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Abstract: Image captioning, also recognized as the challenge of transforming visual data into coherent
natural language descriptions, has persisted as a complex problem. Traditional approaches often
suffer from semantic gaps, wherein the generated textual descriptions lack depth, context, or the
nuanced relationships contained within the images. In an effort to overcome these limitations, we
introduce a novel encoder–decoder framework called A Unified Visual and Linguistic Semantics
Method. Our method comprises three key components: an encoder, a mapping network, and a
decoder. The encoder employs a fusion of CLIP (Contrastive Language–Image Pre-training) and
SegmentCLIP to process and extract salient image features. SegmentCLIP builds upon CLIP’s
foundational architecture by employing a clustering mechanism, thereby enhancing the semantic
relationships between textual and visual elements in the image. The extracted features are then
transformed by a mapping network into a fixed-length prefix. A GPT-2-based decoder subsequently
generates a corresponding Chinese language description for the image. This framework aims to
harmonize feature extraction and semantic enrichment, thereby producing more contextually accurate
and comprehensive image descriptions. Our quantitative assessment reveals that our model exhibits
notable enhancements across the intricate AIC-ICC, Flickr8k-CN, and COCO-CN datasets, evidenced
by a 2% improvement in BLEU@4 and a 10% uplift in CIDEr scores. Additionally, it demonstrates
acceptable efficiency in terms of simplicity, speed, and reduction in computational burden.

Keywords: image captioning; image features; clustering mechanism; Chinese language description

1. Introduction

Image captioning, the process of crafting coherent textual descriptions from visual con-
tent, has garnered substantial attention in the evolving landscape of computer vision [1–3].
Despite notable strides in this domain, the synthesis of accurate and contextually rich cap-
tions remains a formidable challenge [4]. Contemporary methodologies, particularly those
rooted in deep learning frameworks, encounter persistent hurdles in capturing the nuanced
relationships, intricate details, and contextual subtleties present within images [5,6].

Recent years have witnessed a surge in research endeavors aimed at enhancing the
efficacy of image captioning methods [7–11]. Stefanini et al. [7] provide a thorough analysis
of deep learning approaches in image captioning, emphasizing the synergy between visual
encoders and language models. Their study highlights significant advancements in feature
extraction and narrative generation techniques. Yan et al. [8] develop a Task-Adaptive
Attention mechanism for image captioning, effectively blending visual and non-visual
word generation. Their method enhances caption relevance and accuracy, particularly
for non-visual elements. Herdade et al. [9] introduce the Object Relation Transformer, a
novel approach to image captioning that incorporates spatial relationships between objects
using geometric attention. Yao et al. [10] introduce a novel hierarchical parsing architecture
for image captioning, integrating multi-level visual patterns from instances to regions
and the entire image. He et al. [11] propose an Image Transformer for image captioning,
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enhancing the original Transformer architecture to encode spatial relationships between
image regions. However, these efforts often encounter limitations in grasping the complex
interplay of diverse visual elements, resulting in descriptions that lack holistic context and
fail to encapsulate the essence of the depicted scene.

The crux of the gap in the existing image captioning methodologies lies in their in-
ability to holistically capture the intricate semantics inherent in visual data. Despite the
incorporation of attention mechanisms and multimodal architectures, as highlighted by
recent studies from Xu et al. [12] and Anderson et al. [13], the challenge of retaining com-
prehensive contextual information within generated captions persists. Issues pertaining to
the accurate portrayal of spatial relationships, fine-grained details, and the subtle interde-
pendencies among various elements within an image continue to pose significant hurdles.

Addressing the constraints inherent in previous models, our research presents an inno-
vative encoder–decoder framework, termed “A Unified Visual and Linguistic
Semantics Method” (UVLS). This approach signifies a fundamental shift in the paradigm
of image captioning, integrating advanced visual and linguistic semantic analyses. UVLS
is designed to bridge the gap between visual perception and language interpretation,
offering a more cohesive and contextually nuanced understanding of the content in im-
ages. Through this method, we aim to set a new benchmark in the field, transcending
the limitations of traditional image captioning techniques with a more integrated and
sophisticated approach. At its core, our model integrates a fusion architecture intertwining
CLIP and SegmentCLIP, as elucidated by the works of Ron et al. [14] and Xu et al. [15].
This integration augments the process of feature extraction from images and significantly
enriches the semantic understanding between textual and visual components. Segment-
CLIP’s incorporation of clustering mechanisms further refines the model’s ability to discern
intricate contextual semantics within images, enabling a more nuanced and comprehensive
portrayal of visual scenes.

