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Abstract: Recognizing aircraft automatically by using satellite images has different applications in
both the civil and military sectors. However, due to the complexity and variety of the foreground
and background of the analyzed images, it remains challenging to obtain a suitable representation of
aircraft for identification. Many studies and solutions have been presented in the literature, but only
a few studies have suggested handling the issue using semantic image segmentation techniques due
to the lack of publicly labeled datasets. With the advancement of CNNs, researchers have presented
some CNN architectures, such as U-Net, which has the ability to obtain very good performance using
a small training dataset. The U-Net architecture has received much attention for segmenting 2D and
3D biomedical images and has been recognized to be highly successful for pixel-wise satellite image
classification. In this paper, we propose a binary image segmentation model to recognize aircraft by
exploiting and adopting the U-Net architecture for remote sensing satellite images. The proposed
model does not require a significant amount of labeled data and alleviates the need for manual
aircraft feature extraction. The public dense labeling remote sensing dataset is used to perform the
experiments and measure the robustness and performance of the proposed model. The mean IoU and
pixel accuracy are adopted as metrics to assess the obtained results. The results in the testing dataset
indicate that the proposed model can achieve a 95.08% mean IoU and a pixel accuracy of 98.24%.

Keywords: remote; image; segmentation; aircraft; deep learning; ensemble; U-Net

1. Introduction

Images acquired by aerial platforms and satellites for remote sensing purposes are
described as depictions of the Earth’s surface from a vantage point in space. The semantic
labeling of these images is widely recognized as a critical challenge [1]. This task involves
assigning a class label to each pixel within an image. Over the past ten years, advancements
in technology, such as compact imaging sensors and unmanned aerial vehicles, have yielded
significant enhancements in image quality while reducing operational and equipment
costs [2]. These cost-effective platforms provide flexible access to both multi-spectral and
high-resolution images, along with an accelerated data acquisition rate [3]. Consequently, a
significant challenge has emerged concerning the efficient management of extensive data
collections and the swift retrieval of specific data of interest. Content-Based Image Retrieval
(CBIR) is recognized as a valuable approach for rapidly accessing desired images within
large-scale datasets [4].

In recent years, substantial effort has been dedicated to tailoring CBIR techniques for
remote sensing images, leading to the emergence of a vibrant and complex field known
as Remote Sensing Image Retrieval (RSIR) [5]. Within this field, researchers have placed
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particular emphasis on the advancement of feature extraction methods. This focus is critical
because the effectiveness of image retrieval largely hinges on the quality and efficiency of
the features used [6]. As a result, numerous methodologies have been developed for the
application of semantic segmentation in the context of aerial and satellite images. These
techniques represent innovative approaches to enhance the retrieval and analysis of remote
sensing data, addressing the unique challenges and complexities of this domain.

These techniques may be divided into three main categories. Methods using manual
feature extraction methods, such as the Scale-Invariant Feature Transform (SIFT) method,
fall under the first group [7], including Vector of Locally Aggregated Descriptors (VLAD) [8],
improved Fisher kernel [9], bag of visual words [10], local binary patterns, and Gabor
texture [11,12]. With these techniques, features are manually extracted from remote sensing
photos. The second kind uses common classifiers that need previous knowledge of the
feature extraction procedure to categorize individual pixels, such as Conditional Random
Fields (CRFs) or Random Forest. Deep learning methods, which have become popular
in the semantic segmentation of satellite pictures, are what distinguish the final category.
These models, which frequently use neural networks, are capable of automatically learning
contextual characteristics from the input data, such as higher-level specifics and shape
aspects [13,14]. They have changed this area of research by enabling more automated and
adaptable feature extraction, and they are known for their capacity to extract complex
information [1]. In order to meet various criteria and circumstances for the semantic
segmentation of satellite pictures, each of these categories provides unique benefits and
trade-offs.

The automatic detection of aircraft in high-resolution satellite images represents a
significant and intricate challenge in the realm of target identification. This challenge
holds critical importance across both military and civilian domains, with dynamic airfield
surveillance being one of its prominent applications [15]. High-resolution satellite images
offer a wealth of spatial information, textures, and colors due to their superior quality.
However, automating the recognition of aircraft in such images proves to be a highly
demanding task, primarily because of the complex and diverse structures depicted in
satellite imagery. Furthermore, aircraft exhibit variations in terms of shape, color, and size.
Even for a single type of aircraft, the intensity and texture of its appearance can differ
significantly across various scenarios [16]. This complexity underscores the substantial
intricacies involved in this area of research and development.

