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Abstract: This article introduces a voice-controlled robotic system for early education, enabling
children as young as four to interact with robots using natural voice commands. Recognizing
the challenges posed by programming languages and robot theory for young learners, this study
leverages recent advancements in artificial intelligence, such as large language models, to make
robots more intelligent and easier to use. This innovative approach fosters a natural and intuitive
interaction between the child and the robot, effectively removing barriers to access and expanding the
educational possibilities of robotics in the classroom. In this context, a software pipeline is proposed
that translates voice commands into robot actions. Each component is tested using different deep
learning models and cloud services to determine their suitability, with the best ones being selected.
Finally, the chosen setup is validated through an integration test involving children aged 4 to 6 years.
Preliminary results demonstrate the system’s capability to accurately recognize and execute voice
commands, highlighting its potential as a valuable educational tool for early education.

Keywords: cobots; education; human–robot interaction; artificial intelligence

1. Introduction

The application of robotics within educational settings has emerged as a transforma-
tive force, promising to redefine the pedagogical landscape for the 21st-century learner [1].
Integrating robotics in early education fosters technological literacy and cultivates essen-
tial skills such as creativity, collaboration, and problem-solving, all pivotal within the
STEM domain [2]. However, the challenge of executing complex tasks with robotics using
programming languages and kits can be overwhelming for young learners. This often
restricts the scope of their achievable projects, potentially restricting their full creative and
intellectual development.

Current educational robotic kits, while introducing technology and engineering con-
cepts, primarily offer limited and predefined interaction paradigms, restricting the scope of
tasks that can be explored and executed by preschool-aged children [3,4]. These constraints
arise not from a lack of capability on the part of the children but from the inadequacy of the
robots and programming languages designed for their use. Complex concepts like control
theory, computer vision, and machine learning are still out of reach for preschool-aged
children because the programming and concepts involved are too advanced.

This study suggests that by simplifying the user interfaces and enhancing the intelli-
gent response capabilities of robots, we can significantly broaden the range of conceptual
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and practical skills accessible to young learners, even four-year-olds. With recent ad-
vancements in artificial intelligence (e.g., [5,6]), computer vision (e.g., [7,8]), and robotics
(e.g., [9,10]), there lies an opportunity to innovate the methods of interaction between
children and educational robots [11]. Evidence from recent literature indicates that even
preschoolers can develop an understanding of complex scientific and mathematical con-
cepts when provided with intuitive and engaging tools [12,13].

Addressing this opportunity, our research introduces a voice-controlled robotic system
designed for early education settings. The system integrates advanced technologies, in-
cluding speech-to-text (STT), large language models (LLMs), and object detection, enabling
it to understand and respond to verbal commands from children as young as four. This
capability underscores the potential for incorporating sophisticated robotics into early
childhood educational environments. Through this implementation, we demonstrate that
collaborative robotics, typically reserved for industrial settings (e.g., [14,15]), are equally
effective and engaging in early education, fostering a comprehensive approach that en-
courages young learners to explore and understand complex concepts across various
knowledge domain.

The primary contributions of this work are as follows:

• We present a proof of concept for a robotic system responsive to children’s verbal
instructions. This system not only advances the field of educational robotics with
its novel capabilities but also serves as a foundational platform for further empirical
exploration within the domain.

• Our comprehensive evaluation of critical technologies, including speech-to-text, large
language models, and object detection models, to process and interpret children’s in-
structions, highlights these technologies’ potential to enhance educational experiences
and pinpoints challenges for future research.

• To the best of our knowledge, this research represents the first attempt to utilize
collaborative robots, similar to those in industrial settings, in both suitable and ben-
eficial ways for early childhood education. This endeavor marks a significant step
forward in educational robotics and opens new opportunities for development within
educational contexts.

2. System Architecture and Methods
2.1. Experimental Setup: An Overview

Our robot system’s experimental setup enables dynamic interactions with children, as
Figure 1 shows. A robot, central to this setup, operates within a clearly defined workspace
marked by four QR codes. These codes identify the area where the system detects and
manipulates objects. While the workspace serves as the main stage for object detection and
interaction, a key feature of our system enables the robot to move objects beyond this area
into designated color boxes. These color boxes act as destinations for the objects children
need to relocate as part of their tasks during the system’s experimental evaluation.

