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Featured Application: The main research focus of this paper is to explore the use of the cycle-
generative adversarial network (GAN) method to address the inter-turn fault issue in permanent
magnet-synchronous motors (PMSMs). Specifically, this study aims to overcome the challenges of
scarce and imbalanced fault samples by expanding the sample set. By applying the Cycle GAN
method, it is possible to generate more authentic and diversified fault samples, thereby improving
the accuracy of fault diagnosis. Moreover, this method exhibits scalability and can be applied to
other fault diagnosis problems that share similar difficulties.

Abstract: This paper addresses the issue of the difficulty in obtaining inter-turn fault (ITF) samples in
electric motors, specifically in permanent magnet-synchronous motors (PMSMs), where the number
of ITF samples in the stator windings is severely lacking compared to healthy samples. To effectively
identify these faults, an improved fault diagnosis method based on the combination of a cycle-
generative adversarial network (GAN) and a deep autoencoder (DAE) is proposed. In this method,
the Cycle GAN is used to expand the collection of fault samples for PMSMs, while the DAE enhances
the capability to extract and analyze these fault samples, thus improving the accuracy of fault
diagnosis. The experimental results demonstrate that Cycle GAN exhibits an excellent capability to
generate ITF fault samples. The proposed method achieves a diagnostic accuracy rate of up to 98.73%
for ITF problems.

Keywords: permanent magnet-synchronous motor; cycle-generation adversarial network; deep
autoencoder; dataset expansion; inter-turn fault; fault diagnosis

1. Introduction

Permanent magnet-synchronous motors (PMSMs) are increasingly widely used at
present, especially in the military and aerospace fields, because of their significant ad-
vantages, such as their simple structure, stable operation, large thrust density, and small
volume, under the same power as original motors. Nevertheless, the frequent operation
of PMSMs under challenging conditions, such as high temperatures, vibration, and dust,
increases their susceptibility to failures. The inter-turn fault (ITF) in the stator winding is a
prevalent issue encountered in permanent magnet-synchronous motors, which arises from
excessive voltage during motor start-up, the degradation of stator winding insulation due
to elevated temperatures, and mechanical wear caused by vibrations [1].

Once an ITF occurs in a PMSM, the motor’s internal temperature will rise sharply,
leading to the demagnetization of the permanent magnet, resulting in a more severe fault
of the PMSM. Therefore, it is of great significance to diagnose ITFs in PMSMs. In the
context of contemporary research on energy-based maintenance (EBM) and sustainable
maintenance (SM), proactive fault prediction and prevention play pivotal roles in mit-
igating energy consumption and subsequently reducing carbon dioxide emissions and
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environmental hazards [2]. Given the significant impact of fault prediction and preven-
tion on energy conservation and environmental sustainability, fault diagnosis assumes
heightened significance.

The original methods of fault diagnosis and identification for ITFs in PMSMs mainly
use tools in the field of signal analysis. Chen Yong et al. [3] fused the stator current and the
vibration signal between stator teeth and combined the wavelet packet method and fast
Fourier transform (FFT) to diagnose the fault. This method has higher reliability than the
diagnosis method relying on a single signal. Ding et al. [4] analyzed the DC component
and the second harmonic component of the value function in the model predictive control
(MPC) system to diagnose the ITFs of PMSMs. This method has higher accuracy than the
original method of analyzing the stator current. Peng et al. [5] introduced the Blackman
window when performing FFT on fault feature signals, which can quickly identify fault
features. However, these methods have significant limitations in diagnosing minor faults.

Since Hinton et al. [6] first proposed deep learning in 2006, people have paid more
and more attention to the application and development prospects of deep learning in fault
diagnosis. There are many problems with PMSM fault signals, such as few types, challenges
to eliminating random noise, and the significant effects of external interference sources.
The available data are very scarce. Given this problem, some scholars use the generative
adversarial network (GAN) to expand the sample set to improve the diagnosis results.
Mo Yu et al. [7] diagnosed the demagnetization fault of PMSMs based on a GAN and a
sparse autoencoder (SAE). This method uses random noise data as the input to generate
sample data. Li et al. [8] diagnosed PMSM ITFs based on the GAN and SAE methods and
used random noise data as the input of GAN. However, the original GAN [9] training with
random noise as the input is slow, the quality of the generated samples is poor, and pattern
collapse occurs easily [10–12].