When it comes to recognizing a single label for RSIR, several freely available bench-
mark datasets have been established [6]. However, it is worth noting that, within the
domain of remote sensing, there is a scarcity of studies that have provided public datasets
specifically tailored for image-segmentation-based aircraft detection. This scarcity of pub-
licly available datasets has posed a limitation on the development of innovative solutions
in this area. Consequently, if one intends to train a network using real data for aircraft
detection, the available training dataset may be relatively small. In response to this chal-
lenge, and by leveraging the advancements in Convolutional Neural Networks (CNNs),
researchers have introduced various CNN architectures, such as U-Net [17], which have
demonstrated remarkable performance even with limited training data. In this study, we
propose a pixel-wise image segmentation model that draws inspiration from the specialized
architecture of CNNs. The primary framework for our model is based on U-Net, which was
selected for its effectiveness in achieving the rapid and high-quality recognition of aircraft
objects. To evaluate the performance of our aircraft recognition model, we employ the dense
labeling remote sensing dataset (DLRSD) [4]. This dataset serves as a valuable resource for
assessing the capabilities of the planned model in the context of aircraft recognition [18].
The contributions of this study can be summarized as follows:

1. The developed architecture presents an end-to-end semantic segmentation model
with robust expandability. This model can be effectively employed for the automatic
recognition of aircraft, including those that are not present in the initial training
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dataset. Importantly, this recognition can be achieved without the need to retrain
the model.

2. This study integrates several strategic approaches, including data preprocessing and
data augmentation, with the model designed for aircraft semantic segmentation.
These strategies collectively contribute to a substantial improvement in accuracy,
enhancing the model’s performance.

3. To the best of our knowledge, this study represents the first effort to explore the
DLRSD for the development of a semantic segmentation model tailored for aircraft
recognition by employing the U-Net architecture. This exploration expands the scope
of available resources and insights in the field of aircraft recognition, making a notable
contribution to the literature.

The remainder of this article is divided into the following sections: To provide context
and insights into the body of knowledge that is already available in the field of aircraft
recognition utilizing U-Net and deep learning, Section 2 explores the background and
relevant works in the literature. This study’s materials and methods are described in depth
in Section 3, including the research strategies, data pretreatment methods, and the use of
U-Net and deep learning for aircraft recognition. In Section 4, the findings are discussed,
the experimental data are presented and analyzed, and the performance and effectiveness
of the suggested semantic segmentation model are evaluated. Section 5 discusses the results.
Finally, Section 6 serves as the conclusion, summarizing the key findings and contributions
and extending the discussion to potential future research directions within the scope of
aircraft recognition using U-Net and deep learning.

2. Background and Related Literature
2.1. Classical Methods for Aircraft Recognition

In the realm of classical methods for aircraft recognition, many studies in the literature
rely on the utilization of rotation-invariant features, often achieved by applying binarization
techniques to images. Prominent examples of such features include Fourier descriptors and
moment invariant features [19]. These methods typically leverage shape features extracted
from either the object’s contour or a binary representation of the object. They assume
that accurate edge detection or region delineation can be readily obtained, which is a task
that can be challenging in real-world scenarios. Additionally, these approaches often rely
on threshold-based image segmentation applied to the entire shape or silhouette of the
target [20]. Features related to rotation invariance, such as Zernike moments, wavelet
moments, and Hu moments, are subsequently extracted for recognition purposes [19].

For example, in [20], Zernike invariant moments were effectively combined with an
independent component algorithm to facilitate aircraft recognition. Meanwhile, in [21], the
authors adopted histogram equalization to identify airports in images. Subsequently, they
employed segmentation to isolate the areas containing planes, followed by the generation
of binary images. A Principal Component Analysis (PCA) was applied to determine the
main axes of each airplane, and aircraft recognition was accomplished through template
matching [21]. However, these methods encounter certain limitations highlighted by [16]:
(1) The alignment of segmentations or aircraft often necessitates direction estimation,
which is constrained by the methods’ capacity and may result in inaccuracies in direction
prediction. (2) The coarse shape representations employed by these techniques tend to
overlook crucial details that are essential for discriminating between different aircraft types.

