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Abstract: In a high-speed rail system, the driver repeatedly adjusts the train’s speed and traction
while driving, causing a high level of energy consumption. This also leads to the instability of the
train’s operation, affecting passengers’ experiences and the operational efficiency of the system.
To solve this problem, we propose a variational graph auto-encoder (VGAE) model using a neural
network to learn the posterior distribution. This model can effectively capture the correlation between
the components of a high-speed rail system and simulate drivers’ operating state accurately. The
specific traction control is divided into two parts. The first part employs an algorithm based on
the K-Nearest Neighbors (KNN) algorithm and undersampling to address the negative impact of
imbalanced quantities in the training dataset. The second part utilizes a variational graph autoencoder
to derive the initial traction control of drivers, thereby predicting the energy performance of the
drivers’ operation. An 83,786 m long high-speed train driving section is used as an example for
verification. By using a confusion matrix for our comparative analysis, it was concluded that the
energy consumption is approximately 18.78% less than that of manual traction control. This shows the
potential and effect of the variational graph autoencoder model for optimizing energy consumption
in high-speed rail systems.

Keywords: high-speed train; variational graph auto-encoders (VGAE); energy saving; traction control;
link prediction

1. Introduction

The traction control of high-speed trains is a factor critical to ensuring their safety,
punctuality, and reduced energy consumption. However, traditional traction control
methods often make it challenging to achieve the optimal traction distribution in the face
of complex dynamic characteristics and environmental conditions during the operation of
high-speed trains. Especially in regards to the issue of energy consumption, drivers often
need to make a difficult trade-off between traction and speed, resulting in an unnecessary
waste of energy and reduced operating efficiency.

Saving energy during the operation of trains is essentially an optimization control
problem and has attracted the attention of many scholars. Control strategies based on
dynamic models are more common than others, but such methods face challenges in
accurately describing the dynamic characteristics of train operation [1]. Scholars have
applied modern intelligent control methods to the field of train operational control; thus, a
series of methods using deep learning have been developed. In terms of the driving strategy
of high-speed railway trains, Lei et al. optimized the genetic algorithm based on the speed
limit, slope of the actual route, and the constraints of the vehicle. Although it has an obvious
energy-saving effect, it has a high degree of computational complexity and strong data
dependence, and it is difficult to adjust its parameters [2]. Ning et al. proposed a high-speed
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railway train track optimization model considering continuous train constraints but could
not guarantee the global optimal solution [3]. Cao et al. proposed a method based on mixed
integer linear programming to optimize the trajectory of high-speed trains, but the process
of transforming the problem into a mathematical model is more complicated [4]. Based
on the Soft Actor Critic method, Su et al. proposed a method to optimize the train driving
strategy, but it is sensitive to the initial strategy, which may cause the algorithm to fall into
the local optimal solution or the convergence speed to be slow [5]. Zhu et al. transformed
the inverse problem of training energy-saving control into a decision-making machine
learning algorithm solved by a finite Markov process through deep reinforcement. They
adopted the algorithm of the Soft Actor Critic method to determine the optimal driving
strategy, but selecting the appropriate hyperparameters often requires a lot of experiments
and tuning [6]. Zhang et al. proposed a real-time energy-saving optimization method of
timetable based on an improved differential evolution algorithm and fast iteration method,
but the effect of reducing energy consumption is not obvious [7]. Ying et al. optimized the
curve of energy saved during train operation by quadratic constraint linear programming,
but it was limited to only the neutral zone system [8]. Havaei et al. proposed a new
intelligent proportional–integral–differential controller to optimize the velocity trajectory.
However, when there is integral saturation in the system, the performance of the controller
will decrease [9].

A high-speed railway system usually contains complex nodes and edges, and the
interaction and influence of these are complex to model by traditional methods. The
GNN (graph neural network) can capture important information in the network through
mechanisms such as convolution, attention addition, and information dissemination, thus
providing more accurate energy consumption prediction and energy-saving optimiza-
tion [10]. The VGAE developed from the variational auto-encoder (VAE) is a graph neural
network that uses latent variable learning to approximate the Gaussian distribution and
can effectively solve the link prediction problem [11–13]. Nowadays, an algorithm based on
graph neural networks is mainly applied in the field of transportation to solve the problem
of traffic flow prediction in urban traffic networks and is rarely applied to issues related to
high-speed trains [14–16].

