevant
coefficients strategy to fuse the unimodal and multimodal representations obtained from these
two attention mechanisms to generate the final sentiment representation.

In the following parts, we elaborate on the three main components of CCDA: unimodal
encoders (Section 3.2.1), dual-level attention (Section 3.2.2), and fusion and prediction units
(Section 3.2.3).

3.2.1. Unimodal Encoders

Similar to EMT [33], we employ the pretrained BERT model to encode textual tokens
into context-aware word embeddings. Specifically, we notice that the [CLS] token of the
BERT model contains a sequential representation of the text modality. Therefore, we
use this token as the utterance representation for the text sequence, denoted as u; € R%.
For the audio and visual modalities, we use LSTM recurrent neural networks to extract
temporal information from the feature sequences. Ultimately, we select the hidden state
of the last time step of the LSTM network for both the audio and visual modalities as
their respective utterance representations: u, € R% and u, € R%. Simultaneously, we
need to process other tokens output by the BERT model and hidden states from LSTMs at
different time steps for later use in self-attention and cross-attention mechanisms. These
representations are denoted as Fy;, € RImxdm {t,a,v}, representing the text, audio, and
visual modalities, respectively.

F; = BERT(X;)
F, = LSTM(X,) 1
F, = LSTM(Xy,)

3.2.2. Dual-Level Attention

Attention mechanisms help the model better understand multimodal sentiment data
and perceive emotional information. They enable the model to capture dynamics within a
single modality or between different modalities during the multimodal sentiment process-
ing. The Transformer [38] is a language model in the field of natural language processing;
it is based on dot-product self-attention mechanisms. It employs self-attention to infuse
global semantic information and consider long-range dependencies for every word in the
sequence. Furthermore, the multihead mechanism allows the model to learn different
subspaces of semantics.

In simple terms, the Transformer processes the input sequence H € RT*¢ with posi-
tional encoding; it defines Query as Q = HW, Key as K = HWg, and Value as V = HWy,
where W represents the weight matrices during the feature sequence mapping process.
Therefore, self-attention can be represented by Equation (2):

. QKT
Sel f-Attention(H) = softmax(~=)V ()

Vg
In MulT [30], the Query and K-V pair in the self-attention computation process come
from different modalities. Thus, MulT captures the interaction between the two modalities.
MulT combines three modality pairs and calculates bidirectional modality interactions for
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each pair. As shown in Equation (3), for two modality feature sequences Hy and Hp, MulT
defines Query as Q1 = HiWq, Key as K = H,Wk, and Value as V, = HyWy. It calculates
cross-modal attention in two directions between a pair of modalities:

, QiK]
Cross-Attention(Hy — Hp) = softmax( YWo
Vg
KT 3
Cross-Attention(Hy — Hy) = sofi!max(Q2 Lywn, ®)

Vi

EMT [33] concatenates three unimodal utterance representations into a multimodal
global representation. Inspired by EMT [33], we concatenate the utterance representations
from each modality u,, as the global representation G = Concat(ut, Ug, Up) during the cross-
attention stage, where m € (t,a,v). Subsequently, we utilize a Transformer to calculate
intermodality information between the modality feature sequences F,, € R’"*? and the
global representation G € R3*9, as shown in Figure 2 and Equation (4).

Attention(G — Ey,) = Cross-Attention(G — Fy,)
Attention(Fy,, — G) = Cross-Attention(F, — G) 4)

G F&,

f—

Feed-Forward Network Feed-Forward Network

Multi-Head
Self-Attention

Multi-Head
Self-Attention

Multi-Head

Multi-Head
Cross-Modal Attention i

Cross-Modal Attention

—7—
Norm Norm
— 1

-/

G Fpy

Figure 2. The structure of cross-attention. Cross-attention is used to capture dynamics between the
global representation G and unimodal representations Fy,.

On the other hand, we utilize modality-specific Transformer encoder layers, de-
noted as L;, to capture intramodality information for each modality individually (using
Equation (2)). After encoding each modality, we use the self-attention mechanism in Trans-
former to process the unimodal feature sequences separately, in which the embedding
at each position is able to learn the semantic and emotional information contained in
the sequences.

MulT [30] used directional encoders for bimodal interactions separately, and subse-
quently augmented these dynamics with self-attention mechanisms. EMT [33] achieved
cross-modal interactions by making global representations and unimodal sequences learn
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from each other, while ignoring modality-specific information present in the self-attention
unit. CCDA used both cross-modal attention and self-attention; first the two attention
mechanisms were isolated, and then it used the cross-correlation loss to make them to
interact after sufficiently learning the relevant intra- and intermodal information, respec-
tively. This preserves the specificity information of the different attention mechanisms and
optimizes the global representation by backpropagating the cross-modal feature sequences
during the training progresses. After the feature sequences in the self-attention module
learn the intermodal information of the cross-modal feature sequences, they are able to
increase the perceptual field of the final multimodal features and increase the generalization
performance of the model.