The centerpiece of our proposed framework comprises three key components: an en-
coder, a mapping network, and a decoder. Leveraging CLIP and SegmentCLIP, the encoder
adeptly extracts salient features from images, which are subsequently transformed into a
fixed-length prefix by the mapping network. The GPT-2-based decoder [16] then synthe-
sizes these features into contextually accurate Chinese language descriptions for the images,
thereby addressing the shortcomings prevalent in existing captioning methodologies.

Our framework demonstrates substantial advancements, particularly in reconciling
the semantic gap prevalent in image captioning. Through comprehensive evaluations on
established benchmarks such as AIC-ICC, Flickr8k-CN, and COCO-CN datasets, our model
outperforms contemporary methods. Notably, it showcases superior efficiency in terms of
computational simplicity, processing speed, and reduced resource utilization. Moreover,
our approach significantly contributes to generating more nuanced, contextually enriched,
and semantically accurate image descriptions, aligning with recent literature that empha-
sizes the crucial role of semantic relationships in captioning tasks. By seamlessly integrating
CLIP and SegmentCLIP, our model excels in capturing intricate visual–linguistic nuances,
ultimately leading to more comprehensive and contextually accurate image descriptions.

The main contributions are summarized as follows:

• We propose the “A Unified Visual and Linguistic Semantics Method” (UVLS), inte-
grating CLIP and SegmentCLIP for image feature extraction. This framework aims
to bridge the semantic gap in traditional image captioning, offering a more nuanced
understanding of visual content.

• By incorporating a clustering mechanism into CLIP, called SegmentCLIP, the model
enhances semantic relationships between visual and textual elements. This advance-
ment enables a deeper interpretation of complex contextual semantics within images,
leading to richer and more accurate image descriptions.

• Extensive experiments on real-word datasets are conducted to fully verify the effec-
tiveness of our proposed UVLS.
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2. Related Work

Image captioning is a domain aiming to generate natural language descriptions for vi-
sual content [17]. Recent advancements in deep learning and vision–language pre-training
techniques have significantly propelled this field. This comprehensive review presents
an in-depth analysis of deep learning methodologies in image captioning, encompassing
diverse categories and addressing prevalent challenges. Furthermore, we assess the perfor-
mance of various captioning models using widely adopted metrics and outline prospective
avenues for future research in this domain.

Encoder–Decoder Paradigms: One prevalent approach in image captioning involves
the encoder–decoder paradigm. Herein, convolutional neural networks (CNNs) encode
input images to derive feature representations [18,19]. Geetha et al. [18] employ deep
convolutional neural networks and recurrent neural networks (RNNs), including LSTM
and GRU, for accurate multi-class, multi-label satellite image captioning, utilizing VGG-19
for feature extraction and finetuned LSTM for decoding. Liu et al. [19] explore image
captioning using deep neural networks, specifically focusing on frameworks based on
CNN-RNN, CNN-CNN, and reinforcement learning to enhance the accuracy and relevance
of captions generated from images. Subsequently, these representations are decoded using
recurrent neural networks to generate corresponding captions [20,21]. Despite their efficacy,
encoder–decoder techniques often yield captions of a generic and ambiguous nature due
to the compression of comprehensive information into a singular vector. Numerous adap-
tations to the encoder–decoder structure have been proposed to mitigate these limitations,
including attention mechanisms and graph-based methodologies [22,23].

Attention Mechanisms: Attention mechanisms revolutionize image captioning by dy-
namically guiding focus to pertinent image regions during caption generation, significantly
boosting caption accuracy and relevance. Zohourianshahzadi et al. [24] demonstrate that
the integration of attention mechanisms, particularly soft, bottom-up, and multi-head at-
tention, within encoder–decoder architectures, significantly augments the efficacy of image
captioning models. They highlight that these mechanisms enable a nuanced focus on perti-
nent image regions, thus facilitating the generation of contextually rich and semantically
coherent captions. Anderson et al. [13] propose a novel approach to image captioning by
integrating a combined bottom-up and top-down attention mechanism, enabling the model
to focus on objects and salient image regions dynamically. This methodology significantly
enhances the generation of contextually relevant and detailed captions by allowing the
attention mechanism to be calculated at the level of objects, thereby setting a new state of
the art in image captioning performance.

Huang et al. [25] introduce an “Attention on Attention” (AoA) module to refine tradi-
tional attention mechanisms in image captioning, emphasizing the calculation of relevance
between attention results and queries. By incorporating AoA into both encoder and decoder
stages, they present AoANet, an advanced model that significantly improves the generation
of detailed and contextually relevant captions, setting a new benchmark in state-of-the-art
performance for image captioning tasks. Pedersoli et al. [26] propose “Areas of Attention,”
a model that enhances image captioning by dynamically associating caption words with
specific image regions through a novel attention mechanism, leveraging weakly supervised
learning to improve localization and description accuracy. Wang et al. [27] develop a
Hierarchical Attention Network (HAN) for image captioning that innovatively employs
a pyramidal hierarchy of semantic features, enabling simultaneous utilization of patch,
object, and text features to generate contextually rich captions, significantly outperforming
the existing methods in accuracy and detail.

