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Abstract: Photovoltaic systems are prone to breaking down due to harsh conditions. To improve the
reliability of these systems, diagnostic methods using Machine Learning (ML) have been developed.
However, many publications only focus on specific AI models without disclosing the type of learning
used. In this article, we propose a supervised learning algorithm that can detect and classify PV
system defects. We delve into the world of supervised learning-based machine learning and its
application in detecting and classifying defects in photovoltaic (PV) systems. We explore the various
types of faults that can occur in a PV system and provide a concise overview of the most commonly
used machine learning and supervised learning techniques in diagnosing such systems. Additionally,
we introduce a novel classifier known as Extra Trees or Extremely Randomized Trees as a speedy
diagnostic approach for PV systems. Although this algorithm has not yet been explored in the realm
of fault detection and classification for photovoltaic installations, it is highly recommended due to its
remarkable precision, minimal variance, and efficient processing. The purpose of this article is to
assist technicians, engineers, and researchers in identifying typical faults that are responsible for PV
system failures, as well as creating effective control and supervision techniques that can minimize
breakdowns and ensure the longevity of installed systems.

Keywords: diagnosis; faults; photovoltaics; machine learning; supervised learning; extra trees

1. Introduction

In recent years, renewable energy sources have gained popularity, with photovoltaic
solar energy ranking as the third most developed technology behind hydroelectricity and
wind power. According to the “TrendForce Feb2023” report, photovoltaic solar energy is
experiencing remarkable growth, with an estimated world installed capacity of 350.6 GW
by 2023 [1]. The annual evolution of the global installed capacity of PV systems is shown in
Figure 1. This growth can be attributed to various factors, including reduced production
costs, government support policies, reliability, and the desire for localized energy produc-
tion. However, despite these benefits, photovoltaic installations may face challenges related
to aging and environmental constraints that can impact their efficiency and long-term
safety. Exposure to difficult environmental conditions can lead to malfunctions and anoma-
lies that result in power losses or even the risk of fire, depending on the severity of the
issue [2]. When the surface of a solar panel system is covered with dust for two months, its
performance can be reduced by 8.4% compared to a clean system according to studies [3,4].
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Therefore, it is crucial to be aware of any faults, control them to minimize their occurrence,
recover the maximum amount of energy produced, and reduce maintenance costs for the
PV system.

Figure 1. Annual evolution of the global world capacity of PV installations (TrendForce, 2023).

Several research studies have been conducted to identify the categories of faults and
diagnostic techniques for detecting various faults in photovoltaic (PV) systems. Some of
these techniques use climate data-independent methods based on the circuit resistance,
inductance, capacitance (RLC) and a signal generator to predict faults in PV systems, while
others rely on electrical parameters based on current and voltage indicators [3,5,6]. It is
noteworthy that these methods are not affected by climate data. In recent years, there has
been a renewed interest in the industrial applications of digital methods, such as the use of
machine learning for vehicle autonomy on public roads and fault diagnosis using data [7].
In the field of photovoltaics, various machine learning models, such as artificial neural
networks (ANN), k nearest neighbors (kNN), the Adaptive Neuro-Fuzzy Inference System
(ANFIS), Naïve Bayes (NB), decision trees (RF), and fuzzy logic, have been successfully
employed for fault diagnosis [3,8–13]. Several articles have demonstrated the effectiveness
of supervised learning algorithms in improving the diagnosis of PV systems with the
application of artificial intelligence [14,15]. Compared to traditional techniques that require
more computing time and human expertise, Machine Learning (ML) and Deep Learning
(DL) supervised learning algorithms are faster and more efficient in providing diagnostic
solutions [14,16–18]. For example, Amiri et al. proposed a Deep Learning algorithm that
combines convolutional and bidirectional recurrent neural networks to detect faults in a
PV system [19]. Additionally, several authors have conducted reviews to highlight the
effectiveness of Machine Learning and Deep Learning algorithms in diagnosing PV systems,
as they accelerate and improve diagnostic solutions for PV systems [20–27]. This article
specifically focuses on supervised machine learning algorithms. To make this happen,
the authors propose an ANN model to detect short-circuit faults in a grid-connected PV
module. They use Levemberg’s algorithm Marquardt and the ANN in MATLAB/Simulink.
The authors conclude that the algorithm effectively recognizes short-circuit faults through
the trained data [11]. Similarly, Lu et al. propose the random forests algorithm to detect
partial shading, short circuit, open circuit, and aging faults on a simulated PV field. The
study utilized irradiation, temperature, current, and voltage at maximum power point
(MPPT) as inputs for the model. A comparison of the results demonstrated the superiority
of the Random Forest (RF) model over the kNN and SVM models [28]. The article proposes
the use of a kNN model to detect and classify faults in a PV system, including bypass diode,
line-to-line, and open-circuit faults. The results from both simulated and experimental
data show an accuracy of 98.7% [3]. Badr et al. demonstrated the effectiveness of the
SVM model in identifying various faults, such as line-to-line faults, open circuit, partial
shading, and MPPT failure. The algorithm used current and voltage data from the PV
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field as inputs, resulting in a fault classification accuracy of 99.4% for detection and 98%
for diagnosis [29]. Dhimish et al. developed a Mamdani fuzzy logic controller to detect
bypass diode faults and hot spots using voltage drop, percentage of open circuit voltage,
and short circuit current as input data. The obtained results demonstrate that the proposed
method can accurately identify 13 types of defects, including the hot spot defect, with 96.7%
accuracy [30–32]. Additionally, a C4.5 decision tree-based algorithm is proposed to diagnose
and detect string, short circuit, open circuit, and line-to-line faults in a grid-connected PV
system. The results indicate that the proposed approach correctly classifies defects with
an overall accuracy of 99% [33]. In the literature, several articles have widely discussed
several aspects of machine learning in fault diagnosis by highlighting the models used, their
advantages and disadvantages, the parameters studied and the results obtained [34–37].
For instance, a systematic review of the use of Artificial Intelligence (AI) techniques in
photovoltaic (PV) fault diagnosis and identification revealed the significant role of AI
in image analysis, anomaly detection, and optimization. The authors concentrate on
AI techniques such as Machine Learning, Deep Learning, Machine Vision, and Natural
Language Processing (NLP) [37]. An analysis of the reviews employed in this paper
indicates that machine learning techniques are extensively utilized in the diagnosis of PV
systems. However, the implementation rate of ensemble algorithms remains very low.
This article proposes a new classifier Extra Trees (ETC) and its algorithm for the rapid
diagnosis of faults in photovoltaic systems. As demonstrated in various publications across
different fields, including economics [38], medicine [39,40], hydraulic engineering, and
telecommunications [41–43], the Extra Trees algorithm has shown robustness to noise, a
significant reduction in bias errors, and lower variance compared to other models such as
Support Vector Machine (SVM), Artificial Neural Network (ANN), Random Forest (RF),
and Decision Trees (DT) [39]. Furthermore, this algorithm exhibits a lower computational
complexity rate compared to other Machine Learning (ML) classification models, such
as DT, Adaptive Boosting (AdaBoost), Naïve Bayes (NB), SVM, RF and KNN [39]. To
the best of our knowledge, previous research on fault detection and classification in PV
systems has not yet considered the Extra Trees Ensemble (ETC) algorithm. Therefore,
in Section 5, we provide a detailed presentation of the Extra Trees model. This paper
examines the types of faults in PV systems, their causes and consequences, and presents the
most popular supervised learning methods for PV fault diagnosis in recent years. It also
summarizes the reviews published on Artificial Intelligence methods for PV fault diagnosis
from 2016 to 2023 [37,44–52]. Finally, the Extra Trees algorithm is proposed as a new robust
classifier capable of improving the inadequacies of other classifiers in the fault diagnosis of
photovoltaic (PV) systems. The purpose of this paper is to provide technicians, engineers,
and researchers with information to guide them in identifying the primary faults to check in
the event of a PV system failure. Additionally, it aims to assist in selecting the appropriate
model for developing control and supervision tools for PV installations to reduce the rate of
outages. Section 2 of this paper describes the most common types of faults encountered in
PV installations, their origins, and their impact on system performance, Section 3 presents
Machine Learning and the most commonly used models for detecting faults in photovoltaic
systems, as well as their contributions, Section 4 discusses these methods and introduces a
new method for diagnosing faults, Section 5 presents the Extra Trees model and Section 6
contains the conclusion.