The use of dual-attention allows the model to process and analyze multimodal data
at two different levels, intermodality and intramodality, for a more comprehensive under-
standing and interpretation of multimodal sentiment data.

3.2.3. Modality Fusion

After passing through the cross-attention stage, the model obtains intermodality
information, which is reflected through the global representation G, while in the self-
attention stage, to maintain consistency with the global representation, we employ Bi-
LSTMs to process the three single-modal feature sequences individually, obtaining each
unimodal representation. Meanwhile, we propose the relevant coefficients, which are
computed based on the relationship between the modal representation and the initial
representation. Relevant coefficients strategy can fuse the representations obtained from
dual-attention mechanisms and generate the final multimodal sentiment representation.

To be more specific, after learning intramodality information in the self-attention
stage, the model utilizes Bi-LSTMs to transform unimodal feature sequences into feature
representations U/, € RV*?, which are specific to each modality. Subsequently, we calculate
relevant coefficients based on the correlation between this representation and the initial
modal representations Uy, € Rb>4,

rm = Y_(Diag(tanh(U},) R) tanh(Uyy)) — 1) (5)

where @ denotes matrix multiplication, and Diag(-) represents all the diagonal elements of
a square matrix. After obtaining the relevance coefficient r,, for each modality, we multiply
it with Uj, to obtain the single-modal representation:

Here, 1, is the relevance coefficient specific to each modality, and U], represents the
feature representation of the corresponding modality obtained through Bi-LSTMs.

After obtaining the representations for both intermodality and intramodality
{G, l~ll, Uy, CIU}, we concatenate the unimodal representations { fll, Uy, ljly} with the global
representation G’ to create the representation for the sample. Finally, we employ sev-
eral linear layers in combination with activation functions to make predictions for the
ultimate result.

y = Pred(Concat(G', Uy, U,, U,)) )

3.3. Cross-Correlation Loss

Most of the current research uses attention mechanisms to capture relevant information
from both intramodality and intermodality, but few scholars consider the relationship
between these two different attention levels. In order to extract this relationship in dual-
attention, we propose a cross-correlation loss to obtain relevant information. By adding it
to the objective function, the model is able to accomplish an undirected interaction between
two different kinds of attention.
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As shown in Figure 3, we use linear projectors to expand the feature sequence di-
mensions of the two different attention mechanisms and perform modality-specific matrix
multiplication to obtain a set of matrices with a shape of (batch, length, length).

Cn = Fu QFn ®)

where C;; represents the cross-correlation matrix of the m modality’s feature sequences in
two different attention mechanisms, m € {t,a,v}. The diagonal elements in this matrix
represent the correlation between the corresponding positions of the two feature sequences,
while the off-diagonal elements represent the redundant information.

Ex

Fn Cm= Fn ® Fg
Figure 3. The cross-correlation matrix in dual-attention. We perform modality-specific matrix
multiplication on the two types of unimodal feature sequences to obtain a cross-correlation matrix,
and we use the diagonal elements of the matrix to represent the indirect interaction between these two
feature sequences. The deeper the diagonal elements in the matrix C,, the stronger the correlation
between the two unimodal feature sequences at the corresponding positions is represented.

Taking the textual modalities of the samples in the CMU-MOSI dataset as an example,
as shown in Figure 4, the model maximizes the diagonal elements in the intercorrelation
matrix in order to capture the correlation between the different attentional mechanisms
during the training process. At the same time, nondiagonal elements are minimized in
order to reduce redundant information in this process.

Figure 4. The cross-correlation matrix.

PSS S V2 CPPIE SR
Corr — M ;( .(Cl] ) +Zcij) (9)
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As shown in Equation (9). The term Z(Cij — 1)2 in Ly, is the correlation term,
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which denotes the correlation between the sequence of modality features of m in different
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attention mechanisms, and the other term ) | 61-2]- is the redundancy term. Intuitively, the
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model increases the correlation between different attentional mechanisms by making the
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diagonal elements of the cross-correlation matrix close to 1. At the same time, it reduces
the redundancy term by making the off-diagonal elements of the cross-correlation matrix
close to 0.