Attention mechanisms significantly advance the field of image captioning by dynami-
cally directing the model’s focus towards relevant image segments, thereby elevating the
precision and contextual relevance of generated captions. Through the strategic integration
of hierarchical semantic features and nuanced attention strategies, these mechanisms facili-
tate the creation of semantically rich and contextually accurate captions, marking notable
progress in the capabilities of image captioning models.
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Vision–Language Pre-training Advancements: Recent strides in vision–language pre-
training have exerted a profound impact on image captioning research [28–30]. Zhou et al. [28]
present a unified vision–language pre-training (VLP) model for image captioning, employ-
ing a Transformer network for both encoding and decoding, with pre-training on large
image–text pairs. The method, unique for its unified architecture across bidirectional and
seq2seq vision–language prediction tasks, demonstrated improvements in learning efficiency
and model accuracy across diverse image captioning tasks. Wang et al. [29] develop ViLTA, a
vision–language pre-training model that enhances learning efficiency and robustness through
cross-distillation for Masked Language Modeling and the generation of synthetic hard neg-
atives for Image–Text Matching. This novel approach, leveraging textual augmentation,
demonstrates improved performance in various vision–language tasks, notably in image
captioning, by refining representation quality and model convergence. Li et al. [30] introduce
Uni-EDEN, a Universal Encoder–Decoder Network for vision–language tasks, focusing on
multi-granular vision–language pre-training. This approach notably enhances multimodal rea-
soning and language modeling capabilities, advancing both perception and generation aspects
in image captioning. These methods, characterized by advanced neural network architectures
and multimodal reasoning, significantly enhance accuracy and contextual understanding in
image captioning tasks. However, they exhibit limitations in terms of generalizability and
robustness, primarily due to their heavy dependence on large specifically curated datasets,
which may not adequately represent the diversity of real-world scenarios.

Deep learning methodologies have significantly propelled advancements in image
captioning. Encoder–decoder paradigms and dense captioning strategies have been ex-
tensively explored for generating captions at varying granularity levels. The advent of
vision–language pre-training techniques has notably augmented captioning performance.
Standardized evaluation metrics and datasets have provided benchmarks for assessing
and comparing diverse captioning models. Future research avenues may focus on mit-
igating challenges such as information alignment discrepancies, dataset biases, and the
development of improved evaluation tools for precise caption quality assessment.

In contrast to these methodologies, our approach shows improvement. Integrating
CLIP and SegmentCLIP enhances semantic understanding, refining relationships and en-
riching image depth. Leveraging SegmentCLIP’s clustering refines visual representations.
Our GPT-2-based decoder elevates coherence, surpassing limitations for richer Chinese
descriptions. Notably, our model’s solid performance on AIC-ICC, Flickr8k-CN, and
COCO-CN exemplifies efficiency, marking significant progress in holistic image descriptions.

3. Problem Definition

Image captioning involves the development of a unified model that receives an image
as its input and undergoes training to optimize the probability, p(S|I), of generating a
sequence of words, S =

{
S1, S2, · · · , Sj, · · ·

}
, where each word Sj is drawn from a specified

dictionary. This sequence aims to effectively describe the image, encapsulating its essence
and content through a rich and comprehensive portrayal in language.

4. Methodlogy

We commence by outlining our problem statement. Given a corpus comprising paired
instances of images and corresponding captions {Ii, Si}N

i=1, our primary objective is to
acquire the capability to generate a contextually relevant and meaningful caption for an
unseen input image. The captions are denoted as a sequence of tokens Si = Si

1, . . . , Si
ℓ,

where padding is applied to reach a maximal sequence length of l. Subsequently, our
training is driven by the following objective:

max
θ

N

∑
i=1

log pθ(Si
1, . . . , Si

ℓ|I
i) (1)

Herein, θ represents the set of learnable parameters constituting the model. Our
innovation centers on leveraging the enriched semantic embeddings from CLIP and
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SegmentCLIP, amalgamating their strengths. CLIP demonstrates versatile comprehen-
sion of diverse visual concepts, while SegmentCLIP enriches semantic relationships via
clustering mechanisms. We integrate both embedded representations as a pivotal condition,
encompassing crucial visual information for our approach. Building upon recent litera-
ture, we conceptualize this precondition as a prefix integral to the caption. Given that the
necessary semantic context is embedded within this prefix, we employ an autoregressive
language model, predicting subsequent tokens independently without considering future
tokens. Thus, our primary objective is articulated as follows:

max
θ

N

∑
i=1

ℓ

∑
j=1

log pθ(Si
j|Ii, Si

1, . . . , Si
j−1) (2)

4.1. Overview

The methodology is visually depicted in Figure 1. Employing GPT-2 as our language
model, we utilize its tokenizer to convert the caption into a sequence of embeddings.
Extracting visual information from image Ii involves leveraging the visual encoder from
pre-trained models such as CLIP [31] and SegmentCLIP. Subsequently, a lightweight
mapping network, denoted as M, facilitates the transformation of the joint embedding into
k embedding vectors:

pi
1, . . . , pi

k = M(CLIP(Ii)⊕ SegmentCLIP(Ii)). (3)

Figure 1. Framework of UVLS.