2. Faults in a PV System

In photovoltaic systems, various types of faults can cause power loss in some way. To
classify the faults in PV systems, some authors have categorized them according to the
components involved [5]. Figure 2 represents the description of faults likely to occur in a
photovoltaic system.
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Figure 2. Classification of fault types in a PV system.

2.1. Photovoltaic Generator Faults

In a photovoltaic system, a fault refers to an atypical behavior that signals a potential
loss of power or complete system unavailability. Given the challenging environmental con-
ditions that photovoltaic systems operate in, defects can arise across various components,
each with a unique set of issues. These faults may manifest themselves in the photovoltaic
array and/or in the inverter, which can partially identify them [53]. PV generators can
experience different types of faults, which are classified based on the area they affect. These
categories comprise electrical, physical, and environmental faults [54]. However, faults can
occur in photovoltaic systems, with the most common being on the solar panel side. These
include shading, mismatch, potential-induced degradation, hotspot, open circuit, short
circuit, line-to-line, line-to-ground, arc, bypass, and anti-reverse diode faults. Also, there
are different types of faults that can occur in an inverter, which include open-circuit faults,
short-circuit faults, insulation faults and so on [36,55]. The following section provides a
detailed explanation of the most common faults provides a detailed explanation of the
most common faults found in a photovoltaic installation. This information will help in the
diagnostic process.

Based on the analysis of Figure 2, the following subsections describe some of the most
common faults that can affect a PV installation.
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2.1.1. Ground Fault

Ground fault (F1) is an accidental short circuit between one or more current conductors
and the earth. It is the most common type of fault that occurs due to cable insulation failure.
This fault poses a serious risk as it can produce current arcs at the points of failure, leading
to electric shocks. Furthermore, it causes an increase in current in the affected conductors,
resulting in imbalances and changes in the architecture of the PV array [56].

2.1.2. Short-Circuit Fault (SCF)

A short-circuit fault occurs when two points in a circuit of different potentials acciden-
tally connect [57]. This fault can happen within the same module string (intra-string fault
F2) or between two modules of different strings (inter-string fault F3). Poor wiring between
the generator PV and the inverter, animal damage to cables, and water infiltration into the
PV modules are the causes of this fault [58]. Short-circuited modules result in a drop in
network voltage while the current significantly increases. Generally, a short-circuit fault
circuit causes a line-to-line fault [59].

2.1.3. Line to Line Fault

According to Pillai et al. [36], a line-to-line fault happens when there is an unintended
short circuit between two points of a PV array with different potentials. This type of fault
can occur between modules of the same string or between modules of adjacent strings. It
can also occur between conductors of the same circuit with different potentials, without
involving any earthing point. Furthermore, when this fault occurs between two modules
of the same order from different strings, it is sometimes referred to as a bridging fault [60].
The outcome of this fault is a decrease in the open circuit voltage, while the short circuit
current may remain unchanged. This voltage reduction results in a modification of the
current-voltage characteristics of the photovoltaic field. Please see Figure 3 for a summary
of the most common faults in a PV system.

Figure 3. (a) Partial shading of a PV module (b) Total shading of a PV module.

2.1.4. Open-Circuit Fault (OCF)

An open-circuit fault (F4) occurs when a cable inside a module or a PV module string
accidentally disconnects. This fault affects the total resistance of the PV generator and
causes a significant increase in the short circuit current [61]. However, an open-circuit fault
is more damaging than a short-circuit fault due to the increased current flow. The breakage
of connection wires between cells or PV modules, faulty diodes, and the deterioration
of connection cables usually cause this fault [59]. An open-circuit fault is a result of the
line-to-line fault, which itself is caused by the short-circuit fault [22].
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2.1.5. Arc Fault

An arc fault is a type of fault that occurs when an electrical current passes accidentally
through air or another dielectric material [55]. Detecting arc faults is a complex process
because they occur intermittently. Arc faults can happen within a single conductor (series
arc fault F5) or between two parallel conductors (parallel arc fault F6). Additionally, faults
can occur due to the breakage of insulation cables, which can cause significant noise in the
output voltage and current of the PV network [56].

2.1.6. Mismatch/Shading Defects

A mismatch fault occurs when a group of photovoltaic cells has different electrical
characteristics [62]. This type of fault can be permanent, like an open-circuit fault, or
temporary, like partial shading. Partial shading is a specific type of mismatch fault and
is one of the main causes of failures in a PV system. The shading phenomenon can be
classified as uniform or non-uniform [62]. The source of uniform shading can be adjacent
buildings, passing clouds, trees, other signs, bird droppings, dirt and so on. Non-uniform
or partial shading defects occur when some cells or modules receive direct irradiation and
temperature in a non-uniform manner. On the other hand, uniform or total shading occurs
when all cells or modules receive uniform but reduced exposure, resulting in a constant
reduction in the output current and voltage of individual cells in a string. It is important
to note that technical abbreviations should be explained the first time they appear [63].
Figure 3 shows a partially shaded and fully shaded module.

The setting of the sun causes shading of the photovoltaic (PV) module, which reduces
its power output. It is important to note that although shading has a negligible impact
on the PV module’s overall performance, it should still be avoided. Shaded cells can
become reverse polarized, consuming energy instead of producing it, leading to a drop
in power and the hotspot phenomenon [64]. The hotspot phenomenon can accelerate the
aging process of the PV system and may even lead to an open-circuit fault or fire risks [65].
Figure 4 provides an illustration of the various faults described above.

Figure 4. Illustration of ground faults F1, short-circuit faults F2, F3, open-circuit faults F4 and arcing
faults (F5, F6 in a PV array).
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In the case of a short circuit, the output voltage drops significantly while the out-
put current slightly increases. Short-circuit faults can affect cells, modules, and bypass
diodes [66]. Bypass diodes are protection devices against shading and are connected in
parallel to each group of cells as show in Figure 5. However, these diodes can be damaged
during factory electrical discharge and high reverse voltage due to any fault [67]. If the
bypass diode is faulty, there will be a sudden drop in power due to the absence of the
voltage chain. The fault may be caused by non-functioning diodes, diodes reversed during
assembly, poor diode connection, disconnection, or corrosion of the junction boxes. A
bypass diode fault can cause damage such as hot spots, electric arcing, and the risk of fire if
the diode is in an open circuit [68].