Based on the above analysis, this paper proposes an improved diagnosis method of
ITFs in PMSMs based on the combination of a Cycle GAN [13–15] and a DAE [9,16–18].
This method abandons the original GAN mode of generating samples with random noise
as the input. It uses a PMSM stator three-phase current in healthy and fault states as the
input to generate artificial sample sets, uses a DAE to extract fault signals’ features, and
then uses a Softmax classifier [19] to output the fault types. The experiment shows that this
method has a fast training speed and strong robustness and requires few samples. It can
identify minor ITFs with an accuracy rate of 98.73%. Consequently, our approach furnishes
a foundation for informed motor operation planning, enhancing the safety and stability of
PMSM operation and the overarching system.

The paper is organized as follows: Section 2 introduces and establishes the Cycle
GAN and DAE networks. Section 3 provides the steps in fault classification based on Cycle
GAN and DAE and explores the network’s hyperparameters to match the optimal network
structure. Section 4 constructs an experimental platform for short-circuit motor faults to
obtain short-circuit currents. Then, the proposed method in this paper is used to expand
the samples and ultimately identify and diagnose short-circuit faults of different severities.
Section 5 summarizes the article.

2. Network Models
2.1. Generative Adversarial Network Model

The basic model of the original GAN [9] consists of two parts: a generator and a
discriminator. Drawing inspiration from the game theory, the generator and discriminator
confront each other and constantly play binary minimax games. Throughout this process,
the generator gradually learns to capture the distribution of actual samples. Generally
speaking, the training is considered to be complete when the confrontation between the
generator and the discriminator satisfies the Nash equilibrium.

Figure 1 shows the basic model of the GAN. The generator (G) input is a random
variable x, and the output is called the generated sample ŷ. The discriminator (D) input is
the generated sample ŷ and the actual sample y, and the output is the determination result
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of the input sample. The training goal of G is to make the generated sample ŷ conform
to the distribution of the actual sample y as much as possible so that it can hide from D.
The training goal of D is to distinguish whether the input sample is a generated sample or
an actual sample as much as possible. In the straight game between the two, the samples
generated by G gradually tend to the distribution of actual samples, and the ability of D to
distinguish true and false samples gradually improves. Until it reaches equilibrium, the
entire network structure can generate new samples that fulfill the utilization requirements.
Thus, the training objective of the whole network can be expressed as minimizing the
distribution distance between y and ŷ and maximizing the discrimination ability of D to
the input samples. The objective function expression can be obtained as follows:

min
G

max
D

F(G, D) = Ey∼Pdata(y)
[log D(y)] + Ex∼Px(x)

[log(1 − D(G(x))] (1)
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Figure 1. Basic model diagram of GAN.

The generator and discriminator constitute a fundamental neural network architec-
ture consisting of an input layer, a hidden layer, and an output layer. This architecture
incorporates linear and nonlinear transformations, as shown in Figure 2 below. The infor-
mation flow only passes in one direction, with random noise being propagated from the
input node to the hidden layer and subsequently to the output layer for generating the
required motor samples. The network, as the simplest ANN model [20], can map complex
relationships between backpropagation learning noise and motor samples without rigorous
mathematical formulas.
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For the generator, x is the input random noise matrix and y is the generated motor
sample. As for the discriminator, x is the actual motor sample or the generated motor
sample, and y is the score (0–1) of the input sample, which represents the possibility of the
discriminator to determine that the sample is an actual sample. zl

i and al
i are the inputs and
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outputs of the i-th neuron in the l-th layer, and zl and al are the inputs and outputs of the
l-th neuron, zl

i ∈ zl , al
i ∈ al , i = 1, 2, 3, . . . , n. On the right side of Figure 2 is the structure

of each neuron. It can be seen that each element in the input matrix is linearly calculated
with its corresponding weights and biases. Then, the nonlinear operation of the activation
function is performed. Without the activation function, the number of hidden layers of the
network will be meaningless. No matter how many layers are added, the linear calculation
will be a simple accumulation. The matrix operations of each layer are as follows:

zl = ωl · a(l−1) + bl (2)

al = f l(zl) (3)

where ωl is the weight matrix of the layer, bl is the bias matrix of the layer, and al is
the activation function of the layer. The network updates weights and biases through
backpropagation in order to learn the complex mapping relationship between input noise
data and motor samples. The hyperparameters of the artificial neural network need to be
set before training, mainly including the number of hidden layers, the number of nodes in
each layer, connection mode, activation function, optimization algorithm, etc. The selection
and setting of hyperparameters play a vital role in the quality of network learning.