The VGAE can effectively learn the relationship between nodes in complex systems,
which is crucial for modeling the interaction between components in high-speed rail
systems. By modeling the high-speed rail system as a graph, the VGAE can learn the low-
dimensional representation of nodes to encode and represent the system state effectively.
In addition, the VGAE can also expand the training data and improve the generalization
ability of the model by generating synthetic samples. Based on previous research, this
paper applies the link prediction method of the VGAE to the optimal control problem
of trains. To solve this problem, the implicit graph structure is established, and the train
traction problem is abstracted into a multi-classification problem. The VGAE is employed
to derive an intelligent traction control, which is continuously adjusted to calculate the
traction’s energy consumption.

2. The Formation of Energy-Saving Problem of High-Speed Trains

To address the energy-saving control problem of high-speed trains, we aim to reduce
energy consumption, improve traction efficiency, and reduce operating costs during train
operation. The multiple aspects covered by this question are shown in Table 1. This paper
applies advanced traction control and braking strategies to model the traction process,
accurately and dynamically adjusting the strategy to adapt to different operating conditions.
The force analysis of the train operation is shown in Figure 1. The train is regarded as a
single-particle model, and it is subjected to five forces during its operation: train gravity G,
support force N, traction force F, running resistance W, and braking force B. Because the
traction and braking force are two different working conditions of a train power system,
traction F and braking force B cannot exist simultaneously.
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Table 1. Classification of energy-saving strategies for high-speed trains.

Challenge Description

Braking strategy Minimize energy consumption during deceleration and parking
Traction control Through intelligent traction control, the train can use energy more efficiently
Energy recovery The energy released by the train braking is re-injected into the power supply system

Power system Optimize the power system of the train and improve the efficiency of energy utilization
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The high-speed train adopts a composite braking system with electric braking as the
main method and air braking as the auxiliary method. The most commonly used braking
method prioritizes non-wearing electric braking. In contrast, air braking or composite
braking is used in emergency braking situations and is difficult to describe in specific
application scenarios. The basic braking control modes include regular, emergency, anti-
skid, and parking braking [17]. Compared with pure mechanical braking, the driving
strategy combining regenerative and mechanical braking saves more energy [18]. The
brake handling level contains different braking modes, which can meet the requirements of
high-speed trains under different operating conditions. These include common brake levels
(1A, 1B, 2, 3, 4, 5, 6, 7, 8), OC, REL, and EB. In the same operating environment, different
braking operations consume varying amounts of traction electrical energy [19].

Without considering the influence of other conditions, the average increase in traction
energy consumption per second for each brake lever position is shown in Table 2. REL
corresponds to the traction position, and its traction energy consumption is greater than
that of other operations. In the event of an emergency, the brake lever needs to be placed in
the “EB” position. However, if the train is stopped on a track segment where evacuation
is not feasible, the driver can place the brake lever in the “OC” position to cancel the
excessive braking force. Therefore, compared to common braking positions, it results in
higher energy consumption, which is consistent with the statistical results in Table 2.

Table 2. Brake handling level statistics.

Brake Handling Level OC REL EB

Brake instructions Ignore passengers and activate the
emergency brake position Running brake position Emergency brake

Average energy consumption
increase (kwh/s) 0.1226 0.4718 0.1403

Brake handling level 1A 1B 2 3 4 5 6 7 8

Average energy consumption
increase (kwh/s) 0.08 0.0017 0.0008 0.001 0.0015 0.0029 0.0039 0.0051 0.0115

By improving the operation mode of high-speed trains, such as by optimizing the
acceleration and deceleration strategies of vehicles, improving the speed control of trains
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on different road sections, and optimizing the parking strategies of trains, the traction
energy consumption during train operation can be effectively reduced [20,21]. The optimal
traction control is studied to determine the application time of the brakes and the type of
operating brake handling. The braking problem can be transformed into the following
equivalent decision problem.

yB = q(St) (1)

Snt = yB(St) (2)

In Equations (1) and (2) above, St represents the running state of the train at decision
time t, which is comprehensively reflected by the running environment, the attributes of
the train, and the running state. q(.) maps the train state to the braking operation that the
drivers may perform; and yB represents the specific braking operation, and its value is a spe-
cific number of discrete quantities, namely yBϵ{OC, REL, 1A, 1B, 2, 3, 4, 5, 6, 7, 8, EB}.
Therefore, the process of obtaining an intelligent braking application strategy by learning
from actual driving data can be considered as solving a multi-classification problem. yB
operates for the drivers to change the current running state from St to Snt.