Figure 5. Illustration of a group of cells with bypass diode disconnected.

PV modules can degrade in several ways, including discoloration of the encapsulant
due to exposure to UV rays, which causes the PV cells to turn brown or yellow. Another
form of degradation is delamination or the separation of different layers of the PV module.
There are also two specific types of degradation to be aware of. Potential Induced Degrada-
tion (PID) occurs when there is a potential difference between the metal frame of the PV
module and the solar cell, which can significantly degrade the electrical characteristics of
the PV cell. Light-induced degradation (LID) is a loss of performance that occurs when the
boron–oxygen effect and the boron–iron effect are activated after the PV modules have been
exposed to sunlight [5]. In addition to the breakdowns observed at the PV generator level,
the photovoltaic inverter is also a vulnerable component with unreliable performance [68].
Therefore, it is necessary to have knowledge of the common faults associated with this
component.

2.2. PV Inverter Faults (PVI)

In photovoltaic applications, one of the biggest challenges is ensuring that power
electronics are reliable in order to optimize energy production. The inverter serves as the in-
terface between the photovoltaic generator and the network and/or load. Its main function
is to convert the continuous energy produced by the photovoltaic modules into alternating
energy that is identical to the network. This allows the inverter to access electrical infor-
mation from the generator and the electrical network, making it an intermediary between
the two. Additionally, the inverter is equipped with a high level of data granularity, which
enables it to detect electrical anomalies in real-time and alert the user through an audible
signal or a message. However, despite its advantages, the inverter is vulnerable and subject
to faults. During its operation, it is exposed to overvoltage and overcurrent constraints due
to transient operating conditions, mechanical turbulence, temperatures, and humidity [68].
The IGBT (insulated gate bipolar transistor) power switch, being the main energy transfer
component, is the most likely source of failure in the photovoltaic inverter [69]. The most
common faults that can occur during the inverter’s operation are open-circuit, insulation
faults and short-circuit faults [70].

2.2.1. Short-Circuit Fault

A fault can occur due to breakage of the connection wire, deterioration of the gate
circuit, or overcurrent. However, a short circuit happens very quickly, making it difficult
to detect. Shortly after appearing, it transforms into an immediate open-circuit fault [71].
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Short-circuit faults automatically shut down the system, making them more dangerous
than open-circuit faults.

2.2.2. Open-Circuit Fault

An open-circuit fault can occur in a photovoltaic system due to a disconnection of the
jumper wire, overheating, or a device driver fault, resulting in a broken connection. Unlike
a short-circuit fault, an open-circuit fault may not immediately affect the inverter, but if left
unaddressed, it can lead to serious accidents with other components [71]. This is because an
open-circuit fault distorts the output current of the inverter, causing an increase in the total
harmonic ratio, which does not meet the grid connection requirements. Table 1 provides
a list of main faults that can occur in a photovoltaic system, and Figure 6 illustrates an
overview of the open-circuit fault that can occur in the IGBT transistor of a PV inverter.

Table 1. Summarizes the various faults, their causes, and the resulting consequences.

Type of Defects Causes Effects Consequences

Internal

Short circuit Manufacturing defect Low impedance, blocked path
between internal power rails Reduction of power produced

Cell microcracks Manufacturing defect Difference in module
characteristics

Unable to deliver power to the
load

Broken modules Shock during transport

Degraded modules Aging Drop in power delivered Low production

Bypass diode Manufacturing defect, wiring defect Can’t drive Unable to prevent the appearance
of hot spots, electric arc, fire risk

Open circuit Manufacturing defect, wiring defect Lack of access path for the power
produced No power produced

External Mismatch fault
Temporary Temporary shading Cloud Drop in production, risk of fires

Permanent Equipment damage Blackout No production

Shading
Temporary

Passage of clouds, weather conditions Uneven distribution of irradiation
on the surface of the modules Drop in power produced

Natural disaster
Module reverse bias Hot spot/fire hazard

Permanent Partial shading

PV field

Short circuit
Bad wiring between inverter and PV
field, chewing of cables by animals,

water infiltration into modules

Drop in network voltage and
increase in current Drop in production

Open circuit Accidental breakage of connecting
cables

Drastic drop in short-circuit
current Drop in production

Line to line Faulty connection link between the
different rail circuits Power loss

Reduction of open circuit voltage,
modification of characteristic IV

of the PV field

Arc fault Accidental passage of current in a
dielectric

Strong noise in currents and
voltages Fire hazard

Line to ground Ground wiring fault, corrosion Drop in network voltage and
increase in current

Risk of electrocution, variable
voltage

PV
inverter

Inverter open circuit

Absence of gate control, connection
wire breakage due to high short-circuit
current, external disconnection due to

vibrations

Deterioration of phase current
and torque External radiation

Inverter short circuit
High gate voltage, delamination and

cracking in the solder layer, static
locking and high temperature

Excessive leakage current,
affected phase current close to

zero
Temperature variation

Insulation fault
Humidity, high heat, poor connection
in the solar panel junction box, aging

of solar panels
No power

Grid Grid anomalies Electrical overload, deterioration of
conductive insulators

Network disruption, voltage dips
and peaks, harmonics

Interruption of current flow, short
circuit
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Figure 6. Representation of an open-circuit fault on an inverter arm.

3. Machine Learning and Fault Diagnosis

Artificial intelligence (AI) has become increasingly popular over the recent years,
and is now used in various aspects of human life [72]. AI refers to a set of concepts
and algorithms that aim to replicate the reasoning of the human brain [72]. The main
applications of AI are automatic learning (ML) and deep learning (DL). Machine learning
is a type of AI that enables software applications to predict results of a model with greater
accuracy, without the need for explicit programming. However, machine learning, which
is the dominant paradigm of AI applications, relies on historical data as input to predict
new output values, and can be categorized into three subgroups [72], each using a specific
algorithm as shown in Figure 7.

Figure 7. Illustration of the Machine Learning hierarchy.

3.1. Supervised Learning

Supervised learning algorithm is a type of algorithm designed to learn how to clas-
sify data based on certain input parameters. The algorithm is trained on a set of data
accompanied by the desired outputs or labels. This helps the algorithm to identify pat-
terns and correlations in the data, which can be used to predict or classify new data. The
goal of supervised learning is to accurately predict the correct output or label for future
observations based on what it has learned from the training data [5]. Supervised learning
problems (see Figure 8) can be described mathematically in the following way: we have
a set of n samples

{→
xi

}
i∈{1,2,..,n}

in a universe Ω and their respective labels {yi}i∈{1,2,..,n}

in a universe P , we define a function φ: Ω → P (which is fixed and unknown) that takes
the sample as input and produces the labels yi = φ

(→
xi

)
+ ωi as output, where ωi is some

random noise involved which can affect the accuracy of the labels generated from the
samples. Thus, the data used makes it possible to determine a function f : Ω → P such that
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for any pair (
→
x , y

)
∈ Ω ×P , f

(→
x
)
≈ y. The universe on which these data are defined

is typically a set of possible inputs for the algorithm Ω = RN . As a result, the whole{(→
x i, yi

)}
i∈{1,2,..,n}

makes up the training data set. Figure 8 provides a demonstration of

how a learning algorithm operates in a supervised learning environment, which differs
from unsupervised learning.