The robot’s interaction with children follows a structured sequence of steps, as depicted
in Figure 2. The process begins with a child using a wake-up word that is easy to pronounce
and recognizable by the voice recognition system. This activation triggers the robot to
expect a new instruction. Children then have six seconds to issue voice commands for
tasks such as moving to a specific object, moving the robot arm down or up, and grabbing
or dropping an object. A speech-to-text system converts these voice commands into
written text.

Next, an LLM analyzes the written text to determine the child’s desired action (se-
mantic analysis). An object detection system then detects and localizes objects within the
scene and relays this information to a robot action module. This module combines the
action information from the LLM system with the object localization data to execute the
given function.
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Figure 1. Detailed view of the experimental setup, showcasing its various components.
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Figure 2. Flowchart detailing the child–robot interaction sequence, from voice command to the robot’s
action execution. The interaction initiates with a child’s voice command, recorded by a microphone,
and converted into text by a STT system. This text is analyzed by an LLM to determine the necessary
action. Simultaneously, an object detection module gathers information on the environment’s ele-
ments and their positions, essential for executing the action. This information, combined with the
LLM’s analysis, enables the robot action module to guide the robot’s movements accurately.

If a command is unclear or the action is not feasible, the robot responds, I do not
understand the instruction; try again, prompting the child to rephrase their request more
clearly. This structured interaction ensures the robot responds appropriately to children’s
commands and facilitates effective communication and debugging.

2.2. System Setup Details

The system primarily comprises a collaborative robot arm, the Ufactory Lite 6, with a
vacuum gripper to manipulate objects. A ZED Mini camera (Stereo Labs, San Francisco,
CA, USA), mounted on an aluminum frame, monitors the robot’s workspace for scene
observation, distance measurement, and object detection. The Samson XPS2 microphone
captures (Samson AG, Frankfurt, Germany) voice commands, allowing user interaction
with the robot. The processing unit is a PC equipped with an NVIDIA RTX3080 Ti graphics
card (NVIDIA, Santa Clara, CA, USA), capable of running deep learning models. The
robot and computer communicate via high-speed HTTP messages over an AX9000 router
(Xiaomi, Pekin, China).

2.3. Implementation Details

This section offers a concise overview of the core technologies and methodologies
used in the implementation, tracing the sequence from voice recognition to robot actions.
It highlights the key technologies driving each process and explains the rationale behind
their selection while adhering to strict safety and privacy guidelines.
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2.3.1. Voice Recognition Module

Understanding voice instructions from children involves a three-step process. The
first step is to recognize when a child is about to give an instruction, signaled by a wake-
up word. This wake-up word is a specific term that the system continuously monitors
for, alerting it to the start of the interaction. For this purpose, we utilize Picovoice [16],
a renowned web API that has been recognized for its proficiency in multilingual voice
recognition capabilities, ensuring reliable detection across various languages.

Once the wake-up word is detected, a six-second window is provided for the child to
deliver their instruction. This duration was carefully chosen based on our observations;
initially, we allocated four seconds, but this proved insufficient, especially for 4-year-olds.
Six seconds offers a more comfortable time frame for children to articulate their instructions.

The spoken message is captured and forwarded to an STT system for transcription in
the subsequent step. This system converts the audio input into text, which the semantic
analysis module will then process to discern the child’s intention. For the STT system, we
tested various deep learning models and web services, including Whisper Base [6], Whisper
Tiny [6], Whisper Small [6], Whisper Medium [6], Whisper Large [6], Vosk Small [17], Vosk
Normal [17], and Google STT [18] with contextual information, as well as Leopard [16].
Ultimately, we opted for Google’s STT service, which uses contextual information, i.e.,
providing hints of the expected words.

For a detailed comparison of the various STT models and services evaluated in this
work, please refer to the results section. The result section provides an in-depth analysis of
the effectiveness and suitability of different models and services in converting children’s
voice instructions to text.