2.2. Aircraft Recognition Using Image Features Directly

Several methods have been introduced for aircraft recognition, focusing on direct
image feature utilization. In [22], aircraft recognition was accomplished through a combina-
tion of backpropagation neural networks and the moment invariant method. Similarly, [23]
employed principal component features to train a neural network-based classifier. To
perform classification, they adopted a directed acyclic graph support vector machine model.
However, these methods exhibit certain limitations, as highlighted by [15]. They are notably
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sensitive to the distribution of training data and necessitate a substantial amount of data
for effective performance. Moreover, they often yield suboptimal recognition accuracy,
particularly when dealing with imbalanced data distributions. In comparison to template-
matching methods, these approaches possess two key drawbacks. First, they deviate from
the task of detecting targets in natural images, as they require individuals experienced in
interpretation techniques to label each aircraft promptly. Second, they demand a substantial
volume of training examples and are sensitive to data distribution.

2.3. CNNs for Semantic Segmentation

Recent developments in the field of image analysis, driven by the utilization of clusters
and Graphics Processing Units (GPUs) along with advancements in algorithms, have sub-
stantially reduced processing times. Consequently, deep learning methods have garnered
significant attention, as noted by [24]. Specifically, the study of semantic segmentation using
CNNs can be categorized into two primary sets of techniques: patch-based and pixel-based
approaches [25]. In patch-based techniques, patches surrounding each pixel within the
input image are extracted, and a single label is predicted for each patch using a CNN, effec-
tively classifying the entire image [26]. While this category of techniques has contributed
significantly to image segmentation, it is associated with certain drawbacks, including
limited receptive fields, computational inefficiency, and substantial memory requirements.

In contrast, pixel-based techniques involve predicting a label for each individual pixel
within the entire image. A notable advancement in this realm is the Fully Convolutional
Network (FCN) [27]. An FCN represents a classical model that deploys convolutional
layers instead of fully connected layers, making it adept at upscaling coarse segmentation
outputs into more precise results. This is achieved through the utilization of transposed
convolutional layers. Various CNN models have adopted the FCN architecture, character-
ized by an encoder–decoder structure, and have achieved commendable results. However,
it is worth noting that one drawback associated with the FCN architecture is the potential
for significant factor up-sampling, which can introduce classification ambiguities.

To address the challenge of classification ambiguities due to large factor up-sampling,
various models have been proposed. One such model is the DeepLab-CRF, presented
by [28], which incorporates a fully connected CRF. This model introduces “atrous” con-
volutions to mitigate the impact of eliminating pooling layers. To achieve smoother raw
segmentation results, the fully connected CRF is integrated with the responses from the
final CNN layer. Another approach is the DeconvNet [29], which employs a multi-layer de-
convolution network to replace bilinear interpolation in the upscaling stage. This network
incorporates un-pooling (the reverse of max-pooling) and deconvolution layers to enhance
the upscaling process. Similarly, the SegNet [30], which is conceptually similar to Decon-
vNet but offers a simplified architecture, has the advantage of being trainable end-to-end
and features a significantly smaller parameterization, making it a computationally efficient
choice for image segmentation tasks.

2.4. CNNs for Semantic Segmentation of Remote Sensing Images

Deep neural networks, particularly CNNs, have gained considerable attention in the
large-scale processing of remote sensing images in recent years. These networks have
proven to be the top-performing tools for high-resolution semantic labeling and have been
applied in various remote sensing tasks. For instance, in [31], experiments were conducted
using high-resolution remote sensing imagery to analyze several dense semantic labeling
CNNs by developing a multi-layer perceptron CNN model. In another work presented
in [32], a network architecture with an hourglass shape was designed, complemented by a
down-sampled network followed by an up-sampled network. It introduced an inception
module, spanning from the encoder to the decoder, facilitating the direct flow of information
across different network layers. This design choice aimed to enhance the network’s ability
to capture and utilize information effectively during the semantic labeling process.



Appl. Sci. 2024, 14, 2639 5 of 17

In [16], deep CNNs were offered as a framework for classifying different types of
aircraft. The method was a multi-step procedure. First, a specialized network was created
to segment airplanes, yielding complex findings that captured the specifics needed to
differentiate between various aircraft types. The segmentation outcomes were subsequently
improved by adding a network for keypoint detection to recognize aircraft bounding
boxes and orientations. The IoU measure was used to evaluate the similarity between
segmentation outputs and specified templates, hence confirming the findings. Finally,
a template matching approach was utilized for aircraft recognition. While such CNN
models are typically resilient to label noise, it is vital to remember that they are in fact data
hungry. When given a significant amount of training instances, frequently ranging from
hundreds to millions or even billions, they tend to function at their best. This emphasizes
the need to have a substantial and rich training dataset to enable the efficient training and
generalization of CNN-based models for image segmentation tasks.