Figure 8. Supervised learning principle.

3.2. Unsupervised Learning

This learning technique does not require labeled data to assign classes. Unlike su-
pervised learning, it identifies the structure of the dataset itself. Various algorithms are
employed to enable the machine to scan through the data sets and search for any signifi-
cant connections [5]. The probability of unsupervised learning enabling the discovery of
undetectable models or classifications by humans is high

{→
xi

}
i∈{1,2,..,n}

in a universe Ω, we

learn a function Ω which verifies certain properties as shown in Figure 9, explaining the
operation of an unsupervised learning algorithm.

Figure 9. General principle of unsupervised learning.

3.3. Semi-Supervised Learning

This type of learning is a combination of supervised and unsupervised learning. The
algorithm learns from a small amount of labeled data to become familiar with it and
then explores the data on its own to expand its reasoning on the dataset. However, this
type of learning is not commonly used in machine learning applications [5]. It takes into
account both labeled and unlabeled data to reduce the dependence on data and improve
the performance of the PV system fault detection [73].

In this article, we review the most common supervised learning algorithms used in
diagnosing faults in solar photovoltaic installations. Machine learning algorithms are efficient
and precise in solving complex and non-linear problems, unlike other methods [23]. In
the literature, several ML techniques are used for fault diagnosis in PV systems [72,74].
Figure 10 shows the structure of Machine Learning (ML) techniques in PV system detection
and diagnosis.



Appl. Sci. 2024, 14, 2072 11 of 29

Figure 10. Illustration of the structure of Machine Learning in PV fault diagnosis.

This particular approach is useful in reducing faults and enhancing the performance
of a PV system. However, the accuracy of defect detection may vary depending on the
principle and model architecture of the machine learning (ML) used [75]. There are various
types of supervised learning models available, with the most common being k-nearest
neighbors (KNN), decision trees (DT), artificial neural networks (ANN), fuzzy logic (FL),
random forest (RF), support vector machines (SVM), and so on [31,34,57,76–78]. Depending
on the expected result, an author can choose to use a single model or combine two or three
models to assess the relevance of their work. As a result, the machine learning models
discussed in this article are categorized into simple models and hybrid models, among
other things.

3.4. Simple Fault Diagnosis Models
3.4.1. Artificial Neural Networks (ANN)

An artificial neural network is a type of supervised learning model that is based on a
simplified model of the human brain. These networks consist of highly connected elemen-
tary neurons that operate in parallel. Each neuron can have multiple inputs and calculate
a single output based on the received information. A hierarchical network structure is
always a network, consisting of an input layer, several hidden layers, and an output layer
with numerous neurons in each layer, as depicted in Figure 11.

Figure 11. Structure of an artificial neural network.

Artificial neural networks (ANNs) have two key properties that make them useful
in the field of production systems diagnostics. Firstly, they are capable of approximating
non-linear functions, and secondly, they are well-suited for pattern recognition tasks, such
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as PV system diagnosis [79]. ANNs do not rely on mathematical models and are, therefore,
applicable to complex systems, making them highly advantageous. However, the learning
process, network architecture, and explanation of ANNs have certain limitations [80]. In
the literature, ANNs are widely used to characterize PV system failures [81]. For instance,
an ANN model has been proposed to identify and detect several faults in a photovoltaic
installation, including short-circuit faults, short-circuited bypass diodes, inverted bypass
diodes, disconnected bypasses, module open circuits, and connection resistance between
modules. The results obtained from the experimental data showed good accuracy in
detecting and classifying different defects [79,82]. Additionally, to improve the performance
of a PV module, the IV characteristics of a solar cell can be modeled using ANN [83]. A
comparison between the electrical equivalent model and the thin film technology model
showed good accuracy of the ANN with the crystal technology model. Similarly, a new
diagnostic model has been developed that uses current and voltage data at the maximum
power point to detect short-circuit and disconnected string faults with the aid of ANN [84].
The comparison between the simulated model values and the actual values showed an
accuracy rate of approximately 98.6%. Furthermore, ANNs made it possible to detect the
open switch fault of the inverter based on the characteristics of the phase current [85].
This technique was found to provide better control than using basic DTC in terms of
sound. A study was carried out using irradiation and temperature data on two PV fields
of different capacities (2.2 kWp and 4.16 kWp) to detect partial shading and module
chain disconnection faults with the ANN algorithm [10]. The model was found capable of
detecting defects with an accuracy that varies between 96.7 and 98.1%, respectively, without
and with shading. An accuracy of 97.6% with the 2.2 kWp field and 97% with the 4.16 kWp
field was obtained. This decrease is due to the variation in the nature and capacity of
the PV field in terms of the amount of data and the number of faults detected. Moreover,
the use of ANNs significantly reduced the risks associated with manual repairs and the
time necessary for diagnosis when detecting reverse diode faults and partial shading of a
photovoltaic module array from simulated data [86]. A technique based on fast Fourier
transform and ANN was able to detect open-circuit and short-circuit faults in the 5-level
cascaded inverter using the inverter’s output voltage [87,88]. Dhimish et al. showed that
ANNs can detect partial shading, short circuits, ground faults, and degradation faults, with
an efficiency of approximately 99% for correctly classified defects [89]. An ANN-based
approach is proposed to detect and classify series, parallel, short-circuit, and open-circuit
resistance faults under different irradiation and temperature conditions in a PV system [90].
The results of the simulation and experimental study show a good correlation with a
classification error rate of 2.7%. Dhimish et al. also found that ANNs are useful in the
detection of bypass diode faults in short circuits and open circuits, with the model being
96.4% and 92.6% accurate in detecting short-circuit and open-circuit bypass diode faults,
respectively [89]. In a review of the application of ANNs in the diagnosis of PV systems, Li
et al. emphasized the importance of ANNs in the field of solar photovoltaics [21]. Finally, a
new approach to diagnosing short-circuits faults and disconnected strings based on ANNs
in a PV system was found to have an accuracy of 98.6% [86].

3.4.2. Support Vector Machine (SVM)

SVM is a supervised learning algorithm based on statistical learning theory and the
structural principle of risk minimization and was first presented in 1995 by Cortes and
Vladimir Vapnik [90,91]. This model is used for classification and regression problems
such as medical diagnosis, communication, biology, engineering, etc. The main goal of this
model is to search for a hyper-plane in a high-dimensional space that best separates different
classes of data with a large margin [92]. This model performs well when the separation
margin between classes is observable with large-dimensional spaces. Nevertheless, it
shows that the model detected the line-to-line fault with about 95% accuracy. However, it
is not suitable for large amounts of data [93]. The structure of the SVM model is given in
Figure 12.
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Figure 12. Overview of SVM algorithm principle.