2.3.2. Semantic Analysis Module

After the system transcribes the child’s voice command, it tasks an LLM system
with interpreting the message and reforming it into a structured dictionary with five
fields: Result, Action, Object, Color, and Size. The Result field indicates the success of the
interpretation, returning true for success and false otherwise. Action specifies the robot’s
required action, encompassing six possibilities: go to a bucket or object, go down, go up,
grab, release an object, and restart (an internal command). The Object field identifies which
object the action targets. Color and Size are optional, and dependent on the scene’s objects.
For instance, Color becomes critical when differentiating between multiple cube objects
of varying colors. Similarly, the need for Size arises under similar circumstances. We
intentionally avoid test scenes with objects of similar color and size to prevent ambiguity
in our experiments.

The prompt was the following: Interpret the voice command from a child, converted
to text, to control a robot (Little hand). Respond with Result, Action, Object, Color, and
Size. If the color or size is not specified, respond with not specified. If it was impossible to
understand the phrase, respond with Result: error. Otherwise, respond with Result: ok.
Possible actions include go down, go up, release, grab, go to, and restart. Possible colors
are red, white, blue, and yellow. Possible sizes are large and small. Possible objects are
star, cylinder, cube, and box; any other object is considered an error. The voice command
is: {STT transcript} Note: Commands may include variations in expression and common
language errors made by children. Normalize the response to the established categories.
The output is a JSON file with the following fields: result, action, object, color, and size.
Additionally, children might use terms like grab, suck, suction, or similar to indicate the
action of grabbing an object.

The previously described prompt is a translation of the prompt used in our experi-
ments, originally in Spanish. {STT transcript} represents the output from the STT module,
which converts the child’s spoken voice command into written text. For example, an STT
transcript might be as follows: “Move the robot to the blue cube”.

The output is a JSON file containing the fields previously described (see Figure 3). In
the results section, a thorough evaluation is conducted comparing the Gemini [19] LLM
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service with ChatGPT [20] versions 3.5 and 4. We ultimately chose Gemini due to its
superior runtime speed and performance. We did not test open-source LLMs locally due to
the need for sufficiently powerful GPUs to run these models.

{
‘‘Result’’: ‘‘ok’’,
‘‘Action’’: ‘‘go to’’,
‘‘Object’’: ‘‘cylinder’’,
‘‘Color’’: ‘‘white’’,
‘‘Size’’: ‘‘unspecified’’

}

Figure 3. Example JSON output for interpreting the voice command, “go to the white cylinder”.

2.3.3. Vision-Based Object Detection Module

The object detection module, crucial for the system, finds and classifies objects within
the robot’s QR code-defined workspace (Figure 1). These QR codes serve to avoid false
detections outside the designated area. The detector’s responsibility is to identify simple
geometric shapes, such as cylinders, cubes, and stars, in four distinct colors: yellow, white,
blue, and red. These particular shapes and colors are familiar to children within the targeted
age group of the study. Additionally, their inclusion intentionally supports educational
objectives, including teaching children to categorize objects based on various attributes.

From a technical perspective, an object detector scans an image to find a list of pre-
trained objects. It returns each detected object’s label and its bounding box coordinates,
defined by four points: (x1, y1) for the upper left and (x2, y2) for the bottom right corners.
Two main types of learning-based object detection methods exist: one-stage and two-stage.
One-stage methods, including YOLO [8] and SSD [21], tend to be faster but less accurate
than two-stage methods such as Cascade R-CNN [22] and Mask R-CNN [23], as mentioned
in [24]. In this work, after an empirical evaluation described in Section 3.2, we decided to
use YOLOv8N, an advanced version of the popular one-stage method in the YOLO family
of models (e.g., [8,25,26]). YOLOv8N achieves a good balance between runtime speed
and accuracy.

To ensure the robot can accurately grasp objects detected by this module, the locations
of these objects must be expressed in terms of the robot’s coordinate system, a process
achieved through hand-to-eye calibration [27]. This involves attaching a QR code to
the robot’s end effector and moving it through known positions within the camera’s
view to compute a transformation matrix that aligns the camera’s coordinate system
with the robot’s, significantly simplified by the ZED Mini camera’s point cloud capability.
This matrix converts detected object locations into robot coordinates, facilitating precise
positioning of the robot’s end effector for object manipulation.