The U-Net architecture [17] represents a specific type of FCN that has gained signifi-
cant attention for its effectiveness in segmenting both 2D and 3D biomedical images [17,33].
Subsequently, it was recognized that this model also performs exceptionally well in the
context of pixel-wise satellite image classification. Recently, U-Net achieved great perfor-
mance not only for images related to the biomedical processing field but also for object
segmentation from satellite images [2,34–37]. In the study conducted in [38], an approach
was applied to address the challenge of semantic segmentation in satellite images. They
devised an architecture akin to U-Net, leveraging ResNet-34 weights within the encoder
component. This algorithm demonstrated impressive results in the detection of roads from
satellite images sourced from the DeepGlobe database, achieving a notable public score
of 0.64.

To facilitate the semantic segmentation of remote sensing images, the authors in [3]
introduced a contextual U-Net architecture. Within this framework, they integrated three
collaborative enhancements: a module designed to extract boundary features, enabling the
fusion of both semantic and adaptive characteristics; an adaptive feature selection module
to prioritize important semantic channels, especially for handling irregular objects; and,
to effectively combine hierarchical features while utilizing dynamic inter-layer feature
guidance, they incorporated a recursive feature fusion module. To detect edge maps in
optical remote sensing images, the authors of [5] created a spatial channel attention U-Net
model. This model effectively highlights aircraft within the images. The spatial channel
attention U-Net provides significant edge cues, while the usage of encoders ensures a
robust representation of salient object features. Subsequently, the decoders receive the
output from the encoders. Within the decoders, a feature-merge module focuses on the
positions of prominent objects. As a result, the final output includes the identified aircraft.

The authors of [39] developed a multi-scale residual U-Net with an attention (MSRAU-
Net) scheme for multi-scale aircraft segmentation in remote sensing photos to solve this
issue for U-Net if used for multi-scale segmentation. Two types of attention components,
two adjusted Respaths, and a multi-scale convolution component were created and added
to MSRAU-Net to gather the multi-scale features and improve the efficiency of the features’
fusion. MSRAU-Net performs better than the other networks, especially when it comes
to recognizing tiny aircraft, according to the trials conducted on the RSI dataset. MSRAU-
Net obtained an F1 score of 93.10% and an accuracy of 93.12%. The authors claim that
MSRAU-Net performed better than FCN, U-Net, AU-Net, and MultiResUNet [39]. Using
the U-Net model, the study demonstrated a real-time method for object segmentation in
aerial drone photos. The model’s efficiency is increased by the use of data augmentation and
transfer learning approaches. Several base architectures, such as VGG 16, ResNet-50, and
MobileNet, were tested using the U-Net segmentation model. The model’s performance is
enhanced by data augmentation, as demonstrated by the experimental findings, which yield
a segmentation accuracy of 92% for VGG-16, 93% for ResNet, and 95% for MobileNet [40].

As demonstrated in Table 1, our model surpassed all existing models in the domain
of detecting and segmenting moving aircraft. This highlights the superior performance
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of our proposed approach compared to previous methods. Our research stands out from
previous work by employing the U-Net architecture for aircraft recognition through se-
mantic segmentation. Additionally, our study may represent the first attempt to utilize the
DLRSD specifically for the development of a semantic segmentation model tailored for
aircraft recognition using the U-Net architecture. This innovative approach highlights the
potential of U-Net in the context of aircraft image segmentation and opens new possibilities
for enhancing the accuracy and efficiency of remote sensing applications.

Table 1. Selected literature on image detection.

Study Domain Innovation/Technique Accuracy Achieved

[31] Image semantic labeling
Multi-layer perceptron (MLP) was

proposed, which outperformed other
techniques like CNN

88.92%

[32] Aerial image semantic segmentation Hourglass-shaped network (HSN)-based
semantic segmentation was proposed 89.42%

[16] Aircraft classification Keypoints’ detection network 95.60%
[17] Biomedical image segmentation U-Net architecture was deployed 92.03%
[33] Cardiac MR segmentation U-Net architecture was deployed ___
[34] Satellite image segmentation U-Net architecture was deployed 87.61%

[2] Satellite image segmentation Improved U-Net architecture
was deployed 97.56%

[35] Forest change detection U-Net architecture was deployed 99.00%

[36] Brain tumor segmentation in magnetic
resonance imaging (MRI) U-Net architecture was deployed 99.00%

[37] Glaucoma detection in retinal
fundus images U-Net and supervised ML algorithms 100%

[38] Satellite image segmentation ResNet-34 weights within the
encoder component 64.00%

[3] Remote image segmentation Contextual U-Net architecture ___
[5] Aircraft image segmentation Spatial channel attention U-Net model ___