Here, ⊕ denotes the concatenation operator, and each vector pi
j shares the dimension-

ality of a word embedding. Subsequently, we concatenate the acquired visual embedding
with the embeddings of caption Si:

Zi = pi
1, . . . , pi

k, S1, . . . , Si
ℓ. (4)

During the training stage, we input the language model with the concatenated
prefix–caption sequences

{
Zi}N

i=1. Our training objective revolves around autoregressively
predicting the caption tokens conditioned on the prefix. For this objective, the mapping com-
ponent M undergoes training employing straightforward yet impactful cross-entropy loss.

LX = −
N

∑
i=1

ℓ

∑
j=1

log pθ(Si
j|pi

1, . . . , pi
k, Si

1, . . . , Si
j−1). (5)

In bridging the gap from the initial phase of training our model on prefix–caption
sequences to introducing the innovative SegmentCLIP image encoding mechanism, it is
pivotal to understand the progression towards a more intricate engagement with visual data.
The transition from focusing solely on linguistic elements to incorporating a sophisticated
visual understanding marks a significant expansion in our model’s capabilities. As the
mapping component learns to predict caption tokens more effectively through cross-entropy
loss, it sets the stage for a deeper exploration into the visual domain. SegmentCLIP emerges
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as a natural progression in this journey, aiming to harness the full spectrum of visual
information. By encoding images into a structured hierarchical format, SegmentCLIP
enables the model to capture and interpret complex visual cues with unprecedented detail.
This methodology not only enhances the model’s ability to generate contextually rich
captions but also fosters a more profound integration of linguistic and visual semantics. As
we delve into the architecture of SegmentCLIP, it becomes evident how this mechanism
plays a crucial role in transcending traditional boundaries between visual perception and
language generation, ultimately leading to a more nuanced and comprehensive model.

4.2. SegmentCLIP

We present the SegmentCLIP image encoding mechanism as depicted in Figure 2,
which employs a Transformer-derived framework for the hierarchical and progressive cate-
gorization of visual concepts. Within the architecture of SegmentCLIP, Transformer layers
are compartmentalized into several stages of grouping. At each of these stages, a series of
group tokens are acquired as learnable entities through the mechanism of self-attention,
enabling the global assimilation of information from all image tokens (segments). Subse-
quently, these acquired group tokens are utilized to amalgamate similar image tokens by
employing a Segmenting Block. By orchestrating a structured progression of grouping
stages, we facilitate the consolidation of smaller image segments into larger conglomerates.
The subsequent sections will elucidate each component in detail.

Figure 2. (a) The architecture and training pipeline of segmentCLIP. easing size. The images to
the right illustrate the visual segments that manifest across different grouping stages. In the lower
stages, pixels are grouped into parts of objects, such as the hands and legs of a woman or a little girl;
in the higher stages, these are further amalgamated into complete entities, such as the entire body
of the woman and the little girl. (b) The architecture of the segmenting block. At the end of each
grouping stage, there is a segmenting block that calculates the similarity between the learned tokens
and the segment (image) tokens. The assignment is determined via a gumbel softmax operation over
the learned tokens and is then converted into a hard one-hot assignment. The segment tokens that
are assigned to the same group are merged, forming new segment tokens that serve as input for the
subsequent grouping stage.

Building upon the ViT [32] architecture, we initially partition an input image into
N discrete non-overlapping segments, subsequently mapping each segment linearly into a
latent dimensional space. These transformed segments are regarded as individual image
tokens, collectively represented by the notation {Ii}N

i=1 At every stage of grouping, in
addition to these image tokens, we integrate a suite of learnable group tokens. This
augmented set is then fed into the Transformer designated for the respective stage.

In the context of Multi-stage Grouping, as illustrated in Figure 2a, rather than channel-
ing all N input image tokens through the entirety of the Transformer’s layers, we distribute
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these layers across multiple stages of grouping, establishing a hierarchical structure. At the
conclusion of each stage, a Segmenting Block is employed to amalgamate smaller entities
into larger conglomerates.