The hyperplanes H1et H2 pass through the closest samples and are parallel to the
hyperplane H, respectively. Points located on hyperplanes H1et H2 are the samples that
have all the information used to design the SVM classifier. In the context of fault diagnosis,
this model can make decisions on small quantities of data because a large amount of implicit
data classification knowledge can be extracted [92]. Several authors have implemented
the SVM algorithm successfully in many fields. For example, Kuraku et al. used the SVM
algorithm for open-circuit fault detection of the IGBT switch of an H-bridge multilevel
inverter [94]. Natarajan et al. proposed the SVM model to classify module crack defects
and hot spot defects due to shading and dust accumulation. Intentionally created defects
were detected and classified in real time with 97% accuracy [93].

3.4.3. k-Nearest Neighbor Algorithm (kNN)

The kNN model is a method for classifying a new object by examining its distance
from the nearest neighbor of training samples in feature space. It belongs to the family of
supervised learning algorithms. This algorithm does not require learning strictly speaking
but just focuses on storing the training dataset, hence the term lazy algorithm. Indeed,
to predict the class of new input data, it will look for their k closest neighbors using
the Euclidean or Manhattan distance or others in order to choose the class of the majority
neighbors. Two voting schemes exist to determine a label namely, the majority vote assigned
to the class that appears most commonly in its k-nearest neighbors and the weighted sum
voting where each vote is weighted on the basis that the closer nearest neighbors must
count more than distant neighbors [83]. As a result, the kNN classification model depends
on three main determinants which are: the training samples, the distance between the
training samples (labeled data) and the test samples (unlabeled data) and the value of
k [95]. Figure 13 shows the working principle of the kNN model.

Figure 13. Synoptic overview of the KNN algorithm.
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The kNN algorithm is straightforward and does not require training before mak-
ing predictions. Its accuracy is not affected by adjusting several parameters or making
additional assumptions [96]. It is also a versatile model that can be used to classify or
regress and is suitable for sparse data [96]. Furthermore, this algorithm is threshold value
independent and can detect small to medium data samples with high accuracy and speed,
all while being relatively low cost compared to other existing methods such as DT and
SVM [78,97]. However, as the number of observations and independent variables increases,
it can become slower. The effectiveness of the algorithm is limited by the fact that it only
has access to one class of healthy operational data [98]. However, this problem can be
avoided by only using data that are in optimal condition [99]. Naik et al. used the KNN
model to detect faults in the transmission line of a power system [79]. This model made it
possible for all the cases tested to have a detection and classification accuracy of 100% [79].
Furthermore, a similar study made it possible to detect and classify all the possible faults
of a six-phase transmission system [100]. Two new KNN-based diagnostic methods for
classifying eight types of faults of a power transmission system yielded a success rate of
98% of detected faults [101]. Furthermore, Madeti et al. proposed the KNN model to detect
and classify bypass diode, line-to-line and open-circuit faults in a PV system. The results
generated from the simulated model and the experimental data present an accuracy of
98.7% [3]. This same KNN model was proposed from the experimental data to detect open
circuit, line-to-line and partial shading faults to improve the results with an accuracy of
99.84% [102]. Also, a KNN model proposed to detect the open-circuit fault of an inverter
using the output current and voltage of the inverter achieved good results with an accuracy
of about 99.77% [103]. Similarly, Livera et al. showed that among the machine learning
models used for the detection of open circuit, short circuit, bypass diode shorted and
inverter failure faults, only the KNN model achieved an accuracy of 100% against the SVM,
DT and FL models [8].

3.4.4. Fuzzy Logic (FL)

Fuzzy logic is a branch of mathematics that allows a computer to model the real world
in the same way that people do. It makes it possible to improve expert systems (appropriate
where humans can linguistically describe the solution to the problem) because typically
human knowledge is imprecise and vague. It was set up by Lofti Zadeh in 1965. The
principle of a fuzzy system is to be able to calculate output parameters by providing the
system with a set of rules formulated in natural language and is composed of three parts as
illustrated in Figure 14.

Figure 14. Synoptic overview of a fuzzy logic system.

The fuzzy logic model has the advantages of being simple, does not need a large
amount of training data, and provides easy ways to deal with antagonisms in the well-
defined knowledge base [30]. With fuzzy logic, rules can be generalized to cover a larger
number of situations. However, in fault diagnosis, fuzzy systems are useful due to the
fact that diagnosis often needs knowledge-based processing [30]. In practice, it is almost
impossible to obtain adequate representations of the complex and highly nonlinear behavior
of faulty systems using quantitative models. Several authors use the fuzzy logic controller
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also to resolve the uncertainties and inaccuracies associated with the description of the
system [103]. In the work of Varga et al. The fuzzy logic algorithm is used for the diagnosis
of renewable energy systems. A comparison with the PSD (power spectral density) method
showed better accuracy compared to PSD [104]. Tamissa et al. examined the possibility
of open circuit diagnosis in a three-phase inverter using the fuzzy logic controller. The
simulation results show a better performance of the algorithm in the classification of desired
defects [105]. Furthermore, Mehta et al. used fuzzy logic control to detect an open-circuit
fault in a five-level cascaded inverter. The total harmonic distortion (THD) of the output
voltage and the average output voltage are used as diagnostic variables. After simulation,
the results obtained show the fault tolerance of the proposed method [106]. Mamdani-type
fuzzy logic has been proposed to detect hot spot faults in PV systems. Three parameters
are used as diagnostic variables (voltage drop, open circuit voltage, short circuit current).
After simulation, the model shows an accuracy of 96.7% in detecting hot spots [30]. A
fuzzy logic algorithm is used by Zaki et al. to detect and identify eight types of faults in
a photovoltaic installation. It uses current ratios, maximum operating point voltage and
open circuit voltage ratio as input parameters. All experimental defects were identified and
classified with 99% accuracy [107]. Furthermore, it is also shown that fuzzy logic can be
used to detect and classify faults in a solar photovoltaic system. The authors demonstrate
that the proposed technique can accurately diagnose various types of faults with 98% [107].

3.5. Hybrid Models for Diagnosing PV Systems

At this stage, most of the models used provide accurate results in fault diagnosis, each
with its own strengths and weaknesses. However, these models, although effective, do not
realize the full potential of ML on all data samples. One way to improve the performance
of ML in task execution is to combine the advantages of simple algorithms in order to
solve problems that they are incapable of solving alone. As a result, some authors have
proposed improved and/or hybrid versions of simple algorithms to carry out diagnostic
work in photovoltaic systems. The ANFIS model (Adaptive Neuro Fuzzy Inference System)
is an adaptive neuro fuzzy inference system that combines the advantages of both fuzzy
logic and artificial neural networks. The detection and classification of system faults is
proposed by deploying two subsets of the ANFIS model, such as the ANFIS partition
network (ANFIS GP) and ANFIS subtractive clustering (ANFIS SC). The results of the
statistical analysis based on RMSE (Root Means Square Error) show that ANFIS SC is
better than ANFIS GP [108]. De campos Souza et al. proposed the ANFIS model for
modeling and the identification of the PV system to detect short-circuit and open-circuit
faults in the single-phase photovoltaic inverter. The model detected the simulated defects
with an accuracy rate of 100% with a fast execution time [109]. A review based on the
applications of the fuzzy neuro network algorithm and its variants is proposed in order
to show the effectiveness of the algorithm in the construction of systems [110]. Likewise,
a new detection method based on the combination of the three algorithms SVM, KNN,
and NB made it possible to extract the electrical characteristics in order to analyze and
detect the line-line fault on the basis of the current-voltage curve of the PV system [97]. A
grid-connected PV fault detection and diagnosis technique based on the combination of
three algorithms KNN, DT and SVM showed a better performance with an accuracy rate of
99.96% [74].