[39] Multi-scale aircraft segmentation MSRAU-Net 93.12%
[40] Aerial drone object segmentation U-Net segmentation model 95.00%

This study Aircraft image segmentation U-Net segmentation model 98.24%

3. Materials and Methods

The methodology used in this research involved utilizing the U-Net framework for the
semantic segmentation of aircraft satellite images. To further improve feature localization,
we integrated skip connections into the U-Net architecture, allowing for the combination
of deep and high-resolution features. Additionally, NVIDIA CUDA technology was uti-
lized for GPU acceleration to expedite the training process and optimize the model. The
recognition of aircraft was accomplished through a three-stage workflow consisting of
data preprocessing, training, and testing phases. We used the OpenCV library and an
alpha compositing algorithm to transparently overlay the color mask over the original
grayscale image.

3.1. Architecture of U-Net Used for Aircraft Recognition

As discussed in the previous section, U-Net is introduced as a modified version of
the FCN, with two primary architectural distinctions. First, in contrast to FCN, which
employs a 1 × 1 convolution layer at the last layer of the encoder for utilizing pertained
models, U-Net omits this layer from the encoding stage. Second, to enhance the localization
accuracy, U-Net leverages high-resolution features by effectively merging the encoding and
decoding layers. Originally intended for biomedical segmentation tasks, U-Net has become
renowned for its remarkable performance in a variety of image segmentation applications.
One of the pivotal features contributing to the efficacy of the U-Net architecture is the
incorporation of skip connections. These connections facilitate the fusion of both low-
level and higher-level feature maps, a mechanism that plays a crucial role in achieving
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precise object localization during the segmentation process. This ability to capture detailed
information at multiple levels of abstraction is a key factor behind U-Net’s success in
producing accurate segmentation results.

The architecture employed in this study for performing the semantic segmentation
of aircraft satellite images utilizes the U-Net framework, as illustrated in Figure 1. The
U-Net architecture comprises two main sections: the left part, referred to as the encoder or
contracting path, and the right part, known as the decoder or expansive path. The encoder
section follows a conventional CNN structure and consists of four blocks of layers. Each
block incorporates two convolutional layers with multiple 3 × 3 filters applied sequentially
for feature extraction. After each convolution operation, a Rectified Linear Unit (ReLU)
is employed as a nonlinear activation function for the feature maps. To achieve down-
sampling, max-pooling with a filter size of 2 × 2 is applied, reducing the spatial dimensions
by a factor of 2. At each step of dimension reduction, the number of channels is doubled,
increasing the representational capacity of the network. Both the encoder and decoder
sections consist of an equal number of blocks. However, to recover the size of the feature
maps in the decoder section, each block includes an up-sampling operation, reducing the
number of channels through a 2 × 2 filter, effectively implementing deconvolution. This
structure enables the decoder to reconstruct detailed information from the reduced feature
maps, facilitating accurate semantic segmentation of the aircraft satellite images.
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Furthermore, to enhance the localization of up-sampled features, the skip-connections
technique is employed. This involves combining the features from the deep expansive
path with the high-resolution features from the shallow contracting path. As a result,
the expansive branch effectively increases the resolution of the output. ReLU activation
functions are applied after each convolution operation, with the exception of the last
layer. The final layer of the network employs a sigmoid activation function to produce a
pixel-wise probability map. To facilitate convergence during training, batch normalization
is employed after each convolutional layer, except for the last layer. The last layer of
the network is responsible for generating the model’s output using a 1 × 1 convolution
operation to map each pixel to a class, distinguishing between “Aircraft” and “Background”.
In summary, the architecture of the network encompasses a total of 23 ReLU activation
functions, 24 convolutional layers, 19 batch normalization operations, 2 dropout operations,
4 max-pooling operations, 4 merging operations, and 4 up-sampling operations. To obtain
the final predicted aircraft extraction result, the pixel-wise probability map needs to be
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binarized using a specified threshold, typically set to 0.5, yielding the output of the semantic
aircraft segmentation network.