To articulate this process formally, let us posit L grouping stages, each identified by an
index l and associated with a collection of learnable group tokens gi. For the sake of clarity,
the initial set of image patches {Ii}N

i=1, serving as inputs to the first grouping stage, are
designated as the preliminary segments, with N = M0. This simplification allows us to
equate the initial set of image patches with the initial group of segments.

Commencing with l = 1, at each stage of grouping, we commence by amalgamating
the image patches {Ii} and group tokens {gi}, subsequently inputting this combined set
into a sequence of Transformer layers. These layers are tasked with facilitating information
exchange between the segments and group tokens, thereby enabling effective propagation
of information. For expediency, the set of image patches {Ii} input to the initial grouping
stage is treated as the set of starting segments {si}M0

i=1, where N = M0. We simplify the
notation of the starting segments to si and the learnable group tokens to gi. Commencing
with l = 1, for each grouping stage, we first concatenate si and gi together and then input
them into a series of Transformer layers, each of which facilitates information propagation
between the concatenated tokens via

{ĝl
i}, {ŝl

i} = Transformer([{gl
i}; {sl

i}]), (6)

Here, the symbol [; ] symbolizes the concatenation operation. Subsequently, we assimi-
late the updated Ml−1 image segment tokens {ŝl

i} into Ml new segment tokens ˜{sl+1
i }i=1

via a Segmenting Block as follows:

{sl+1
i } = SegmentingBlock({ĝl

i}, {ŝl
i}, {ĝl

i}). (7)

At every grouping stage, the relationship Ml < Ml−1| holds true, indicating a pro-
gressive reduction in the number of group tokens and, concurrently, a coalescence into
fewer but larger image segments. Upon reaching the terminal grouping stage L, we apply
Transformer layers on all segment tokens and leverage their outputs to derive the final
global image representation zL as follows:

{ŝL+1
i } = Transformer({sL+1

i }), (8)

zL = Transformer(AvgPool({ŝL+1
i })). (9)

As delineated in Figure 2a, SegmentCLIP reconfigures visual information into an array
image segments that are not restricted by a regular grid structure, thus optimizing the
visual information arrangement.

In the case of the Segmenting Block, as depicted in Figure 2b, at the conclusion of each
grouping stage, the Segmenting Block unifies the learned group tokens and segment tokens
attributed to identical groups into a single new image segment based on similarity in the
embedding space. This process is mathematically formulated as

Al
i,j =

exp(Wqĝl
i · Wk ŝl

j + γi)

∑Ml
k=1 exp(Wqĝl

k · Wk ŝl
j + γk)

, (10)

where Wg and Wk represent the weights corresponding to the learned linear projections
for the group and segment tokens, respectively. The term γ denotes the learnable bias
pertaining to the Gumbel (0, 1) distribution. The computation of segment token assignment
to groups is conducted by employing the one-hot operation of an argmax over all the group
tokens. Since the argmax operation is non-differentiable, we utilize the straight-through
trick as a proxy, which results in a differentiable surrogate assignment matrix A:

Âl = one-hot(Al
argmax) + Al − sg(Al), (11)
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where sg denotes the stop gradient operator. Utilizing this straight-through trick, Al retains
the one-hot assignment of a token to a single group, but its gradient is equivalent to the
gradient of A, ensuring the model remains end-to-end trainable.

Subsequent to the allocation of segment tokens to various learned groups, we amalga-
mate the embedding of all tokens belonging to the same group into a single new segment
token sl+1

i . For each group, the output of the Segmenting Block is a weighted sum of the
segment tokens assigned to that group, computed as

sl+1
i = ĝl

i + Wo
∑

Ml−1
j=1 Âl

i,jWv ŝl
j

∑
Ml−1
j=1 Âl

i,j

, (12)

where Wv and Wo represent the parameters learned to integrate the features. An alternate
method to the hard assignment is the soft assignment, which utilizes A rather than Al , as
prescribed in Equation (5). Our observations suggest that hard assignment is more effective
for feature grouping compared to soft assignment, as evidenced by the results presented
in Table 1.

Table 1. Statistics of the datasets used in our experiments.

Dataset Lang. Images Captions Caption Vocabulary

AIC-ICC zh 300 K 1500 K 7654
Flickr8k-CN zh 8000 40,000 1447
COCO-CN zh 2041 101,705 2069

Analogous to a single cycle of the previously established Slot Attention framework,
the Segmenting Block executes a similar function. However, where Slot Attention acquires
instance-level feature clustering autonomously, our Segmenting Block arranges akin se-
mantic segments employing minimal text-based guidance. For instance, as depicted in
Figure 2’s second row, the algorithm has clustered the pair of women effectively.

To enhance SegmentCLIP’s capacity for hierarchical clustering, we employ carefully
designed contrastive losses between image–text pairs. We harness these losses to refine
visual representations via textual guidance, adopting a methodology inspired by prior
research to train a dual-encoder framework. This framework encompasses an image
encoder and a text encoder, leveraging a contrastive loss strategy.