The energy saving can be determined by whether the resultant force ∆ of the train is
greater than 0. The energy-saving auxiliary labels defined for each sample are shown in (3):

Le =


a, ∆ < 0

b, ∆ = 0

c, ∆ > 0

(3)

where, when ∆ < 0, the direction of the resultant force on the train is consistent with the
running direction. In this case, most of the trains are idle, and the energy consumption does
not increase much. When ∆ = 0, the resultant force on the train in the horizontal direction
is 0. In this case, most trains are in the cruise state, and the energy consumption does not
increase much. When ∆ > 0, the direction of the resultant force on the train is opposite to
the running direction. In this case, most of the trains are running with an increased level of
energy consumption.

3. Energy-Saving Traction Control Model Based on VGAE

The proposed energy-saving traction control model based on the VGAE is divided
into two parts: one constructs the equilibrium training set, and the other constructs the
implicit graph structure according to the problem and uses the VGAE to solve the problem.
The overall process is shown in Figure 2 as follows:

The class of data with the least number of brake handling operations is defined as P0,
and the other classes are defined as Pi, i = 1, 2, ... , w − 1.

3.1. Constructing the Equilibrium Training Set

Like most multi-classification studies, the braking decision problem of high-speed
trains includes the phenomenon of sample imbalance; that is, the number of samples varies
greatly between categories, and it is difficult to extract effective information from classes
with too few samples.

The training set without any preprocessing leads to poor performance in multi-class
classification results, with unsatisfactory levels of model accuracy, robustness, and other
performance indicators. Moreover, the classification error of the minority class is more
serious than that of the majority class [22]. The phenomenon of data imbalance is often
ignored in the braking problem. While solving the air-braking decision problem of heavy-
haul trains, the literature [23] mentions that the information embodied in the few data sets
that are ignored may be related to some special conditions encountered by the train.
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Therefore, this paper needs to overcome the problem of data imbalance in the training
samples so that the number of samples in each case is as balanced as possible. The
implementation steps of this module are divided into two parts.

3.1.1. Eliminating Redundant Noise Data Based on KNN

The redundant data generated by high-speed train operations includes repeated
data and some useless surplus data. Noise data are generated by incorrect operation
when drivers are nervous. This information has a greater impact on a small number
of data sets [24], so this part only focuses on a small number of data sets. Considering
the classification performance and computational cost, the redundant and noisy data are
filtered by the KNN-based method. An equal number of samples were randomly selected
from small data sets and big data sets as known categories, and samples from the small
data sets were chosen successively as unknown samples. Equation (4) was used to calculate
the distance between unknown samples and known samples:

dxixj =

√
∑n

r=1

(
xr

i − xr
j

)2
(4)

Wherein dxixj represents the Euclidean distance between the unknown sample xi and
the known sample xj, and r represents the rth attribute.

We found the k samples with a high degree of similarity to the unknown samples and
determined the category of the unknown samples as the category with the most occurrence
times among the k samples. The selection of the k value was determined by the five-fold
cross-validation method, and the k value with the higher average accuracy was selected.
After determining k, we compared the actual value and the predicted value in the original
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high-speed train driving data for consistency. If they were not consistent, the data were
removed from a small number of data sets by filtering.