3.2. Semantic Workflow of Proposed Model

The proposed workflow for aircraft recognition is divided into three primary stages,
as illustrated in Figure 2: the data preprocessing phase, the training phase, and the testing
phase. In the data preprocessing phase, various techniques are applied to prepare the input
dataset for training and testing. This contains procedures like grayscale picture conversion
and average division standardization. Additionally, techniques for data augmentation are
used to diversify the training dataset and reduce the danger of model overfitting. These
augmentation techniques include horizontal flipping, rotation, zooming, shearing, width
and height shifting, and picture rotation. The U-Net model is used as the fundamental
architecture in the training phase, and this model is trained using the enhanced training
dataset created in the preceding step. In order to evaluate the trained model’s prediction
accuracy and confirm the performance of the suggested model, test pictures are fed through
the trained model in the testing phase. This stage acts as the last assessment of the model’s
capability to spot airplanes in satellite photos.
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In this study, the dataset is partitioned into three segments for training, validation, and
testing. The training and validation portions of the dataset are utilized for training and val-
idating the proposed model [41]. Subsequently, the trained model is employed to evaluate
its performance using the testing dataset. It is worth noting that CNN-based approaches
often require substantial computational resources. To expedite the computational processes
within the neural network, the training and validation operations were conducted on a
GPU utilizing NVIDIA CUDA technology. CUDA is a parallel computing technology that
leverages numerous independent streams to accelerate operations. It is widely supported
by modern NVIDIA graphics cards and is compatible across various platforms. Additional
details about the dataset and the proposed model are provided in the subsequent sections.



Appl. Sci. 2024, 14, 2639 9 of 17

3.3. Overview of Dataset Used

The DLRSD was introduced as a resource for research related to solving semantic
segmentation challenges, which involve pixel-level labeling in RSIR. This dataset serves as
an extension of the multi-label UC Merced dataset wherein multiple labels are assigned to
each image. The DLRSD provides imagery with a one-foot pixel resolution and labels each
pixel in the images with one of seventeen distinct class labels. These class labels encompass
a range of objects and land cover types, including fields, tanks, chaparral, grass, airplanes,
ships, pavement, water, cars, bare soil, buildings, docks, seas, mobile homes, sand, courts,
and trees. The structure of the UC Merced dataset is mirrored by the 100-image limit
for each class. Each image in the UC Merced dataset was semantically segmented using
the eCognition 9.0 program to provide these labels. Each image was divided into areas,
and depending on its features and content, each region was given one of the seventeen
pre-defined class names. The densely labeled dataset known as DLRSD was produced
as a result of this labeling process, and it is an important tool for research on semantic
segmentation in the field of remote sensing.

Labeling masks and related pictures from the DLRSD are shown in Figure 3. The
ground truth photographs were tagged into two main categories in order to use this
dataset for our research: the image backdrop, which is represented by the color black,
and the aircraft, which is represented by the color white. The dataset consists of a total
of 100 images, each with a pixel size of 256 × 256. These images were partitioned into
different sets for training, validation, and testing purposes. Specifically, 80 images were
designated for the training set, 16 for the validation set, and 4 for the testing set. During the
training stage, several data augmentation techniques were applied to enhance the diversity
of the training dataset and prevent model overfitting. These augmentation methods are
outlined in Table 2 within this study.
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Table 2. Data augmentation method applied during training phase.

Augmentation Methods Value

Horizontal flip True
Height shift 0.05
Width shift 0.05

Image zoom 0.05
Image shear 0.05

Image rotation 0.2

3.4. Implementation Tools

The experiments were implemented on an Ubuntu 18.04 platform, utilizing Python 3
as the programming language. For deep learning functionalities, the experiments employed
Keras [42] along with TensorFlow [43] as the backend framework, as described in the study.
The hardware configuration used to conduct the experiments involved an Intel CPU with
8 cores, specifically an i7 950 running at 3.07 GHz. Additionally, the experiments made use
of a Nvidia GeForce GTX 960 GPU with 4 GB of memory. This hardware setup was utilized
to facilitate the training, validation, and testing phases of the research.

4. Results

This study involves comprehensive experiments designed to assess the performance
of the proposed model. These experiments were conducted using the DLRSD to test the
segmentation model. This section discusses the training settings applied in the experiments,
the evaluation metrics used, and the performance analysis.

4.1. Training and Evaluation of U-Net Model for Aircraft Semantic Segmentation

To train the proposed model, the Adam optimization algorithm was selected as a
method for efficient gradient-based stochastic optimization. The aim of the training process
is to reduce the loss, which involves learning all parameters associated with the model. This
optimization process is applied over the entire 256 × 256 pixel input image, representing
the input to the U-Net architecture. The Dice coefficient serves as the loss function in
this context, helping to quantify the error between the predicted results and the provided
ground truth mask. The weights for the model are initialized randomly, and the ReLU
activation function is applied to the hidden layers’ neurons. During the training phase of
this study, considering the limited memory capacity of the GPU, a batch size of eight is
employed. A set of image patches is fed into the network during each iteration to facilitate
the backpropagation process. Additionally, the learning rate is set to 0.00001 to regulate the
update step size during optimization.