For the Image–Text Contrastive Loss, we utilize the final image embedding derived
from the SegmentCLIP and the concluding text embedding from the text encoder, repre-
senting the last output token. Our objective is to converge the representations of correlated
image–text pairs and concurrently diverge the representations of non-correlated pairs.

Formally, we define a batch of B image–text pairs {(xI
i , xT

i )}B
i=1, where xI

i and xT
i

represent the image and textual components, respectively. Encoded into embeddings zI
i

and zT
i through their respective encoders, we then calculate the dot product to assess their

similarity. The comprehensive loss for image–text contrastive learning is articulated as a
sum of image-to-text and text-to-image contrastive losses:

LI↔T = LI→T + LT→I , (13)

Image-to-Text Contrastive Loss:

LI→T = − 1
B

B

∑
i=1

log
exp(zI

i · zT
i /τ)

∑B
j=1 exp(zI

i · zT
j /τ)

, (14)

Text-to-Image Contrastive Loss:

LT→I = − 1
B

B

∑
i=1

log
exp(zT

i · zI
i /τ)

∑B
j=1 exp(zT

i · zI
j /τ)

, (15)
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Here, τ is a tunable temperature parameter to modulate the logits.
To facilitate enhanced visual categorization, we put forth a Multi-Label Image–Text

Contrastive Loss in addition to the foundational image–text loss outlined in Equation (6).
This multi-faceted contrastive loss is enriched through the use of ‘prompt-engineered’ textual
labels, which are derived from the initial image descriptions as delineated in [31]. Specifically,
we elect K nouns from the narrative xT

i and synthesize these with pre-determined sentence
frameworks, resulting in prompts akin to “An image depicting a noun”. Such an approach is
rooted in the rationale that nouns typically correspond to discernible objects within images.

In parallel to the training with original pairs, we introduce contrastive losses for the newly
created ‘image-prompted text’ pairings {(xI

i , xT1
i )}B

i=1, {(xI
i , xT2

i )}B
i=1, . . . , {(xI

i , xTK
i )}B

i=1, where
{xTk

i }K
k=1 are the sentences crafted from the nouns isolated from xT

i . Referencing Figure 3, this
enriched method diverges from the standard contrastive loss as each image xI

i correlates with
K positive text pairings and K(B − 1) negative associations.

(a) MLP. (b) Transformer.

Figure 3. Effect of the prefix length on the captioning performance over the AIC-ICC dataset. For
each prefix length, we report the BLEU@4 (red) and CIDERr (blue) scores over the test and train
(dashed line) sets.

4.3. Parameter Analysis

In concordance with the foundational image–text contrastive loss delineated
in Equation (6), we present a composite multi-label contrastive loss, expressed as

LI↔{Tk}K
k=1

= LI→{Tk}K
k=1

+ L{Tk}K
k=1→I , (16)

This constitutes a dual-faceted loss, integrating both directional contrastive compo-
nents. For the Image-to-Text direction:

LI→{Tk}K
k=1

= − 1
B

B

∑
i=1

log
∑K

k=1 exp(zI
i · zTk

i /τ)

∑K
k=1 ∑B

j=1 exp(zI
i · zTk

j /τ)
(17)

And for the Text-to-Image direction:

L{Tk}K
k=1→I = − 1

KB

K

∑
k=1

B

∑
i=1

log
exp(zTk

i · zI
i /τ)

∑B
j=1 exp(zTk

i · zI
j /τ)

. (18)

Finally, the comprehensive image–text contrastive loss applied in the training of
SegmentCLIP is articulated as the sum of the conventional and multi-label losses:

L = LI↔T + LI↔{Tk}K
k=1

. (19)
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4.4. CLIP

In the given batch containing N distinct image and text pairings, xi for images and
yi for texts, the CLIP framework is tasked with identifying the correct pairings from
N × N possible combinations. This is facilitated through the development of a unified
embedding domain by co-training an image encoder, f , and a text encoder, g, which are
optimized to bolster the cosine similarity for actual image–text pairings, represented as
sii = cos( f (xi), g(yi)), while attenuating the cosine similarity for all inauthentic pairings,
sij where i ̸= j.

The optimization process involves a symmetric cross-entropy loss function over these
computed similarity metrics, with the objective function defined as

L = − 1
N

N

∑
i=1

[
log

esii

∑N
j=1 esij

+ log
esii

∑N
j=1 esji

]
(20)

Here, the loss function is articulated in two parts. The first term, log esii

∑N
j=1 esij , embodies

the softmax probability that an image xi is correctly paired with its corresponding text yi ,
and it is aimed to be maximized for all authentic image–text couplings within the batch.
Conversely, the second term, log esii

∑N
j=1 esji , represents the softmax probability that a text yi

is correctly paired with its corresponding image xi , similarly aimed to be maximized for
each valid text–image union.