The original GAN has many shortcomings in generating motor samples [21]. During
the process of model training, a phenomenon known as mode collapse arises, wherein the
generator G can only learn from training concentrates that encompass a limited number
of modes instead of multiple modes. Consequently, this hinders the acquisition of other
modes, ultimately resulting in a lack of diversity within generated samples. In addition,
the network training speed is slow, the quality of generated samples is poor, and the
performance is poor in the case of limited samples. Currently, most mainstream research
on GAN theory focuses on optimizing the above problems to study and improve the model.
Moti Z et al. [11] proposed a circular consistent confrontation network for image-to-image
conversion, which can capture the unique features of one image set and learn how to
transfer these features to another image set. Inspired by this idea, this paper reconstructs
and improves Cycle GAN and solves the problem that it can only process two-dimensional
images. The reconstructed Cycle GAN can process one-dimensional time sequence signals
and realize the function of migrating the characteristics of fault motor samples to healthy
motor samples. Furthermore, it solves the problem that the original GAN is prone to mode
collapse by classifying and establishing samples with different degrees of PMSMs’ ITFs.

The priority purpose of this network is domain adaptation. By taking healthy samples
and ITF samples as examples, two datasets, X and Y, are established to store the three-phase
stator current of the former and the latter, respectively. We want to train a generator G to
input a motor health sample x and then output a motor fault sample y′. We also want to
train a generator F to input a motor fault sample y and output a motor health sample x′,
which is

G(x) = y′, x ∈ X (4)

F(y) = x′, y ∈ Y (5)

To achieve this goal, we also need to train two discriminators, DX and DY, to judge
the quality of the sample generated by generators G and F, respectively. Specifically, when
the motor fault sample y′ generated by generator G is fed into the discriminator DY, the
discriminator DY should output a lower value (between 0 and 1) if the distribution of y′

does not follow the distribution of sample y in the dataset Y. Conversely, the discriminator
DY should output a higher value in such cases. Similarly, when sample y from dataset Y is
provided as input to the discriminantor DY, the discriminantor DY should always output
higher values. The same is true for the discriminator DX .

During the training process, the discriminator and generator are alternately trained.
We not only hope that the motor sample y′ generated by the generator G obeys the distri-
bution of sample y in dataset Y, but we also hope that it retains the characteristics of input



Appl. Sci. 2024, 14, 2139 5 of 18

sample x. In short, the sample y′ generated by the generator G adds fault characteristics
of fault sample y to the input sample x rather than simply duplicating fault sample y,
which is the same as the generator F. Otherwise, it cannot improve the performance of the
classification network. In order to achieve the above purpose, a cycle consistency structure
is set up in this network. After the motor fault sample y′ generated by the generator G is
input into the generator F, the generated motor health sample x′′ should be as consistent
as possible with the motor health sample x initially input into the generator G. Similarly,
after the health motor sample x′ generated by the generator F is provided as input to the
generator G, the generated fault motor sample y′′ should be as consistent as possible with
the fault motor sample y initially entered into the generator F, which is{

F(G(x)) ≈ x
G(F(y)) ≈ y

(6)

The overall model is shown in Figure 3.
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When training the network, the samples y′ and x′ generated by the generators G and
F will be judged by discriminators DY and DX. Then, the discriminators output a score
(0–1), representing the possibility that the discriminator can determine that the samples are
actual. The higher the score, the higher the possibility that the samples are from the actual
sample set. Therefore, the mean deviation between the sample score and the highest score
generated by the generator is employed as a loss function to quantify the effectiveness of
the generator. By reducing the loss function, the learning ability of the generator, i.e., the
ability to “hide” the discriminator, is improved. The loss function is as follows:

LossGAN = LGAN(G, DY, Y) + LGAN(F, DX , X) (7){
LGAN(G, DY, X) = Ex∈X [DY(G(x))− 1]2

LGAN(F, DX , Y) = Ey∈Y[DX(F(y))− 1]2
(8)

where X and Y are the healthy sample set and fault sample set in the PMSM, respectively,
G is the fault motor sample generator, F is the healthy motor sample generator, DX is the
healthy motor sample discriminator, and DY is the fault motor sample discriminator.