The training of the model is conducted over 20 epochs, and during this training
process, a dropout rate of 0.5 is applied. After the completion of these 20 epochs, the mean
IoU was calculated, yielding a value of 95.08%. The output of the neural network is a
256 × 256 mask, representing the semantic segmentation of the input image. To ensure that
the pixel values in this mask fall within the range of [0, 1], the sigmoid activation function
is utilized. The pixel accuracy and mean IoU scores are employed as performance metrics
to assess the model’s effectiveness. Training is stopped when the performance score for the
validation dataset no longer exhibits improvements, indicating that the model has reached
a stable and optimal state.

4.2. Evaluation Metrics

The evaluation of our aircraft recognition results relies on commonly used pixel-based
metrics, similar to those employed in studies involving building recognition. Specifically,
we utilize the pixel accuracy and mean IoU scores to assess the model’s performance, as
shown in Formulas (1) and (2). The terms True Negative (TN), False Positive (FP), True
Positive (TP), and False Negative (FN) are used to assess the performance of our model.
TP represents the count of pixels that have been correctly predicted as aircraft when the
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actual labeled pixels are also aircraft. FP represents the count of pixels that have been
incorrectly predicted as aircraft when the actual labeled pixels represent the background.
The term “TN” refers to pixels that have been appropriately identified as not falling inside
the relevant class, for example, the backdrop or non-aircraft pixels. Last but not least, FN
stands for the number of pixels that have been wrongly classified as background when they
really represent an airplane. These words are crucial for determining if the model correctly
identifies airplanes in the semantic segmentation outputs. The mean IoU quantifies the
intersection over union for each class and computes their mean, while the pixel accuracy
assesses the proportion of properly predicted pixels to all pixels. These metrics aid in
assessing the precision and potency of our model’s ability to identify airplanes from the
semantic segmentation outcomes.

A key criterion for assessing the precision of semantic aircraft picture segmentation is
the mean IoU score. It calculates the accuracy by dividing the union area, which includes
both the ground truth and the detected aircraft, by the intersection area between the
ground truth and the detected aircraft masks. The IoU’s “mean” refers to the average score
determined over all classes, which are normally “aircraft” and “background”. This measure
reveals how successfully the model recognizes and segments aircraft in the photos.

Pixel − Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Mean − IoU = ∑c∈(Aircraft,Background)
target(c)∩prediction(c)
target(c)∪prediction(c)

= ∑c∈(Aircrft,Background)
TP(c)

TP(c)+FP(c)+FN(c)

(2)

4.3. Performance Analysis of Semantic Segmentation

Comparing the anticipated masks to the given ground truth masks is crucial to de-
termine how accurate picture segmentation is. The validation dataset is essential for
evaluating and validating the model’s performance during the training process. We use the
validation dataset to capture important measures, such as pixel-based accuracy and the
mean IoU score, which are often employed in semantic segmentation tasks. Additionally,
we carry out a rigorous assessment by contrasting the given ground truth mask with the
anticipated binarized aircraft mask produced by the segmentation model. The model’s
accuracy and segmentation effectiveness are continually checked and improved throughout
training thanks to this thorough validation approach.

Figure 4 illustrates the results of testing the proposed method, presenting the best seg-
mentation results achieved by the model using three test images. In this representation, the
first column displays three original images, the second column shows the corresponding
ground truth images, and the third column reveals the outcomes of the proposed aircraft
semantic segmentation method. As observed in Figure 4, the results of semantic aircraft
segmentation closely resemble the provided ground truth images, with only minor varia-
tions in some small regions. The overall pixel-wise accuracy, representing the percentage of
correctly predicted pixels, impressively reaches 98.24%. Additionally, the mean IoU score
achieves a high value of 95.08%. These metrics emphasize the precision and effectiveness
of the proposed segmentation model in accurately identifying aircraft in the images.
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By conducting a thorough evaluation of the proposed method, we calculated the
confusion matrix specifically for the two classes considered: aircraft and image background.
Figure 5 displays the resulting confusion matrix for a single test image. We used the
Scikit-learn package to obtain the TP, FP, FN, and TN components of the confusion ma-
trix [44]. These confusion matrix components were assigned various colors for visualization
purposes, allowing us to see how they are distributed throughout the picture. Since this
makes it possible for us to tell the difference between TP and TN, TP, FP, FN, and TN are
all mapped to the cyan, magenta, yellow, and black color spaces in Figure 5. We used the
OpenCV library and an algorithm known as alpha compositing to transparently overlay
the color mask onto the original grayscale image. Figure 5 illustrates the confusion matrix
and its overlay on one of the test photos, providing details on how well the model performs
in various areas of the image.
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The mean IoU curves for the U-Net model during training and testing across several
epochs are shown in Figure 6. This visual depiction provides information about the model’s
functionality and development during the training and testing phases. Additionally, it is
clear from the charts that the mean IoU first grows significantly as the number of epochs
rises. The rate of improvement, however, declines as the training goes on, and the number
of epochs exceeds 10, suggesting that the model’s learning begins to plateau. Additionally,
the graph shows that at epoch 20, which is the final epoch considered, the model achieved
its highest mean IoU value. This information highlights the training process’s effectiveness
and indicates that, beyond a certain point, further training may have diminishing returns in
terms of the mean IoU improvement. It provides valuable insights into the optimal training
duration and when to conclude the training process for this specific model.
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5. Discussion and Future Works