5. Experiments

This section presents an extensive experimental evaluation of our study. Section 5.1
presents a thorough examination of the evaluation process, encompassing both the datasets
utilized for experimentation and the metrics applied for analytical assessment. In Section 5.2,
we delineate the baseline models, offering a clear baseline comparison for assessing the
effectiveness of our proposed methodology. Section 5.3 is dedicated to a comparative
analysis, where our approach is juxtaposed with current state-of-the-art methods, demon-
strating its relative performance and advancements. Finally, Section 5.4 delves into ablation
studies, discussing in depth the specific components and variations of our method, thereby
underscoring its robustness and the impact of individual elements on overall performance.

5.1. Evaluation

Dataset. In this work, we conduct experiments using the AIC-ICC (AI Challenge—Image
Chinese Captioning) [33], Flickr8k-CN [34], and COCO-CN [35] datasets, which are among
the most extensive datasets in the field of image captioning. The AIC-ICC dataset comprises
approximately 300,000 images, accompanied by 1,500,000 Chinese language descriptions.
The dataset comprises 210,000 images for the training set, 30,000 images for the validation
set, and 60,000 images for the test set, structured to support comprehensive model training,
validation, and performance testing in image-related research endeavors. These descrip-
tions encompass a wide array of everyday scenes, numbering over 200, including but not
limited to football fields, grasslands, and diverse actions such as singing and running. This
dataset is particularly notable for its comprehensive coverage of commonplace scenarios,
making it an invaluable resource for research in image description, especially in the context
of Chinese language processing.

Flickr8k-CN represents the inaugural dataset for image captions in Chinese, primarily
consisting of images derived from authentic human life scenes, where the subjects of the
descriptions are notably prominent. This dataset contains a total of 8000 images, each
accompanied by five descriptive texts offering varied perspectives on the content of the
image. It is structured into 6000 images for the training set, 1000 images for the validation
set, and 1000 images for the test set.

COCO-CN features a more diverse array of scenes within its images, incorporating
a higher number of distractive elements. Each image is matched with one to five de-
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scriptive texts, varying in count. The dataset encompasses 20,341 images in total, with
18,341 designated for the training set, 1000 for the validation set, and 1000 for the test set,
offering a broader and more challenging context for image captioning in Chinese. The
statistics of AIC-ICC, Flickr8k-CN, and COCO-CN are presented in Table 1.

Metrics. In our study, we rigorously assess the performance of our model using the
widely recognized BLEU metric [36], which was initially developed for the domain of
automated machine translation. This metric quantitatively evaluates the correspondence of
n-grams (up to 4 grams) between the generated output, known as the hypothesis, and a
reference or a collection of reference texts. To provide a more comprehensive evaluation,
we also employ additional metrics, namely METEOR [37], ROUGE [38], and CIDEr [39].
METEOR extends beyond simple n-gram matching to include synonymy and paraphrase
detection, thus offering more nuanced insight into semantic accuracy. ROUGE assesses
the quality of summary by computing overlap between the model’s output and reference
summaries, catering to the evaluation of recall. Lastly, CIDEr enhances evaluation by
focusing on the consensus between the generated captions and a set of references, weighted
by the rarity of n-grams, which serves as an indicator of the informativeness and saliency
of the generated text in the context of the image content. Together, these metrics furnish
a robust framework for evaluating the linguistic and semantic coherence, as well as the
informative value of the captions produced by our model.

Implementation details. We use the prefix length of K = 10 for the MLP mapping
networks, where the MLP contains a single hidden layer. For the Transformer mapping
network, we set the CLIP embedding to K = 10 constant tokens and use eight multi-head
self-attention layers with eight heads each. We train for 10 epochs using a batch size of 40.
The architecture of SegmentCLIP is based on ViT-S [32,40] with 12 Transformer layers, each
with a hidden dimension of 384. We use input images of size 224 × 224 and a patch size of
16 × 16. We add a learnable positional embedding to each patch after linearly projecting
it. We experiment with one-stage and two-stage architectures for SegmentCLIP. Both
architectures output eight tokens after the final grouping stage. In one-stage SegmentCLIP,
we learn 64 group tokens and insert the grouping block after the sixth Transformer layer.
Before the grouping block, we project the 64 group tokens into eight tokens using an
MLP-Mixer layer [41] and output eight segment tokens. In two-stage SegmentCLIP, there
are sixty-four and eight group tokens in the first and second grouping stages, respectively.
We insert grouping blocks after the sixth and ninth Transformer layers. Our text encoder is
the same as [31]. We use a two-layer MLP to project the visual and text embedding vectors
into the same latent space. For optimization, we use AdamW [42] with weight decay fix as
introduced by Loshchilov et al. [43], with a learning rate of 2e5 and 5000 warm-up steps.
For GPT-2, we employ the implementation of Wolf et al. [44].