As previously mentioned, the network establishes a cycle consistency structure to
ensure that the generator migrates the characteristics of the fault motor samples to the
input healthy motor samples instead of simply copying the fault motor samples. Taking the
healthy motor sample as an example, after the fault motor sample generator G migrates the
fault features to the healthy motor sample, the sample shall still retain its original features;
that is, after the transformation of the healthy motor sample generator F, the sample shall
be as consistent as possible with its initial value. The 1 norm of the difference between the
two shall be used as the loss function LossCycle as follows:

LossCycle = Ex∈X [∥F(G(x))− x∥1] +Ey∈Y[∥G(F(y))− y∥1] (9)
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To ensure that the input and output samples of the generator are different in style
and the same in content, Equation (6) should be satisfied to reduce the LossCycle as much
as possible.

In the actual training, the following problems were found: the fault motor sample
generator G directly copied the actual fault motor sample y instead of migrating the fault
features to the input healthy motor sample x to generate y′. Since the copied sample y is
indeed a fault sample, discriminator DY’s evaluation branch “encourages” the fault motor
sample generator G to do so. Once the healthy motor sample generator F converts the fault
motor sample y into the healthy sample x, it bypasses the loss function LossCycle, which is
equivalent to “shielding” the error of the fault sample generator G, which is contrary to
our original intention. Therefore, we set the identification loss function Lossidentity to hope
that the generator can also have a discrimination ability for the samples it inputs. If a fault
motor sample is provided as an input to the fault motor sample generator G, the sample
itself should be output. Similarly, when a healthy motor sample is provided as an input to
the healthy motor sample generator F, it should yield itself as an output. The loss function
is as follows:

Lossidentuty = Ey∈Y[∥G(y)− y∥1] +Ex∈X [∥F(x)− x∥1] (10)

The above problems can be well solved by reducing Lossidentity as much as possible
so that the generators G and F can have a more vital discrimination ability to the features
of the motor samples. Therefore, it can effectively retain the data features to achieve the
goal of adding fault features to the healthy motor samples. The three loss functions of
Equations (7), (9) and (10) together constitute the Cycle GAN generator loss function, and
the generator is trained by continuously reducing the loss function.

LossGenerator = LossGAN + LossCycle + LossIdentity (11)

For the discriminator, when a motor sample is provided as input to the discriminator,
the discriminator will score it to determine whether it is a manual sample or an actual
sample. We call the PMSM three-phase stator current data collected by the experimental
platform actual samples and the PMSM three-phase stator current data generated by the
generator artificial samples. The highest score of the discriminator is 1, and the lowest
score is 0. The higher the score, the higher the probability that the discriminator thinks
it is an actual sample. Before training the discriminator, we will label the artificial and
actual samples as 0 and 1, respectively. When training the discriminator, the mean square
deviation between the score of the discriminator on the input sample and the label of the
input sample is used as the loss function as follows:

Loss = E[D(x)− xlabel ]
2 (12)

The network contains two discriminators, DX and DY, which are used to judge the
authenticity of the healthy and faulty motor samples. The respective loss functions are
as follows:{

LossDY = LossReal + LossFake = Ey∈Y[DY(y)− 1]2 +Ey′∈Y′ [DY(y′)− 0]2

LossDX = LossReal + LossFake = Ex∈X [DX(x)− 1]2 +Ex′∈X′ [DX(x′)− 0]2
(13)

where X is the actual healthy motor sample set and Y is the actual fault motor sample set.
X′ is the artificial health point and sample set, and Y′ is the artificial fault motor sample
set. Take the discriminator DX as an example: The loss functions of the two discriminators
together constitute the overall discriminator loss function of Cycle GAN, as follows:

LossDiscriminator = LossDX + LossDY (14)

The discrimination ability of the discriminator is improved by continuously reducing
the LossDiscriminator. It is worth noticing that, as mentioned above, the completion of the



Appl. Sci. 2024, 14, 2139 7 of 18

training of the network is marked by reaching “Nash equilibrium”; that is, the probabil-
ity of correct judgment by the discriminator is close to 50%, so the ideal balance of the
LossDiscriminator is 0.25. For the convenience of calculation, multiply it by 2, and finally,
make it balance at 0.5.