3.1.2. The Undersampling Algorithm to Solve the Imbalance Problem

After obtaining the filtered data set, the undersampling algorithm is used to randomly
select samples from big data sets to construct a training set with a balanced sample number
so that the number of samples extracted from each class satisfies Equation (5) as follows:

|PiLe1 Le2| = |P0|/|Le|2 (5)

The difference between this study and other undersampling algorithms is that each
class of big data sets satisfies | Pi |=| P0|; that is, under the premise of ensuring that the
number of each braking operation in the training set is the same, the number of energy-
saving state transitions in each class is also as consistent as possible. We suppose there is
no mapping of a certain relation under a certain operation or the number of samples is
less than the specified number of samples extracted. In that case, we should increase the
number of samples in the other operation cases to ensure the balance of the training sets.

3.2. Solution of Variational Graph Auto-Encoder Strategy

By constructing the graph structure of a high-speed rail system, the VGAE strategy
represents the complex relationship between the braking operation and the train attributes
in the operation process as a network of nodes and edges. It uses the neural network to
learn the posterior distribution and the potential representation of the nodes to design
the corresponding optimization algorithm or decision strategy so that the train drivers
can flexibly adjust the braking intensity and timing of the train according to the current
operational situation and environmental information to achieve the optimal level of en-
ergy consumption.

3.2.1. Diagram Construction

According to the description of the problem in Section 2, the braking operation and
running condition of a high-speed train are modeled as graph G = (V, E, F), as shown in
Figure 3:
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Where node V represents the set of running states of high-speed trains, and node set
F = {Le, f2, . . . , fm} contains attributes that reflect the running state of high-speed trains,
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in which the number of attributes is m, including the energy-saving label Le. The edge
set E contains the direction information, and the node representing St points to the node
representing Snt, indicating that the specific braking operation yB executed at a certain time
makes the train’s running state change from St to Snt.

The problem of this study is transformed into a link prediction problem of a directed
graph, which predicts the possibility of a certain type of link between nodes. It is similar
to the description of the possibility of synergistic lethality in the medical field [25]; that is,
according to the attributes of high-speed operations and their energy-saving labels, the
most likely braking operation is speculated.

3.2.2. Variational Graph Autoencoder Solution

The VGAE is an unsupervised learning framework that can utilize neural networks
to learn posterior distributions and obtain interpretable latent representations of undi-
rected graphs.

Compared with other tasks that can make link predictions [26], the VGAE model can
naturally integrate the characteristics of nodes, so the model has achieved good results in
the link prediction task. The basic structure of the VGAE defined in this study is shown in
Figure 4:
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Figure 4. The basic structure of variational graph auto-encoders.

In the figure, the first layer is the shared GCN, and the second layer is composed of
parallel GCNµ and GCNσ. The brake diagram has f nodes, where each node contains m
train operation attributes, and all the attributes are expressed as the attribute information
characteristic matrix X of f × m. The node represented by the current train state St has a
connection with all the nodes represented by the next train state Snt, indicating that the
drivers have performed the operation, and the relationship between the nodes with the
connection is 1; otherwise, the edge relation value is 0, and all the edge relations form
an adjacency matrix A of f × f. The feature matrix X and the adjacency matrix A of the
graph under each perspective are input into the graph autoencoder of each perspective,
respectively. The mean and variance of the target distribution are calculated, and the
Gaussian distribution of the target is obtained by using the graph convolution network, as
shown in Equations (6) and (7).

µ = GCNµ(X, A) (6)

log σ = GCNσ(X, A) (7)

The mean vector µ and the covariance matrix σ are learned by the GCN, where the
first layer parameter W0 in GCNµ and GCNσ is shared, and the second layer parameter W1
is not shared. The mean and variance are sampled by reparameterization, and the posterior
distribution of the input is determined by the mean and variance. Then, the potential vector
Z is obtained, as shown in (8) and (9).

q(Z|X, A) = ∏N
i=1 q(zi |X, A) (8)
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q(zi|X, A) = N
(

zi

∣∣∣µi, diag
(

σ2
i

))
(9)

Here, zi is the element in the latent vector Z, and q (Z | X, A) is the obtained posterior
distribution. The adjacency matrix is reconstructed using the inner product of hidden
variables, and the reconstruction is realized by calculating the probability of edges between
points. Finally, a reconstruction diagram of the energy-saving traction for high-speed train
driving is obtained as shown in (10) and (11).