3.4. Loss Function

We use MAE and Cross-Correlation loss as the final objective function. As shown in

Equations (10) and (11):
1 N
Lyse = — - Y lyi — Vil (10)
N =
L= Lpyse + A Leorr (11)

Where y denotes the true label of the sample and # denotes the predicted label of the
model. Since the cross-correlation loss is calculated for all elements in the cross-correlation
matrix, setting the weight of the cross-correlation loss too high in the objective function can
cause the two attention mechanisms to lose their specificity and, thus, reduce the model
performance. Therefore, we set a scaling factor A in the cross-correlation loss according to
the expansion of the feature sequence dimension. We conducted ablation experiments on
different scaling weights on two datasets, as shown in Section 4.3.

4. Experiment
4.1. Preparations
4.1.1. Datasets

A multimodal dataset collects information from different modalities, such as text,
speech, and vision, providing researchers with opportunities to gain a deeper understand-
ing and analysis of sentiment expression. Three publicly available datasets are used in
this article, including CMU-MOSI, CMU-MOSEI, and CH-SIMS. Figure 5 illustrates some
samples from the CMU-MOSI and CMU-MOSEI datasets, and Figure 6 illustrates the
CH-SIMS dataset.

And he I don’ t think he got Toq much L?o fast, } mean we AL T can say is he’ s a What disappointed me was that one
Text mad when hah T don’ t know basically just get introduced
to this character..

of the actors in the movie was

etty average guy. . -
pretty average guy there for short amount of time.

maybe

Facial
expression

Voice frustrated angry disappointed neutral

Figure 5. Examples in the CMU-MOSI and CMU-MOSEI datasets.

Text I was wondering if I I really like and love That’s a low way to be Why didn’t you tell me
could take a look at this boy very seriously. lazy! earlier?
the photos.

Facial
expression

SRORERURY W
Strong Positive Weak Negative Weak Positive Neutral
Voice Excited Disappointment Sarcasm Indicative

Figure 6. Examples in the CH-SIMS dataset. The green box in the image captures the speaker’s
facial expression.
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CMU-MOSI [46] (Multimodal Opinion Level Sentiment Intensity) is a multimodal
dataset with character subjective sentiment and sentiment intensity annotations. It contains
2199 multimodal samples from 93 YouTube videos, with each video ranging from 2-5 min
and featuring 89 different speakers. Each video is annotated with sentiment intensity,
ranging from strong positive to strong negative on a scale from —3 to 3.

Another dataset is CMU-MOSEI [21] (CMU Multimodal Opinion Sentiment and
Emotion Intensity), an upgraded version of the CMU-MOSI dataset and one of the largest
sentiment analysis datasets covering multiple fields, including sentiment recognition. CMU-
MOSEI contains 23,453 manually annotated video clips from 5000 videos on YouTube,
including 1000 different speakers and 250 different topics, covering almost all topics in
daily life. CMU-MOSEI uses the same annotation method as CMU-MOSL

In addition, considering the research on multimodal sentiment analysis in the Chi-
nese community, we also used CH-SIMS [47], a refined Chinese multimodal dataset. It
contains 2281 samples from 60 videos collected from movies, TV shows, and variety shows.
Compared to the first two datasets, it not only includes multimodal sentiment labels but
also provides independent fine-grained single-modality sentiment labels for each sample.
Each label in this dataset is manually annotated from —1 (strongly positive) to 1 (strongly
negative). The statistical information of these three datasets is shown in Table 2.

Table 2. Statistics of CMU-MOSI, CMU-MOSEI, and CH-SIMS datasets.

Dataset Train Validation Test All
CMU-MOSI 1284 229 686 2199
CMU-MOSEI 16,326 1871 4659 22,856
CH-SIMS 1368 456 457 2281

4.1.2. Data Processing

We targeted the different modalities for processing. For the text modality, we used
the BERT-based-uncased model to encode the CMU-MOSI and CMU-MOSEI datasets.
In addition, for the Chinese multimodal sentiment dataset CH-SIMS, we used the BERT-
based-Chinese model for text encoding. This step helps to transform text data into vector
representations with rich semantic information.

When processing the speech modality, we used the COVAREP tool to extract audio
features, including pitch, glottal source parameters, and 12 Mel-frequency cepstral coeffi-
cients (MFCCs). These features capture sound frequencies, voice source properties, and
acoustic features in speech, providing important information for sentiment analysis. For
the CH-SIMS dataset, we used the Librosa toolkit in Python to extract speech features such
as log fundamental frequency, constant-Q chromatograms, and 20 MFCCs.

For visual modality, we used the Facet tool to extract 35 facial features for the CMU-
MOSI and CMU-MOSEI datasets, which record facial muscle movements related to sen-
timent. For the Chinese sentiment dataset CH-SIMS, we used the OpenFace 2.0 toolkit
to extract 17 facial actio