2.2. Deep Autoencoder Network Model

As an artificial neural network used in semi-supervised learning and unsupervised
learning, the autoencoder (AE) [13] has an excellent feature extraction ability by encoding
the input sample x into a highly abstract feature representation h and then decoding it back
to y. After the feature extraction of fault samples by the AE, the fault diagnosis effect will
significantly improve. The conventional AE uses a shallow network. The encoding and
decoding processes can be described as follows:{

h = fe(ωex + be)
y = fd(ωdh + bd)

(15)

where ωe and be are the weights and biases of encoders, ωd and bd are the weights and
biases of decoders, and fe and fd are the activation functions of encoders and decoders.
The error between the input x and the output y can be expressed as follows:

J(W, b) =
n

∑
i=1

(xi − yi)
2 (16)

J(W, b) = −
n

∑
i=1

(xi log(yi) + (1 − xi) log(1 − yi)) (17)

Equations (16) and (17) are two commonly used loss functions, respectively, which are
derived from the encoder network by minimizing the loss function argmin

W,b
J(W, b) [11].

The original AE network has fewer layers and a simple structure. For an ITF in
a PMSM, the ability to extract sample features is limited. A deep autoencoder (DAE)
combined with a Softmax classifier is built in this paper. Its deep network structure can
extract sample features well, with excellent classification results. The DAE structure is
shown in Figure 4.
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3. Samples Expansion of ITF in PMSM through Cyclic GAN
3.1. Steps in Building a Cycle GAN for Sample Expansions

Cycle GAN is used to expand the PMSM sample set, and the expanded sample set is
used to train the feature extraction network DAE and the fault classifier. The validity of
Cycle GAN to sample expansion is verified by analyzing the correlation between generated
and actual samples [22,23]. The improvement effect of this sample expansion scheme
on fault feature classification is verified by analyzing the accuracy of the DAE feature
extraction network and fault classifier to fault classification. The PMSM ITF fault diagnostic
steps are as follows:

1. Pre-process the collected three-phase stator current data of the PMSM in a healthy
state and ITF of different degrees, unify the size of each sample, and avoid missing
data during the acquisition.

2. Set up the Cycle GAN and DAE networks.
3. Perform correlation analysis between the generated PMSM samples and the actual

PMSM samples.
4. Input the expanded sample set to the DAE for feature extraction and use the Softmax

classifier to classify the fault features.

3.2. Determination of Cycle GAN Hyperparameters

In establishing the neural networks, hyperparameters are often referred to as adjust-
ment knobs, and their settings will seriously affect the networks’ performances and training
speeds. At present, the hyperparameters of deep networks are mainly determined based on
prior knowledge without detailed experimental proof. This paper uses the trial and error
method to optimize the super-parameters of the neural network, including the performance
index, neural network structure, activation function, and learning algorithm.

Performance Index: For the measurement of network performance, the discriminant
network generally uses the accuracy of its discrimination, and the generative network
generally uses the quality of its generated samples [24]. For PMSM ITF diagnosis, we use
the LossGenerator to evaluate the quality of the motor samples generated by the generator.
We use the LossDiscriminator to evaluate the discriminant results’ accuracy and measure the
network performance of Cycle GAN.

Activation Function: As mentioned above, the calculation of each neuron node can be
divided into a linear calculation and a nonlinear calculation. Among them, the nonlinear
calculation is undertaken by the activation function [25]. Therefore, more attention should
be paid to selecting activation functions when building the network model.

The LeakyRelu activation function inherits the partial linearity of the Relu activation
function and avoids the problem that the Relu activation function does not adequately map
negative input. The function and its derivative are shown in Equation (18)

σ(z) =
{

z, z > 0
αz, z ≤ 0

dσ(z) =
{

1, z > 0
α, z ≤ 0

(18)

where α is a small number by default, usually 0.1. It can also be adjusted according to
specific needs.

The Tanh activation function is the abbreviation of the hyperbolic tangent function. It
looks like an original Logistic activation function, but the difference is that its image center
point is at (0, 0) instead of (0, 0.5).
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Compared with the original Logistic activation function, the Tanh activation function
can also handle negative value input well. The function and its derivative are shown in
Equation (19).  σ(z) = ez−e−z

ez+e−z

dσ(z) = 1 −
(

ez−e−z

ez+e−z

)2 (19)

It can be seen from the image that the output range of the Tanh activation function is
(−1, 1), the change rate is significant near 0, and lim

z→+∞
σ(z) = 1

lim
z→−∞

σ(z) = −1
(20)

For the PMSM ITF studied in this paper, LeakyRelu is selected as the activation func-
tion of the hidden layer, and Tanh is selected as the activation function of the output layer.