To improve the performance of a PV system, a hybrid algorithm based on principal
component analysis and support vector machine is proposed to detect bypass diode and
series resistance faults. The results obtained after the detection of all types of defects
show an accuracy of 99.96% and 99.93%, respectively [96,98]. Also, a fuzzy k-nearest
neighbors (FKNN) model was used to detect short-circuit, open circuit and irradiation
faults in a spacecraft powered by a solar system. The results obtained are significantly better
compared to the KNN model, i.e., an accuracy of 99.4% compared to 91.8% for KNN [99]. In
the literature, several reviews on the diagnostic methods for PV systems have been carried
out in recent years [7,111,112]. In these reviews, the presence of hybrid models such as
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ANFIS, FKNN and so on is remarkable, as shown in Table 2. Another type of hybridization
involves combining weak classifiers to obtain a strong classifier for better prediction. This
algorithm is based on the principles of Bagging and Boosting, using decision trees as a basic
algorithm. It proceeds by voting or averaging the individual performances of each weak
classifier to obtain an optimal performance. Therefore, it is called an ensemble learning
algorithm.

3.6. Ensemble Learning Algorithms
3.6.1. Decision Algorithm Tree (DT)

The decision tree algorithm is a hierarchical representation of the data structure in
the form of decision sequences in order to predict a result or a class [78,113,114]. Indeed,
it allows the prediction of a target variable from other so-called explanatory variables
(model). The principle of the DT algorithm consists of determining the best possible
characteristic for a set of data; separating the data into subsets containing the values
of the best characteristic [115]. It also allows you to recursively generate new decision
trees using the subset of data created and make the decision when you can no longer
classify the data [111]. In other words, the DT model has decision nodes that have several
branches and are used to make decisions and leaf nodes that represent the result or class of
these decisions [75]. Each node tests a condition on a variable and each of its child nodes
corresponds to a possible outcome for that condition. The label or class of an observation is
predicted by following the test results from root to leaf as shown in Figure 15. This model
is simple to visualize and understand, requires little data preparation, uses categorical
and numerical data and handles multi-class problems with robustness and resistance to
noisy data [74]. However, it is a lazy algorithm with generally low modeling capacity and
instability.

Figure 15. Structure of a DT classification model with six labeled classes (N, S, O, L, A, R).

The start node is called the root of the tree and the path from the root to the terminal
node represents the classification rule [113]. Classification and decision tree regression
trees are non-parametric algorithms whose regression output is numerical, while that of
classification is a function of the input data used for training and testing [110]. This model
is proposed to predict the output powers of photovoltaic and wind systems [113]. The
simulation results demonstrate that the model is capable of correctly predicting dam classes.
An approach using the decision tree algorithm made it possible to detect short-circuit faults
and string faults in a photovoltaic installation connected to the grid at an accuracy rate of
99% [33].
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3.6.2. Random Forest (RF) Algorithm

The RF algorithm is a classification and regression algorithm whose learning is based
on the decision tree. This algorithm was first proposed in 2001 by Leo Breiman [116,117].
Furthermore, the RF algorithm is considered a black box that combines several randomly
constructed decision trees in parallel [115]. This model is easy to evaluate, robust to outliers,
capable of handling efficient prediction on a large dataset without removing variables,
and does not need cross-validation. In addition, the algorithm is presented as a reference
in Machine Learning competitions and is more efficient than decision trees [112]. The
disadvantages of this algorithm lie in the fact that it is not easy to interpret (explain how the
forecast is calculated) since it is obtained from a large number of trees which are very deep,
it is also difficult to improve because it is considered a black box and trains slowly [118].
Random forests are tree ensemble methods, they aggregate the predictors of several trees,
each of which is trained separately [28]. It offers RF to detect line-to-line faults, degradation,
open circuits and partial shading. Random forests, thanks to the bootstrap resampling
technique (sampling technique with replacement which gives the selection procedure the
particularity of being random) can repeatedly extract n different samples from a set of data.
This technique allows the creation of a new training sample for training the decision tree in
order to generate n decision tree classifiers [28]. Therefore, Liu et al., proposed the adaptive
period electrical partition (AEPP) and random drill algorithm to detect the open-circuit
fault in a multilevel NPC inverter. A comparison of the results obtained with traditional
methods shows a good accuracy of 99.21% and 99.38%, respectively [119]. The construction
of random forests is conducted in four steps as shown in Figure 16.

Figure 16. Steps for generating random forests.

Several fault diagnosis methods based on the random forest algorithm are proposed in
the literature [5,115,120]. A proposed RF model-based approach to detect the open-circuit
fault of an inverter using the output current and voltage of the inverter gave an accuracy of
about 96% [103].

3.6.3. Adaptive Boosting Algorithm (AdaBoost)

The AdaBoost algorithm is a type of machine learning algorithm that combines weak
classifiers, such as one-split decision trees, to create a strong classifier. The strong classifier
is obtained by adjusting the weights of observations in the dataset based on previous
prediction errors. In other words, the algorithm gives more weight to observations that were
misclassified in previous iterations, so that they are more likely to be correctly classified
in the future [121]. The AdaBoost algorithm was invented by Yoav Freund and Robert
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Schapire in 1996 [122]. AdaBoost was the first algorithm to show that boosting ideas can
be implemented efficiently and simply. Today, it remains the most widely used algorithm
in various fields of application [122]. Lodhi et al. have successfully implemented the
AdaBoost model for the detection and classification of short circuits, open circuits, and
degradation faults in a photovoltaic system. A comparative study between the proposed
model and other models such as KNN, SVM, and RF shows that the AdaBoost model has a
superior accuracy rate of 97.84%, compared to 91.29%, 94.34%, and 96.76%, respectively,
for the KNN, SVM, and RF models [123]. Similarly, the AdaBoost model has been able to
correctly detect and classify faults in a simulated 250 kW PV array with 95% accuracy [124].
The implementation process of the AdaBoost model is divided into four steps, which are:
the collection of data, the generation of a strong classifier from weak classifiers using the
training, test, or validation data of the classifier, and the application of the classifier for
engineering problems [125]. The decision tree, or classification and regression tree (CART),
is used to generate the weak classifiers, which produces a strong classifier through majority
voting for classification or through arithmetic mean for regression [125]. Figure 17 shows
the flowchart of the AdaBoost model implementation procedure.

Figure 17. Flowchart for implementation of AdaBoost approach [121].