2.4. Safety and Privacy Measures

Although collaborative robots (cobots) are designed with inherent safety features
for human interaction, we implemented additional precautions in our setup. Specifically,
we established a designated safety zone for interactions between the robot and children.
Moreover, children were always supervised during the process to ensure utmost safety.

Regarding privacy, we secured written consent from the parents before participation,
ensuring that any data collected would be utilized exclusively for academic research
purposes and in strict adherence to privacy and data protection laws currently in effect
in Chile.

3. Results
3.1. Datasets

For this experiment, we generated two types of datasets created for two primary
purposes: (i) to train and evaluate the suitability of various deep learning models and web
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services implemented in our project and (ii) to elucidate the rationale and selection process
for the tools employed.

3.1.1. Geometric Figures Dataset

We generated a synthetic dataset (SGFD) to train object detectors that would later
be used to identify objects within the robot’s workspace. This dataset was created using
the Unity game engine and its Perception package [28], primarily for training purposes.
It facilitated the generation of abundant training data featuring squares, cylinders, and
stars in various colors, mirroring those used during the system’s evaluation with children.
Given that the actual objects were produced with a 3D printer and placed against a white
background, we anticipated a minimal gap between the synthetic and real-world environ-
ments. A random object generator was employed to produce a variety of shapes and colors
distributed evenly across different backgrounds for robustness. The dataset’s composition,
including the number of images and instances, is detailed in Table 1, with sample images
shown in Figure 4.

We also captured and labeled 100 image samples from the workspace using the ZED
Mini camera and 3D-printed pieces to evaluate their applicability in real-world scenarios
and verify our hypothesis regarding the minimal synthetic-to-real gap. This collection has
been named the real geometric figures dataset (RGFD). Like the SGFD, this real dataset
includes the same three classes: cylinder, star, and cube. Specifically, it comprises 400 object
instances, with 161 instances of cubes, 89 cylinders, and 150 stars.

(a) sample 1 (b) sample 2

Figure 4. Image samples from the synthetic dataset used to train the object detector model.

Table 1. Distribution of images across training, validation, and testing subsets within the synthetic
dataset, which includes three classes: cylinder, star, and cube. The dataset comprises 24,568 instances
of cubes, 24,064 instances of cylinders, and 24,098 instances of stars.

Subset Number of Images

Training 3500
Validation 500
Testing 1001

Total 5001

3.1.2. Voice Instructions Dataset (VID)

To assess the performance of different STT models and web services, we collected
audio recordings featuring voice commands from children aged 4 to 8, all in Spanish, the
language used in all our experiments. These recordings included a variety of commands,
such as move to the white cylinder, go down, and go up, among others, aimed at controlling
the robot to perform a wide range of tasks. We gathered 311 audio recordings, creating a
substantial dataset for evaluating the robot’s task execution capabilities. This set is named
VID. The recordings exhibit varying sound qualities, as we requested parents to use their
smartphones for the recordings, resulting in a diverse range of audio qualities within
the dataset.
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Observing that numerous recordings in the original dataset commenced directly with
a child’s voice—an approach generally less favorable for STT systems—we created an
alternative version (VID1S). In this version, we added 1 s of silence at the start of each
recording. This adjustment was made to explore whether introducing a brief period of
silence could enhance the STT system’s performance, particularly considering the abrupt
beginning of most of the original recordings.

3.2. Object Detection Results

We trained four different models for object detection in our robot. These models are
YOLOv8N [29], YOLOv8M [29], YOLOv8X [29], and RT-DETR-L [7]. All models were
pre-trained on the COCO dataset [30]. The objective was to evaluate the capabilities of
various models, each with a different number of parameters, to find the optimal balance
between accuracy and runtime, making the application suitable for the experiment. The
models were solely trained on the synthetic dataset (SGFD) and tested on the real dataset
(RGFD). The training utilized default hyperparameters, including various augmentation
techniques such as image rotation, cropping, and color jitter. We conducted the training and
evaluation on an NVIDIA RTX 3080 Ti, with all models undergoing 100 training epochs.