LeakyRelu and Tanh are used as activation functions in this paper, and their function
images are shown in Figure 5.
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Theoretically, the more layers of neural networks and the deeper the network structure,
the stronger the learning ability to acquire data features; however, overfitting is a problem
to be considered in the construction and training processes. Some network structures
perform well in the training set, but the changes in the test set are not satisfactory. In order
to avoid the influence of overfitting, this part verifies the network structure of different
combinations. It analyzes the decline in the loss function of each combination in the training
set and its performance in the test set to determine the best network structure. Table 1
shows several suitable network structures of the generator and the discriminator. The
structures with poor performance will not be shown. There are 16 combinations in total.

Table 1. Structure combination of generator and discriminator.

Generator Discriminator

1:
Upsampling layer × 1 a: Convolution layer × 2
Convolution layer × 2 Full connection layer × 1

2:
Upsampling layer × 1

b:
Convolution layer × 3

Convolution layer × 3 Full connection layer × 1

3:
Upsampling layer × 1 c: Convolution layer × 4
Convolution layer × 4 Full connection layer × 1

4:
Upsampling layer × 1

d:
Convolution layer × 5

Convolution layer × 5 Full connection layer × 1

The whole dataset includes PMSM three-phase stator current data under a healthy
state and under ITFs of different degrees. In order to accelerate the convergence speed
of the network, it is necessary to normalize the data. Layer normalization is adopted
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according to the data characteristics of the PMSM three-phase stator current. The dataset
is divided into the training set, verification set, and test set according to the ratio of 6:2:2.
In the learning process, the Adam gradient-descent optimization algorithm is used. The
training set is used to train the network weight and bias parameters, and the verification
set is used to adjust the network super-parameters to improve performance. Finally, the
test set is used to measure the network’s performance.

In order to make the results more representative, each network structure was trained
five times and compared after taking the average. The number of training epochs per time
was 100. Among the 16 structures in Table 1, the 1-c and 1-d structures failed to complete
the training. Figure 6 shows the performance of 14 network structures in the training
set. As mentioned above, the GAN network takes “Nash equilibrium” as the training
completion flag; that is, the discrimination accuracy of the discriminator is close to 50%.
From Equation (14), when the LossDiscriminator is stable around 0.5, it can be regarded as
“Nash equilibrium”. The number of epochs when reaching the “Nash equilibrium” and the
volatility of the network after reaching the “Nash equilibrium” are two groups of indicators
to evaluate the structural performance of the network. The volatility of the network is
measured by the variation coefficient of LossDiscriminator, and the calculation formula is
as follows:

cυ =
σ

µ
(21)

where µ and σ are the mean and standard deviation of the data, respectively, and the
variation coefficient of LossDiscriminator is used to measure the network volatility because the
number of epochs of each network structure reaching the “Nash equilibrium” is different,
and the mean value of each LossDiscriminator is different. The variation coefficient can
eliminate the impact of different units and mean values. It can be seen in Figure 7 that
structure 3-b reaches the equilibrium fastest, and structure 4-b reaches the equilibrium with
the minimum network volatility. Through analysis, it is found that when the number of
generator layers is 4–5, and the number of discriminator layers is 3–4, the performance in
the training set is optimal.
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Overfitting is a problem that deep-seated networks have to consider. The performance
in the training set cannot fully represent the performance of the network structure. Figure 7
shows the performance of the 14 networks that have completed training in the test set. The
performance of each network structure in the test set is measured by the mean value of the
LossDiscriminator and its coefficient of variation.