In this paper, most of the articles used are written in English and extracted from
different databases such as MDPI, IEEE Xplore, ScienceDirect, Springer, Wiley, and Hindawi.
Thus, some reviews published in recent years on diagnostic methods using an artificial
intelligence approach are represented in Table 2 [126–128].
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Table 2. Summary of the few review articles from the 2016–2023 period on fault diagnosis of PV systems.

Authors Year Type of Techniques ML Models PV System Component Contribution Remarks

Youssef et al. [127] 2016 AI ANN, FL, ANFIS, GA,
GA-fuzzy, NN-fuzzy PV field

This text demonstrates the importance of AI in
modeling, sizing, forecasting, and diagnosing fault in

PV systems.

The text compares the accuracy of different AI
techniques with traditional methods in each
application. However, it does not specify the

monitoring parameters of each method.

Daliento et al. [59] 2016 Electrical and AI ANN, SVM, ANFIS, RBN PV field This text presents a review of the various methods
used to monitor PV systems.

The text is already well-written and adheres to the
desired characteristics. Therefore, no changes have

been made to the original text.

Madeti et al. [57] 2017 Conventional and AI -- PV field A Review of Detection Methods for Grid-Connected
Photovoltaic Systems

The text already meets the desired characteristics. No
changes were made.

Mellit et al. [33] 2018 Electrical and ML ANN, FL, GA, HS PV field A comprehensive review on detection methods for
grid-connected PV systems

The author’s work focuses on using electrical
methods to diagnose faults.

Mellit et al. [82] 2016 Electrical and ML ANN, FL, MSD PV field This text discusses PV fault information and
diagnosis methods,

However, the main scope of the work is based on
identifying defects.

Pillai et al. [36]. 2018 IRT, ML, Others ANN, LAPART, PV field including a review of almost all PV faults and
advanced detection techniques. However, his discussion is focused on the flaws

Abdulmawjood et al.
[60] 2018 Visual, Thermal and ML

Methods

SVM, k-Means, HMM, BN,
ANN, GMM (Gausian mixture

model)
PV field It also covers different types of faults and detection

techniques in PV fields,

The discussion is focused on electrical faults, but the
parameter used for fault detection is not specified for

each method.

Appiah [47] 2019 IRF, ML, DL, ANN, LAPART, KELM, ANFIS PV field as well as reviews on types of defects, their origins,
and traditional and intelligent detection methods.

The text is clear and concise, but lacks complexity,
precision, and input data.

Li et al. [21] 2020 M.L. ANN PV field

The text identifies work specifically applied to ANN
and hybrid methods with ANN to analyze defects,

type and amount of data used, model configuration,
and effectiveness.

A comparison of ANNs with other ML models shows
the superiority of ANNs. However, a comparison

between ANN models is not mentioned to identify
the most efficient model.

Ghaffarzadeh et al.
[125] 2019 Electric, ML ANN, SVM, DT, FL, Kalman

filter PV field It explains the types of defects over a broad spectrum It focused on current fault on the DC and AC side of
the PV system.

Venkatesh et al. [126] 2020 Visual method, IRT, EL, ML ANN, SVM, NC-NFC, CNN,
DT, KNN, FL PV field Lists four types of visual defects and detection

methods
Failure to take into account non-visual defects, no

precision

Kurukuru et al. [46] 2021 ML, DL ANN, ANFIS, PSO, FL, GA,
ABC, CNN, SVM, KNN, LTSM PV field Review to show the impact of AI on the PV value

chain. The precision of each technique is not made

Zenebe et al. [48] 2021 ML, DL SVM, DA, BN, ANN, KNN, RF,
DT, CNN PV field, Inverter

Presents a review on ML-based detection methods to
show that ANN and MLP are the most promising

models in terms of simplicity and accuracy

However, its main field of action was based on
defects and detection methods

Mansouri et al. [25] 2021 D.L. DBN, CNN, RFCN, R-CNN PV field Review of Deep Learning applications in solar cell
fault detection

The article examines defects related to cell
discoloration, cracking, and delamination in PV

systems.

Rodrigues et al. [129] 2017 M.L.
DT, RF, FL, ANN, GA, Bayesian,
KNN, GA-ANN, ANFIS, RVM,

k-Means
PV field

Review of the articles that deal with the prognosis
and diagnosis of defects and the number of themes

covered in the study

It reviews the types of studies conducted, the types of
faults studied, the input parameters used, and the

types of PV systems analyzed. However, it does not
provide an evaluation of the effectiveness of each

method based on these parameters.

Abubakar et al. [5] 2021 AI, ML
ANN, SVM, LAPART,

RBF-ELM, FL, GBSSL, ANFIS,
DT

PV field Characteristics of AI methods, their speed and
effectiveness in detecting defects with minimal errors

The authors did not justify the interest in including
articles from the last 15 years, nor did they include

the accuracy rate of each model.

Gaviria et al. [45] 2022 D.L. ANN, LTSM, CNN, SVM, RF PV field

Review on the interest of ML in PV systems, it gives
the resources to find the data sets, the source codes

and presents each theme with the source code and the
data

The text lacks objectivity and precision in presenting
the results. Additionally, there are several articles on
the diagnosis and detection of defects using machine
learning approaches that are not significant enough.
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Table 2. Cont.

Authors Year Type of Techniques ML Models PV System Component Contribution Remarks

Hammoudi et al. [49] 2022 D.L. CNN and LTSM PV field Survey on the interest of Deep Learning and IoT in
the maintenance of PV systems

The text is limited to discussing deep learning in
preventive maintenance on the DC side.

Yuan et al. [80] 2022 M.L. ANN PV field Review on the progress of ANN in fault diagnosis The text lacks information on the precision and
complexity of each type of ANN.

Forootan et al. [50] 2022 ML, DL

SVM, DA, BN, ANN, kNN, RF,
DT, CNN, FL, ANFIS, GA,

LTSM, RL, MLR, SLR, k-Means
etc.

PV field Review on the use and application of ML and DL
algorithms in energy systems

Additionally, it fails to consider non-visual defects
and lacks precision.

Berghout et al. [22] 2022 ML, DL SVM, kNN, MLP, LTSM, CNN,
Gans PV field Presents the various works on monitoring PV

systems and shading and degradation defects

However, it focuses on ML categories, detection
techniques, and two types of defects. The accuracy of

each model is not provided.
Puthiyapurayil et al.

[70] 2022 AI, signal-based method ANN, BPNN, SVM, CNN Inverter Lists work on the different methods of diagnosing the
open-circuit fault in an NPC inverter

The text only focuses on single switch open-circuit
faults as three switch faults are rare.

Engel et al. [44] 2022 ML, DL ANN, CNN, ANFIS, YOLOv4,
k-NN, DT, SVM, RF, NB PV field Review of ML advances in prediction, forecasting,

sizing and diagnosis of PV systems

However, the comparative study of diagnostic
methods shows that the DNN model provides better

information and performance in the diagnostic
process compared to the non-neural model.

Ying-Yi et al. [51] 2022 Visual and thermal SVM, kNN, MSD, DT, RF,
ANFIS, ANN PV field

Presents the different traditional methods on the
detection and classification of PV faults and a

projection on AI techniques

The study focuses on traditional methods and
demonstrates the potential of ML techniques.