We used the standard metric mean average precision (mAP) to evaluate the trained
detector models’ accuracy. The mAP evaluates object detection models by considering both
precision (the model’s accuracy in identifying only relevant objects) and recall (the model’s
ability to identify all relevant objects). It is calculated across various IoU (intersection over
union) thresholds. IoU is a measure used to quantify the overlap between the predicted
and ground truth bounding boxes.

Table 2 presents the results of two popular mAP variants, mAP50 and mAP50-95,
demonstrating that all models could reliably identify objects in the real dataset, even
without being trained on real-world data. This success was anticipated, considering the
toy-like setup of our experiment does not significantly challenge modern object detection
models, thus simplifying the task. Among the models, YOLOv8N emerged as the most
suitable choice because of its optimal balance between runtime efficiency and accuracy.
Notably, our approach did not rely on the object detection models for color recognition;
instead, we employed a straightforward color distance method. Specifically, we calculated
the average pixel value within the detected object’s bounding box and compared it to a
reference value. This strategy effectively utilized the clear differentiation of colors in the
RGB spectrum to accurately identify color ranges. An intriguing observation was that the
transformer-based model, RT-DETR, was the only one that underperformed, seemingly
unable to generalize effectively between the synthetic and the real dataset.

Figure 5 displays a snapshot taken by the camera alongside the outcomes following
the object detection process.

Table 2. Performance evaluation of object detection models on RGDF. The table displays the count of
instances identified within the 100 images that comprise the dataset.

Model Class Instances mAP50 mAP50-95 GFLOPs

YOLOv8N

all 400 0.994 0.834

8.1cube 161 0.993 0.836
cylinder 89 0.995 0.882

star 150 0.995 0.783

YOLOv8M

all 400 0.983 0.818

78.7cube 161 0.970 0.777
cylinder 89 0.995 0.881

star 150 0.983 0.795
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Table 2. Cont.

Model Class Instances mAP50 mAP50-95 GFLOPs

YOLOv8X

all 400 0.983 0.812

257.4cube 161 0.959 0.768
cylinder 89 0.995 0.862

star 150 0.995 0.805

RT-DETR

all 400 0.776 0.501

103.4cube 161 0.819 0.497
cylinder 89 0.951 0.632

star 150 0.558 0.372

Figure 5. Top view of the working area with objects detected using YOLOv8N.

3.3. Speech-to-Text Results

The availability of STT models has increased significantly in recent years, ranging
from free, open-source models to cloud-based services. Although standard benchmarks
exist to evaluate their performance, assessing specific requirements that differ from the
conditions of available benchmarks is often necessary. This consideration is particularly
relevant when working with children aged four who are non-English speakers, in this
case, Spanish speakers. Therefore, various models and services were evaluated using the
dataset we captured to determine which model performs better regarding the word error
rate (WER). WER is a popular metric used by automatic speech recognition systems. It
tells you how many mistakes a system makes in recognizing spoken words. A lower WER
indicates a more accurate system with fewer word recognition mistakes.

From Table 3, it is evident that STT systems face challenges when processing voice
instructions from small children. This difficulty can be attributed to various factors. One
factor is the language used (Spanish); another is the limited amount of data available for
young children compared to adults, leading to generally poorer STT performance in this
age group. Additionally, speech development in young children is a critical factor. For
instance, children in Spanish-speaking countries often struggle with words containing the
R sound. The comparison reveals that the Whisper Large model and Google STT using
context performed the best. However, their performance still falls short of the results
obtained in standard benchmarks, highlighting the complexities involved in working with
children’s speech.
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Table 3. WER comparison across various STT models. Here, WB = Whisper Base, WT = Whisper Tiny,
WS = Whisper Small, WM = Whisper Medium, WL = Whisper Large, VS = Vosk Small, VN = Vosk
Normal, G = Google STT, GC = Google STT using context, L = Leopard.