It can be seen that the structures 3-b and 4-b that perform well in the training set
generally perform in the test set. Their LossDiscriminator and equilibrium points differ
significantly. The structure 4-a, which performs well in the test set, fluctuates wildly in the
training set. Figures 8 and 9 show the performance of structure 4-a in two different pieces
of training.
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It can be seen in Figure 9 that the effect of the 4-a structure in two different operations
is quite different, even under the same super-parameters and operating environment. The
structure is unstable, so the training results cannot be determined each time. After a
comprehensive comparison, the 2-b structure is finally determined to be used, as shown in
Figures 10 and 11.
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4. Experimental Results
4.1. Motor Data Acquisition

The motor used in this paper is a HY-DZ2200-PM (Ningbo Huayuan Machinery
Technology Co., Ltd., Ningbo, China) three-phase variable frequency permanent magnet-
synchronous motor. The performance parameters are as follows: rated power 2.2 kW, rated
speed 1500 r/min, and motor poles 10. The experimental platform is shown in Figure 12. An
experimental motor is a particular unit with four sets. Different combinations of connecting
taps on the lead-out line of motor winding can be simulated through different degrees of
the turn-to-turn short-circuit fault of the synchronous motor. The data acquisition was
carried out for the No. 1–4 motors at 0%, 2%, 5%, 7%, and 10% turn-to-turn short-circuit
faults under the three operating conditions as follows: 15 units per motor, 100 samples per
group, totaling 6000 samples.
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Figure 12. PMSM inter-turn fault data acquisition experimental platform.

Four thousand five hundred samples of No. 1–3 motors were used for the training of
generative and diagnostic networks, and 1500 samples of No. 4 motors were not used for
network training as generalization proof. The validity of the model was judged through
the following three aspects:

1. The validity of the generated sample of the turn-to-turn short-circuit fault current of a
permanent magnet-synchronous motor;

2. Improve the accuracy of the fault diagnosis after sample set expansion;
3. The generalization capability for different motor diagnostics.

4.2. Effect Analysis of Generating Samples by Cycle GAN Network

In order to verify the sample generation effect of the Cycle GAN network used in
this paper, this paper uses the original GAN network and the Cycle GAN network to
generate the three-phase stator current data of the inter-turn short-circuit fault PMSM. We
carried out a correlation analysis with the collected current data, respectively. Taking the
2% inter-turn short-circuit fault of motor one as an example, Figure 13 shows three stator
currents collected by motor one under three different operating conditions.
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Figures 14 and 15 show the three-phase stator currents of a 2% inter-turn short-circuit
fault of the No. 1 motor under three different working conditions generated by the original
GAN network and Cycle GAN, respectively. In Figure 15, the current samples generated
by Cycle GAN and the collected current samples have high similarity in the waveform and
details. In order to judge the validity of the generated current samples more intuitively,
this paper analyzes the correlation between the generated and collected current samples.
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Three motors operate under three working conditions and use different generative
networks to generate their three-phase stator currents. They also analyze the correlation
between the generated and the collected three-phase stator currents. The same motor has
five different degrees of inter-turn short-circuit fault conditions under the same working
condition, and the average value is taken after correlation analysis. The x-axis coordinates in
Figure 16 represent three different working conditions, and the y-axis coordinates represent
the motor number and different generative networks (a is the Cycle GAN network used
in this paper, and b is the original GAN network). Due to the complex working condition
of the motor in the actual operation and the normal fluctuation of the power supply, the
three-phase stator current will inevitably generate noise signals. Therefore, even if the
same experimental platform collects the PMSM three-phase stator current under the same
working condition and fault degree, the same waveform will not appear. The similarity
analysis shown in Figure 16 is consistent with the actual situation.
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Figure 16. Correlation analysis between generated samples and collected samples.

Figure 17 shows the local comparison between the collected and the generated phase
A current. The current samples generated by Cycle GAN are more consistent with the
collected current samples in amplitude, waveform, and fluctuation. The current samples
generated by the original GAN are limited in ability, lacking in detail generation and
authenticity, thus failing to improve the fault diagnosis network.
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4.3. Improve the Accuracy of Fault Diagnosis after Sample Set Expansion

In order to verify the effect of improving the accuracy of the whole fault diagnosis
model after expanding the sample set of Cycle GAN, this part first divides the 4500 sets of
data collected from the three motors in Part A into training sets and test sets according to
the ratio of 4:1. The batch size of each training set is 36. Train 100 epochs in the training
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set and test the accuracy of the fault diagnosis in the test set. The accuracy rate is the
percentage of the predicted correct samples in the total samples. Then, input 4500 groups
of samples collected in Part A into the Cycle GAN network, expand 1000 groups of the
three-phase stator current of each motor under different degrees of inter-turn short-circuit
fault conditions under each working condition, and divide them into training sets and test
sets according to the ratio of 4:1. Under the same conditions, use the training set to train
the model and test the accuracy of the fault diagnosis in the test set, as shown in Table 2.