p(A|Z) = ∏N
i=1 ∏ N

j=1 p
(

Aij
∣∣zi, zj

)
(10)

p
(

Aij = 1
∣∣zi, zj

)
= σ

(
zT

i zj

)
(11)

p(A | Z) is the process of calculating probability; p
(

Aij = 1
∣∣zi, zj

)
takes the inner

product of latent variables sampled from the distribution obtained by the encoder as the
decoder, where Aij is an element of A, and σ (.) is the Sigmoid activation function. The loss
function needs to determine the similarity between the reconstructed graph and the original
graph, as well as between the distribution calculated by the GCN and the standard Gaussian
distribution, which are measured by the cross entropy and KL divergence, respectively, as
shown in (12):

L = Eq(Z | X, A)[ log p (A | Z)]KL[q(Z| X, A)| |p(Z)] (12)

4. Simulation Process and Results of Train Energy-Saving Optimization

In the previous section, an energy-saving traction control model based on the VGAE
was proposed. This section describes our supervised training and reconstruction of train
traction based on real data of high-speed train operation, a simulation of this, and a
comparison of the results. Through the analysis of the algorithm and its energy-saving
performance, the effectiveness of the proposed model is verified.

4.1. Simulation Experiment Settings

The simulation experiment is carried out on the basis of the proposed scheme. Firstly,
it is necessary to select and set the experimental circuit, including the sample size and
circuit information of the brake handling. In addition, various parameters need to be set,
such as the sample size of the training set, the number of iterations, and the embedding
dimension. These parameter settings will directly affect the results and reliability of the
simulation experiment.

4.1.1. Experimental Circuit

The original data are the actual data of more than 190 thousand Tangshan Rail Car
Company high-speed trains running from 4 December to 22 December 2012. The unpro-
cessed data include 202 attributes, which can be divided into train attributes, operational
characteristics, and the predicted values of braking operations. The statistics of the level of
brake handling during the operation of the high-speed trains are shown in Table 3.

Table 3. Statistics of the sample size of brake handling.

Handling Level OC REL 1A 1B 2 3

Sample size 71 174,626 4672 4526 5619 3966
Proportion (%) 0.036 88.958 2.380 2.306 2.862 2.020

Handling level 4 5 6 7 8 EB

Sample size 2065 367 143 144 100 3
Proportion (%) 1.052 0.187 0.073 0.073 0.051 0.002
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During the operation of high-speed trains, the number of samples at each brake
handling level varies greatly, and there are too few cases in which the brake handling level
is “EB”. This study focuses on the normal driving process. Therefore, a few data sets
in this study are defined as cases in which the brake handling level is at “OC”. The line
containing all the braking level operations is used to verify whether the optimal control
method proposed in this paper is effective. The specific line data are shown in Table 4, and
the statistics of the brake handling levels in the simulation experiment data are shown in
Table 5.

Table 4. Specific line data.

Verified Line

Running distance 83,786 m
Running time 23 min 54 s

Maximum speed limit 300 km/h
Operating energy consumption 1747.175 kwh

Table 5. Statistics of brake handling level in simulation experiment data.

Handle Level OC REL 1A 1B 2 3

Sample size 2 1029 109 92 93 30
Proportion (%) 0.0014 72.06 7.63 6.44 6.51 2.1

Handle Level 4 5 6 7 8 EB

Sample size 40 23 1 7 2 0
Proportion (%) 2.8 1.61 7.0028 0.0049 0.0014 0

4.1.2. Parameter Setting

The number of balanced training sets extracted from big datasets and small datasets
is 30. The k value determined by cross-validation is four, and we use the European
distance function. The number of valid minority datasets obtained by filtering is 65. The
VAGE model uses a two-layer GCN as the encoder and uses the Adam optimizer to train
300 iterations at a learning rate of 0.01. The embedding dimension of the VAGE is 32.