The architecture we developed offers an end-to-end framework for aircraft semantic
segmentation, characterized by strong scalability. Notably, it makes it possible for aircraft
that were not in the initial training dataset to be automatically recognized, removing the
requirement for the model to be retrained. For researchers struggling to obtain a sizable
amount of labeled actual data for aircraft picture segmentation, our model offers a workable
option. The findings imply that a fine-tuning strategy for initializing the encoder’s weights
in the network can improve the performance of the proposed U-Net model.

One limitation of our research pertains to the number of images utilized, which is
determined by the DLRSD. While the number may appear modest compared to those
employed in other studies, our proposed model mitigates the necessity for a large volume
of labeled data and obviates the manual extraction of aircraft features. For instance, in
the study presented in [40], the researchers assembled a dataset comprising 600 images,
achieving the highest accuracy for U-Net at 95%, which is inferior to the accuracy attained
in our investigation (i.e., 98.24%).

Similarly, the authors in [39] utilized the NWPUVHR-10 dataset, containing 650 target
images and 150 background images, totaling 800 images across 10 target types, with
80 images featuring aircraft. Despite this larger dataset, their accuracy only reached 93.10%.
Likewise, in the study conducted in [4], the DLRSD encompassed 21 broad categories, each
with 100 images, resulting in a total of 2100 images. Despite this extensive dataset, their
accuracy stood at 81.77%. Thus, while our dataset may be smaller in comparison, our study
achieved superior accuracy levels.

One additional limitation of our study is the exclusive evaluation of the U-Net archi-
tecture without considering other architectures, such as VGG 16 or ResNet-50. While this
choice may impact the generalizability of our findings, the results attained, when juxta-
posed with those of other studies, can serve as a foundational framework for subsequent
research endeavors.

By solely assessing the U-Net architecture, our study may have overlooked potential
insights that could have been gleaned from exploring alternative architectures like VGG 16
or ResNet-50. However, the improvement to our work may require using transfer learning
methods for more advanced pre-trained encoders like ResNet34 or VGG16. The use
of ensemble learning methods is a further possible enhancement route. To construct
an aggregate prediction, ensemble learning combines predictions from many pixel-wise
classification networks. This strategy can lessen the bias brought on by certain models,
which enhances the network’s overall performance.

6. Conclusions

The process of training models for the semantic segmentation of satellite images,
especially for tasks like aircraft recognition, heavily relies on manually labeled datasets.
Creating such datasets is both time-consuming and expensive, posing a significant challenge
to automating the analysis of such images. Additionally, due to the diverse and intricate
nature of aircraft images, obtaining an adequate representation for recognition through
image segmentation techniques remains a complex endeavor. With the advent of CNNs,
new architectures like U-Net have emerged, which are capable of achieving excellent
performance even with small training datasets. This research introduced a method for
aircraft identification based on the U-Net model, and its efficacy was demonstrated with
a modest training dataset (e.g., 100 images used in this study). We adapted the U-Net
architecture for aircraft extraction, showcasing its ability to generate high-quality aircraft
masks. Our tests demonstrated the efficacy of our method, which yielded a mean IoU
score of 95.08% for the overlapped region and a pixel accuracy of 98.24%. Our work
shows a promising approach for data-efficient and highly successful aircraft detection
in satellite photos, highlighting the promise of CNN-based architectures like U-Net for
completing challenging image segmentation tasks with little training data. Future research
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may emphasize refining and optimizing our model, paving the way for even more accurate
and robust aircraft image segmentation in remote sensing applications.
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