Dataset WB [6] WT [6] WS [6] WM [6] WL [6] VS [17] VN [17] G [18] GC [18] L [16]

VID 1.20 1.47 0.67 0.90 0.37 0.64 0.42 0.45 0.33 0.73
VID1S 0.87 0.97 0.82 0.64 0.39 0.68 0.44 0.44 0.26 0.66

Figure 6 illustrates the relationship between runtime and WER. Although the Whisper
Large model offers favorable WER performance, its slower processing speed may not be
practical for real-time applications, especially in contexts where children are involved and
quick interaction is crucial. The Vosk model presents a balanced trade-off between speed
and accuracy, but it does not match the accuracy of Google’s context-aware STT, which
outperforms other models in both speed and precision. Additionally, it is advantageous
that Google’s model does not require high-end hardware, making it more accessible and
cost-effective, at least for this application.

0 1 2 3 4 5 6 7 8 9 10
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Figure 6. Runtime and WER comparison for various STT models, averaged over 311 instances from
the VID1S dataset using an RTX 3080 TI. Model initials near each point are as follows: WB = Whisper
Base, WT = Whisper Tiny, WS = Whisper Small, WM = Whisper Medium, WL = Whisper Large,
VS = Vosk Small, VN = Vosk Normal, G = Google STT, GC = Google STT using context, L = Leopard.

3.4. Semantic Analysis Results

STT might need to be more robust when dealing with small children, as small mistakes
or using different words while retaining the meaning can occur. This could confuse users
since the expectation of a voice recognition system in robots, such as the one proposed
in this article, is to enable natural interaction. This implies multiple ways of asking the
same thing without a fixed set of words. For these reasons, LLMs are used to grasp the
intention behind the actions. Due to limited GPU resources for in-line LLMs, we opted to
test online services, namely ChatGPT and Gemini from Google. To evaluate the suitability
of this tool, we performed an intention analysis on each instruction in the dataset to see if
the use of LLMs provides not only actionable results but also serves as a helper to improve
understanding of common mistakes made by kids or STT systems.

Table 4 presents the semantic analysis results of the VID audios. From these results,
it is evident that Gemini delivered the best performance. Notably, Gemini could com-
prehend instructions that the STT did not transcribe accurately but still preserved the
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meaning, providing a secondary verification extension that enhanced the system’s robust-
ness. ChatGPT also demonstrated the ability to interpret instructions correctly, albeit with
less accuracy than Gemini. Thus, Gemini was chosen for its superior performance in
accurately determining actions and faster runtime.

Table 4. LLM evaluation over Google STT context-aware transcriptions on the VID1S dataset. STT
Correct corresponds to the perfectly accurate transcriptions, while the other columns indicate the
number of voice instructions that the semantic analysis tools correctly identified along with their
runtime. The total number of voice instructions was 311.

STT Correct
Gemini GPT-3.5 Turbo GPT-4

Correct Runtime Correct Runtime Correct Runtime

Total 184 200 1.2 s 192 1.1 s 186 2.5 s

3.5. System Repeatability Results

We conducted a system repeatability test using VID1S audios that the Google STT
service had accurately recognized in previous experiments. To demonstrate the system’s
repeatability, we designed various tasks requiring the robot to interact with objects within
the workspace. We chose tasks such as relocating the red cube to the red bucket and
positioning the red star in its designated bucket. Our goal was to assess the system’s overall
consistency and the reliability of its components, including object detection and robot
actions. We compiled audio sequences for each task from VID recordings. We tried to use
audio recordings from the same child whenever possible; however, we occasionally had to
combine recordings for younger participants. This necessity arose because the system’s
performance with these participants was limited, making it challenging to generate a
coherent sequence of actions from a single four-year-old’s recordings. We placed different
pieces in the workspace for each task and ran the system using the sequence of recordings,
processing them automatically in real time. The results, which we detail in Table 5, unveiled
unexpected outcomes. Although we initially had concerns only about robot repeatability
and object detection, we discovered the STT system was not as robust as we had thought,
which led to some misdetections. Remarkably, we observed no failures in the robot’s
actions or the vision system.

Table 5. This table provides a breakdown of the total and successful attempts, as well as errors
categorized by STT, object detection, and LLM.