4.2. Simulation Process

Firstly, the static attributes that cannot describe the sample distribution are eliminated.
The chi-square test is used to reduce the dimension of feature selection and eliminate
the attributes that are not related to the classification problem. The average interpolation
method is used for filling, and attributes such as train operation status and arrival distance
are increased. Finally, each sample contains 51 attribute values. The first part of the strategy
is used to obtain a balanced training set, and the attributes of these samples are extracted at
the next moment according to the time stamp to illustrate the changes in the train operation
caused by the braking level. In order to eliminate the influence of the graph direction on
model training, the braking problem is divided into three perspectives according to the
value of the energy-saving label le1 under the current high-speed train St of the training set,
as shown in Figure 5.

The center of each figure represents the node under the current status St of the high-
speed train operation, and the possible situation for the next status Snt is around the center
node. The figure is based on the true statistics of all possible situations in the training set.
Multiple VAGE models are used to reconstruct the braking relationship diagram of high-
speed trains from each perspective, and supervised training is performed in combination
with the braking value of the training set. In the process of verification, the energy-saving
braking label at each moment is applied to the reconstruction map from the corresponding
perspective in turn, and the edge with the highest probability of occurrence is selected as
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the most likely operation of the current driver. The predicted value constitutes an initial
strategy for train operation.
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4.3. Analysis of Simulation Results

Our analysis of the simulation results covers many aspects. The first is the evaluation
of the performance of the algorithm, which includes a comprehensive evaluation of the
performance of the proposed method in the experimental environment. The second is
the evaluation of its energy-saving performance. Compared with the traditional method,
a reduction in energy consumption and improvement in system energy efficiency are
achieved. Finally, the proposed method is compared with other existing energy-saving
methods to evaluate its advantages and disadvantages in practical applications so as to
verify its effectiveness and practicability.

4.3.1. Evaluation of Algorithm Performance

In this paper, the AUC and loss are used to measure the performance of the model,
and their changes with the number of iterations are shown in Figure 6 as follows:
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The AUC value in the figure tends to be 0.9; the loss value gradually decreases with
the increase in training rounds and finally stabilizes. This shows the validity of the model.

In addition, in order to further compare and illustrate our model, the confusion matrix
is defined to describe the classification effects of multi-classification models, and Pi, Ri, and
Fi are used to represent the accuracy, recall, and overall performance of model classification,
respectively, as shown in (13)–(15):

Pi =
nii

∑m
j=1 nji

(13)

Ri =
nii

∑m
j=1 nij

(14)

Fi =
2PiRi

(Pi + Ri)
(15)

Wherein nii is the number of correctly predicted samples in the class, and nij is the
number of samples that incorrectly classify brake operation i as brake operation j. The
results of Pi, Ri, and Fi are shown in Tables 6–8.
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Table 6. Comparison of Pi calculation results.

OC REL 1A 1B 2 3 4 5 6 7 8

VGAE 0.008 0.96 0.17 0.39 0.63 0.95 0.24 0.65 0 0.09 0
NBM 0.01 0.98 0.54 0.31 1 0.33 0.23 1 0 0.08 0

BP 0.005 0.95 0 0.46 0.4 0.92 0.95 0.45 0 0.05 0

Table 7. Comparison of Ri calculation results.

OC REL 1A 1B 2 3 4 5 6 7 8

VGAE 0.5 0.88 0.15 0.34 0.15 0.6 0.53 0.25 0 0.39 0
NBM 0.5 0.86 0.28 0.53 0.22 0.33 0.8 0.17 0 0.29 0

BP 1 0.69 0 0.49 0.04 0.4 0.5 0.87 0 0.43 0

Table 8. Comparison of Fi calculation results.

OC REL 1A 1B 2 3 4 5 6 7 8

VGAE 0.01 0.92 0.16 0.36 0.24 0.74 0.33 0.36 0 0.15 0
NBM 0.02 0.91 0.37 0.39 0.36 0.33 0.36 0.29 0 0.13 0

BP 0.009 0.79 0 0.47 0.07 0.55 0.65 0.59 0 0.09 0

From the above table, it can be seen that the classification effect of the VGAE for
traction control in this paper is not much different from that of the naive Bayesian and
BP neural networks. The classification effect of REL braking is better than that of others
because the number of samples of other classes in the validation section is too small. If the
number of samples of each class in the validation set can reach a certain value, the accuracy,
recall, and overall evaluation will be greatly improved. In addition, this study does not
have requirements that are too strict on the accuracy of classification. It is reasonable that
the predicted braking operation is inconsistent with the original operation, as we focus on
determining the amount of energy saved.