Osmani et al. [52] 2023 Conventional methods, AI SCADA, ANN, KELM (kernel
extreme learning machine) PV field Critical review of detection methods in the PV field

This text presents the DC and AC side faults of the
field, as well as the detection method. It focuses on
conventional methods and does not mention any

supervised learning methods.

Islam et al. [37] 2023 Artificial intelligence based
on ML and DL

AdaBoost, ANN, CNN, RNN,
SVM, RF PV field

Systematic review on identification and diagnosis
methods, they compare existing reviews with its
review in terms of technical approaches for fault

detection

The most effective DL and ML approaches for
diagnosing PV faults are identified, and it is shown

that DL outperforms conventional approaches. ANN
is proposed for diagnosis, but no accuracy rate is

provided for different methods.
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4. Synthesis

Based on the studies carried out on more than 100 articles, 133 articles were used in
this work. Looking at the summary of the different journals in Table 2 and the research
articles used, DC electrical and environmental disturbances are the disturbances that the
authors pay the most attention to. In addition, most of the journal articles listed in this
article have focused their work on either the DC part (PV field) or the AC part (PV inverter).
Few articles focus on both the DC and AC side faults simultaneously. Therefore, this review
integrates the faults and methods used in both parts. The machine learning techniques used
in this paper show good results and excellent performance in the field of PV fault diagnosis.
However, this performance varies from one model to another depending on the quality and
quantity of data used. For example, ANN requires a very large amount of data to achieve
good accuracy, while kNN shows poor results as the number of data increases. For these
reasons, some models are used more than others, and depending on the results sought, a
combination of models is necessary to improve the shortcomings of simple models. ANN
algorithms have been widely used in fault diagnosis in recent years compared to other
models (kNN, RF, DT, SVM), although they are also regularly used in this context Indeed,
the growing development of ANN models is reflected in reviews that show their ability
to solve complex problems with large amounts of data. Furthermore, in hybrid models,
the ANFIS model is increasingly applied, especially in the prediction of PV systems. This
algorithm uses its fuzzy version to improve the shortcomings of the ANN in finding the
maximum power point (MPPT). It is more accurate in fault prediction and diagnosis. It is
also shown that the integration of fuzzy logic in traditional k-NN improves the accuracy of
the k-NN model and gives excellent consistency. However, although this model is used in
many areas, it is still lagging behind in the diagnosis of faults in grid-connected PV systems.
The diagram in Figure 18 gives an overview of the occurrence of the different algorithms
found in the journals used in this article over the period 2016–2023.

Figure 18. Distribution of the implementation rate of the different ML models.
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Observing the above graph, we see that the artificial neural network algorithm is
widely used in fault diagnosis, with a 22% percentage. Similarly, the hybrid model based
on the adaptive neuro-fuzzy inference system (ANFIS) has a higher implementation rate
than the others. However, the FKNN and AdaBoost algorithms are poorly implemented in
the context of PV system diagnosis, despite their better performance.

5. Proposed Method

In the previous section, several supervised learning algorithms used in fault diagnosis
showed the benefit of machine learning in improving diagnostic results in terms of time.
This section describes the Extra Trees algorithm as a model capable of detecting and
classifying faults in PV systems.

The Extra Trees or Extreme Model Randomized Trees is a supervised learning algo-
rithm from the Ensemble Learning family of algorithms. This algorithm was first proposed
and implemented in 2006 in a paper entitled Extremely random tree by Geurts et al. [128].
The model is widely used for both regression and classification problems. The Extra Trees
(ET) model uses a set of decision trees to randomly construct a group of unpruned decision
trees to reduce the risk of overfitting [130]. The construction of the Extra Trees algorithm is
similar to the Random Forest (RF) algorithm which is a tree-like combination of multiple
trees [131]. However, the difference between the two algorithms is that the ET model uses
the entire training sample to train each tree instead of a Bootstrap sample used by the RF
model. Also, the selection of division points is conducted randomly unlike the RF model
which uses an optimal distribution. The ET model execution procedure is based on the
analysis of the training dataset (S) and three important hyperparameters [130]:

• The number of trees (M) to train based on the number of training samples S
• The number of attributes (K) to be randomly selected and used in each node for each

trained ensemble tree
• The minimum number of samples/instances (Nmin) needed to split a node of each

trained ensemble tree

After training the trees, the algorithm makes its final prediction based on test data
through majority voting for classification or by calculating the arithmetic mean for regres-
sion [38]. The Extra Trees or Extremely Randomized Trees model is widely used in various
fields, including health [39,129,132], economy [38], transportation [129], and telecommu-
nications [41–43]. For instance, in medicine, the Extra Trees model has been proposed to
detect and classify cancer as malignant or benign tumors. The obtained results indicate an
accuracy of 99.27% [40]. Saeed et al. proposed the Extra Trees model to detect faults in a
wireless sensor network. The results demonstrate superior performance compared to other
machine learning algorithms in the literature, such as artificial neural networks, support
vector machines (SVM), Random Forest, and decision trees [43]. Bai et al. utilized the Extra
Trees algorithm to predict short-term traffic flow in a non-stationary environment. The
obtained result showed higher precision compared to existing methods [133]. To the best of
our knowledge, this algorithm has not been proposed before in the context of photovoltaic
fault diagnosis. Additionally, the Extra Trees algorithm exhibits high precision, lower
computational complexity, and variance compared to other models such as decision trees,
support vector machines, artificial neural network (ANN), Random Forest, and decision
trees [40]. This is an opportunity to propose the Extra Trees model as an effective algorithm
that addresses the inadequacies of other models, such as decision trees, the AdaBoost
model, SVM, DT, KNN, and FKNN [133]. The execution algorithm for the Extra Trees
model is presented in Figure 19.
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Figure 19. ETC model execution algorithm.

6. Conclusions and Future Recommendations

Photovoltaic systems are becoming more prevalent. It is crucial to diagnose faults
to maintain their reliability and safety. This article provides an overview of the most
common faults in PV systems and the diagnostic methods based on the supervised learning
algorithms that are commonly used to resolve them. The most common and dangerous
faults are environmental and electrical. It is crucial to promptly identify environmental
faults to prevent them from causing electrical faults. This article examines various super-
vised learning algorithms for fault diagnosis and compares their effectiveness based on
diagnostic techniques, measured data, and proposed approaches. In recent years, artificial
neural networks (ANN) have gained popularity for fault diagnosis. This paper proposes
the Extra Trees model as a highly effective algorithm for fault diagnosis due to its ability to
reduce bias and avoid overfitting problems. The article also compares the performance of
various models, including decision trees (DT), naive Bayes (NB), support vector machines
(SVM), random forests (RF), k-nearest neighbors (KNN), and fuzzy k-nearest neighbors
(FKNN). It provides guidance to technicians, engineers, and researchers on the use of
supervised learning algorithms for fault diagnosis in photovoltaic systems. Possible future
work includes the utilization of the Extremely Randomized Trees for PV system diagnosis,
the integration of various diagnostic parameters, the analysis of sensors for data acquisition,
and the incorporation of the Internet of Things into diagnostics using the Extra Trees model.
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