Dataset Total Attempts Successful
Attempts by STT

Errors by
Object Detection by LLM

VID Tasks 100 93 7 0 0

3.6. Evaluation of the System with Children Aged 4 to 6

We conducted a workshop in a robotics laboratory tailored for children aged 4 to
6, despite our datasets including ages up to 8. This age range was chosen due to the
developmental differences between younger children and those older than 6, aiming for a
more homogeneous group. The workshop was structured into two one-hour sessions, each
accommodating 12 students, effectively covering the same content twice in two hours with
a brief transition period. The session included an introduction to robotics, emphasizing our
robot’s operation, followed by interactive tasks where children commanded the robot to
perform simple actions. Figure 7 captures a moment when children interact with the robot
during the workshop.
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Figure 7. Children engaging with the robot in the workshop session.

The workshop yielded several important observations. Firstly, the activity was highly
engaging, with children enthusiastic about interacting with the robot. The students issued
39 voice commands, of which, 15 required repetition due to the system’s initial failure
to interpret the instructions accurately. Despite these challenges, all participants could
successfully command the robot by repeating the command when needed.

Most failures stemmed from the children’s inability to formulate instructions within
the given time, resulting in incomplete commands. Additionally, developmental differences
in speech skills, especially among four-year-olds, presented challenges. This highlights
a significant challenge for future improvements: enhancing the system’s robustness to
accommodate the diverse characteristics of younger children and making the system more
adaptable to their unique needs.

These findings are encouraging, demonstrating the system’s adaptability and its
practicality for use by children in this age range. The option to retry commands significantly
boosts the system’s utility, ensuring that despite initial miscommunications, children can
successfully interact with the robot as intended.

4. Discussion

The development of a voice-controlled robotic system for early education, as pre-
sented in this study, marks a step forward in leveraging technology to enhance learning
experiences for young children. By employing advanced artificial intelligence technolo-
gies, including large language models and sophisticated object detection techniques, the
system enables children as young as four to interact with robots intuitively through voice
instructions. This approach not only simplifies the interaction process but also opens up a
wide range of educational possibilities that were previously inaccessible. The complexities
of programming languages and robot theory, often too advanced for young learners to
grasp, can no longer be barriers to exploration and learning. Moreover, this type of system
enhances accessibility, making educational robotics more inclusive and adaptable to diverse
learners’ needs.

Our findings demonstrate the system’s effectiveness in recognizing and executing
commands from children. However, the study also underscores several technological
challenges. The voice recognition and action recognition systems need to be significantly
faster to prevent distractions among young learners, which could limit their practical use
in classrooms. Additionally, these systems must reduce their hardware requirements for
broader adoption, making the system more accessible to schools of any size and budget.
This represents significant challenges on the technological front to achieve widespread im-
plementation.

Future research should explore more open-ended interaction scenarios, enabling
children to perform various tasks and engage more deeply with the robot. Moreover,
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comprehensive investigations are necessary from an educational perspective to assess
learning gains across multiple domains, such as computational thinking, collaborative
work, and subjects like science or mathematics, to substantiate the educational value of
this type of robot. Integrating learning subjects could be particularly effective given the
robot’s versatile nature. This aspect is crucial not only for the educational adoption of the
technology but also for mitigating concerns about the use of technology in early education,
which is often perceived as more detrimental than beneficial.

Additionally, it is worth noting that the potential of these interfaces and robots extends
far beyond education. The key lies in making technology more intuitive to use, fostering
true human–robot collaboration, and ensuring its positive application across all areas of
human activity.

5. Conclusions

In this work, we demonstrate that children aged 4 to 6 can control collaborative robots
using voice commands, unveiling numerous possibilities for educational advancements.
Children possess a remarkable capacity for interaction, often constrained by the limitations
of current robotics and programming languages unsuitable for their age group. This
research shows the feasibility of employing more intelligent robots, enabling children
not just to learn robotics but to engage in various tasks, thus broadening the scope of
what is achievable in early education through technology and twenty-first-century skills.
Additionally, this research introduces the opportunity to explore deeper human–robot
collaboration, a vital skill for the future workforce that requires further exploration in early
education settings.
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