4.3.2. Energy-Saving Performance Evaluation

The running curve of the final running strategy is shown in Figure 7. The simulated
high-speed train reaches the speed limit when it goes from the starting point to more than
20,000 m, continues to cruise to more than 70,000 m at a speed close to the speed limit, and
then begins to slow down. Compared with the original real running curve, the optimized
traction control makes the change in speed smoother and ensures that the train runs within
the speed limit range, which ensures safety. Based on the original manual driving data,
the time error of two minutes is acceptable. The line data after the implementation of the
strategy are shown in Table 9.

Table 9. Simulation circuit data.

Travel Time Travel Distance

Original run policy 23 min 54 s 83,786 m
Optimized operation strategy 22 min 30 s 83,786 m

In the table, the running time of the optimized driving scheme obtained in this study
is 1 min 24 s faster than that of the original scheme. This can be explained by the fact that
the strategy in this study achieves the punctuality and accurate parking of trains on the
basis of safe driving, which are the preconditions for verifying energy saving.
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The traction energy consumption of the train is a piecewise function, and the calcula-
tion needs to be segmented. Combined with whether the brake handling is switched and
the speed changes, the energy consumption of different segments is counted, and the curve
of the total energy consumption with the driving distance based on the strategy proposed
in this paper is obtained, as shown in Figure 8.
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After the high-speed train goes 30,000 m in the diagram, the energy saving of this
research strategy begins to show. For each interval of 10,000 m, the cumulative energy
consumption of the original and the optimized strategy is shown in Table 10.
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Table 10. Cumulative energy consumption comparison.

Travel Distance Original Policy Optimization Strategy Energy Saving Energy Saving Percentage

30,000 m 989.41 kwh 962.08 kwh 27.33 kwh 2.76%
40,000 m 1173.89 kwh 1069.72 kwh 104.17 kwh 8.87%
50,000 m 1339.81 kwh 1178.25 kwh 161.56 kwh 12.06%
60,000 m 1530.78 kwh 1285.89 kwh 244.89 kwh 15.99%
70,000 m 1714.92 kwh 1393.53 kwh 321.39 kwh 18.75%
83,786 m 1747.18 kwh 1418.98 kwh 328.2 kwh 18.78%

In Table 10, with the increase in driving distance, the energy-saving percentage in this
study increases continuously, saving about 18.78% of the traction energy for the whole
journey. In the normal driving environment, compared with the manual driving strategy,
the optimized driving strategy in this study shows that some energy is saved.

4.3.3. Performance Comparison Test with Other Methods

In order to comprehensively evaluate the effect of the high-speed rail energy-saving
strategy proposed in this paper, based on existing data, comparative experiments are
designed to discover the performance differences between the VAGE method and the
Jaccard and Adamic–Adar methods in depth. The energy-saving percentage of the traction
energy consumption with the same distance interval under the VAGE, Adamic–Adar, and
Jaccard methods compared with the original strategy is shown in Table 11.

Table 11. Energy saving percentage under different methods.

Distance
Original VGAE Adamic–Adar Jaccard

Consumption Consumption Energy-
Saving Consumption Energy-

Saving Consumption Energy-
Saving

30,000 m 989.4 kwh 984.13 kwh 0.5% 1078.39 kwh — 1092.78 kwh —
40,000 m 1173.89 kwh 1092.67 kwh 6.92% 1230.19 kwh — 1200.42 kwh —
50,000 m 1339.8 kwh 1201.27 kwh 10.34% 1337.83 kwh 0.15% 1308.06 kwh 2.37%
60,000 m 1530.78 kwh 1308.84 kwh 14.5% 1445.47 kwh 5.57% 1415.69 kwh 7.5%
70,000 m 1714.92 kwh 1417.38 kwh 17.35% 1553.11 kwh 9.44% 1511.43 kwh 11.87%
83,786 m 1747.18 kwh 1438.26 kwh 17.68% 1591.89 kwh 8.89% 1519.44 kwh 13.03%

The VGAE algorithm saves about 17.68% of the traction power throughout the sim-
ulated driving route and shows energy savings earlier than the other algorithms. A
comparison of the speed and travel time between the proposed method and other existing
methods is shown in Table 12.