Table 2. Comparison of fault diagnosis accuracy before and after sample set expansion.

Number of Motor Number of Samples Expansion Method Accuracy

1
4500 nothing 89.81%
4500 GAN 93.87%
4500 Cycle GAN 98.73%

2
4500 nothing 88.92%
4500 GAN 91.19%
4500 Cycle GAN 98.92%

3
4500 nothing 89.23%
4500 GAN 92.71%
4500 Cycle GAN 98.95%

Furthermore, we incorporated certain original methods into analogous patterns to
diagnose faults on the same dataset. We acquired the accuracy of each approach and
subsequently compared the outcomes, as shown in Table 3.

Table 3. Comparison of accuracy of similar methods.

Number of Samples Classification Model Expansion Method Accuracy

4500 BP&Softmax GAN 66.73%
4500 SVM&Softmax GAN 83.19%
4500 CNN&Softmax GAN 87.96%
4500 SAE&Softmax GAN 93.41%
4500 DAE&Softmax Cycle GAN 98.84%

4.4. Findings

The experiments in Section 4.2 demonstrate the superior performance of the Cycle
GAN network compared to the original GAN network across three different working
conditions for the three motors. The correlation analysis between the current samples
generated by our proposed method and those collected in the experiment yields a high
correlation coefficient of 0.9922, which indicates that the generated samples are very close
to the experimental samples in terms of similarity.

The results presented in Section 4.3 demonstrate that the fault diagnosis model for the
three motors initially exhibits an accuracy below 90%. However, upon employing Cycle
GAN to expand the sample set, a significant improvement is observed, with the accuracy
of the fault diagnosis model surpassing 98%. Additionally, a commendable performance is
achieved by utilizing the DAE classification algorithm. These findings effectively validate
both the feasibility and effectiveness of our proposed method.

5. Conclusions

Based on the sample characteristics of PMSM inter-turn short-circuit faults, this study
reconstructed the Cycle GAN network. Furthermore, the collected samples of permanent
magnet-synchronous motor inter-turn faults were expanded. DAE was utilized for feature
extraction, while the Softmax classifier was employed for fault label classification and diag-
nosis. In the experimental section, diagnoses were conducted for five different inter-turn
short-circuit fault states of four motors under three operating conditions, with an average
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accuracy rate of 98.84%. This method demonstrates strong generalization capabilities,
effectively detecting faults and their severity across various motor types, loads, or speeds.

In Section 3, this study optimized the network’s hyperparameters through trial and
error, revealing that using LeakyRelu as the activation function for hidden layers and Tanh
as the activation function for the output layer was most appropriate. Employing the 2-b
layer combination from Table 1 endowed the network with both strong stability and gener-
alization, with the lowest loss function value observed under this structure. Subsequent
experimental results further validated the effectiveness of this network configuration.

The experimental results indicate that samples generated by Cycle GAN exhibit a
higher correlation with the collected samples compared to other methods. Additionally, the
details, such as random noise and current fluctuations in these generated samples, align
more closely with real-world scenarios, rendering them more practical in fault diagnosis. It
has been observed that extending the original dataset using Cycle GAN improves the fault
diagnosis accuracy of the DAE and Softmax models by 6%. Compared to similar methods,
our proposed Cycle GAN–DAE model demonstrates outstanding performance in fault
diagnosis tasks.

In comparison to the original methods, deep learning techniques have gained signifi-
cant popularity in motor fault diagnosis due to their ability to effectively express crucial
data. Our designed sample generation network addresses the challenges associated with
deep learning-based fault diagnosis methods, providing valuable insights for future re-
search endeavors, which heavily rely on high-quality datasets that may be challenging to
collect specifically for permanent magnet-synchronous motor faults. Furthermore, existing
methods utilizing neural networks for diagnosing faults in permanent magnet-synchronous
motors are all offline diagnoses. We aim to address this issue in future research to achieve an
online fault diagnosis of permanent magnet-synchronous motors, which holds significant
research value and potential for industrial applications.

On the contrary, this proposed method exhibits certain limitations. Firstly, the es-
tablishment of a deep model is relatively intricate, resulting in high modeling costs and
limited timeliness. Secondly, in order to enhance the efficacy of PMSM fault diagnosis,
greater emphasis has been placed on optimizing sample expansion algorithms rather than
conducting extensive research on actual PMSM fault mechanisms.
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