Table 12. The comparison of speed and travel time.

Method

Figure Correlation
(× Represents That the

Method Doesn’t Use It, and
√

Represents the Opposite)

Using GNN
(× Represents That the

Method Doesn’t Uses It, and
√

Represents the Opposite)

Travel Time Maximum Speed

Original × × 23 min 54 s 304.09 km/h
Adamic-Adar

√
× 23 min 58 s 299.42 km/h

Jaccard
√

× 24 min 30 s 299.82 km/h
VGAE

√ √
22 min 41 s 299.75 km/h

The maximum speed of the VGAE method does not exceed 300 km per hour, and
the travel time is shorter than that of the other methods. The experimental results can
verify the effectiveness of using a multi-view variational graph autoencoder to solve the
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energy-saving problem of high-speed trains, that is, using less energy in a shorter period
of travel.

5. Conclusions

This paper studies the energy consumption algorithm of high-speed train operations
and proposes a graph optimization algorithm based on the VGAE, which can fully consider
the complex relationship between nodes in the operation of trains. Through a simulation
and comparative tests, under the premise of ensuring safe, on-time, and accurate parking,
the control method in this study shows increased energy savings.

In the process of solving the driving strategy, this study balanced the sample size of
each class of the training set and considered some special cases. A algorithm based on the
KNN and undersampling is used to balance the negative impact of the number imbalance
between the data sets, and the braking problem of the high-speed train is transformed into
the link prediction problem of the implicit graph. The variational graph autoencoder is used
to solve the initial strategy of train braking, and the time of intermediate trips is adjusted
to ensure that the driving distance is consistent with the length of the route. The actual
feasible braking application time and brake handling operation are obtained. However,
the training data are based on relatively safe driving conditions, which makes the actual
driving situation, especially in the face of a complex or dangerous driving environment,
too idealistic. Therefore, for future research, we suggest inputting more train operation
factors and real-time data into the VGAE model to obtain a more optimized strategy.

In detail, in order to further evaluate the proximity between research and practical
applications, the following aspects need to be considered. First of all, the simulation data
used in this study may not be able to fully simulate the various complex situations and
changes during the operation of actual trains. The actual train operation environment
may be affected by many factors, such as the weather, road conditions, traffic conditions,
etc. These factors may have an important impact on the energy consumption of trains
and the driving strategy of their drivers. Secondly, our research focuses on the safety,
punctuality, and accuracy of trains, but in practical applications, safety is always the
primary consideration. Therefore, any control method that optimizes energy consumption
must ensure that the safety of the train is not sacrificed. Finally, the training data in the
study are relatively restricted, which may limit the generalizability of the algorithm to
actual driving environments. Therefore, incorporating more actual operating data and
factors into the model should be the focus of future research to ensure the effectiveness and
reliability of the algorithm in practical applications.
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Abbreviations

Symbol Symbolic Meaning

St Train operation state at decision moment t
S is state
T is moment

q(.)
Map the train status to the braking operation that the drivers
may perform

q is a mapping operation
The input in the function is St

yB Specific brake operation level
y is the target forecast label
B is brake

yB(.) Actions imposed by the drivers The input in the function is St

Snt Train operation status at the next moment of t nt is the next moment

le Energy-saving label
l is label
e is energy-saving

P0 Small datasets P is a set

Pi Big Datasets P is a set, Class i, i = 1, 2,..., 11

Pile1le2

When the current energy-saving label is le1, the drivers apply
Class i brake handling to change the energy-saving label to the
data set of le2

le1, le2∈Sla

dxi xj Similarity judgment of two nodes
d is the distance; subscripts represent the ith
sample and the jth sample

GCN(.) Graph convolution function

W0 Weight parameters to be learned

W1 Weight parameters to be learned

A Adjacency matrix

Ǎ Symmetric normalized matrix

X Node characteristic matrix

D Degree matrix

q(Z|X,A) Distributed calculation

p(A|Z) Probability calculation

L Value of the loss
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