Language model finetuning.As described in Section 3, finetuning the language model
results in a much more expressive model, but it is also more susceptible to overfitting as
the amount of trainable parameters increases. As can be seen in experiments, the two
variants—with and without the language model finetuning—are comparable. Over the
extremely complicated AIC-ICC dataset, we obtain superior results with the finetuning.
We thus hypothesize that extremely elaborated datasets or ones that present a unique style
require more expressiveness and hence are more likely to benefit from the finetuning.

5.2. Baselines

To validate the effectiveness of the proposed model, we select the following baselines:

• CS-NIC [34]. The CS-NIC model excels in generating Chinese captions for images, em-
ploying Jieba for precise Chinese text segmentation, addressing the unique challenge
of tokenizing Chinese without explicit word boundaries. Utilizing the pool5 layer
of GoogLeNet, it effectively extracts image features, with a focus on convolutional
neural network (CNN) technology for nuanced visual understanding. The model
sets both visual and word embeddings to a size of 512, balancing rich representation
with computational efficiency. For translation tasks, it favors Baidu’s service, noted
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for superior English–Chinese translation accuracy, underscoring its commitment to
precision. CS-NIC stands out as a sophisticated tool, harmonizing advanced image
processing and linguistic analysis, specifically optimized for the Chinese language
image captioning domain. The CS-NIC model excels in generating Chinese captions
for images through a bilingual approach, effectively integrating linguistic diversity
into visual descriptions. However, its dependency on machine translation may com-
promise the depth and accuracy of the captions, posing challenges in fully capturing
the nuances of human language.

• CIC [45]. The Convolutional Image Captioning (CIC) model represents a paradigm
shift in automated image captioning, employing a convolutional neural network
(CNN) instead of traditional recurrent neural network (RNN) methods. It features a
four-component architecture including input and output embedding layers, image
embedding, and a convolutional module with masked convolutions. This unique
structure allows CIC to forgo RNN’s recurrent functions, leveraging a feed-forward
deep network for direct modeling of image–word relations. The CIC model, therefore,
offers a more efficient approach to image captioning, combining convolutional pro-
cessing’s strengths with streamlined computational complexity. The CIC model stands
out for its parallel processing efficiency, offering speedy training and competitive
accuracy in image captioning by leveraging CNNs. Its primary limitation, however,
lies in its potential struggle with long-range textual dependencies, which may impact
the coherence of generated captions for complex visuals.

• SC [46]. The Stack-Cap (SC) model employs a unique coarse-to-fine sentence decoder
for image captioning, comprising one coarse decoder and a sequence of attention-
based fine decoders. This structure allows for the refined prediction of each word,
using cues from the preceding decoder. Initially, the coarse decoder provides a basic
description from global image features. In subsequent stages, each fine decoder
enhances the image description, integrating both the image features and the output
from the previous stage. This method involves using attention weights from one stage
to inform the next, leading to progressively refined predictions. The architecture, with
one coarse and several stacked fine decoders, demonstrates a sophisticated approach to
incrementally improving image captions. The SC model excels in producing detailed
image captions through a unique coarse-to-fine approach, effectively addressing the
vanishing gradient issue. However, its multi-stage prediction framework increases
training complexity and computational demands.

• Oscar [47]. The Oscar model introduces a pioneering approach in vision–language
pre-training (VLP) by utilizing object tags as anchor points to facilitate the learning
of semantic alignments between images and texts. This model significantly enhances
the process of cross-modal representation learning by structuring input as triples
of word sequences, object tags, and image region features. By leveraging detected
object tags in images, Oscar efficiently aligns these with corresponding textual de-
scriptions, thereby improving the accuracy and relevance of generated image captions.
Pre-trained on a large dataset of 6.5 million text–image pairs, Oscar achieves state-
of-the-art performance across multiple V + L tasks, demonstrating its effectiveness
in bridging the semantic gap between visual content and language. This approach
not only advances the field of image captioning but also contributes to a broader
understanding and generation tasks in vision–language research, making it a valu-
able asset for future explorations in multimodal AI applications. The Oscar model
enhances vision–language pre-training by utilizing object tags as anchor points, sig-
nificantly boosting cross-modal learning. However, its effectiveness is contingent on
the accuracy of the underlying object detection, which may restrict its adaptability
and generalization across varied datasets.

• CLIPCAP [48]. The CLIPCAP model introduces a simplified yet effective method for
image captioning, a key task in vision–language understanding. It uniquely employs
CLIP encoding as a prefix in the captioning process, utilizing a straightforward map-
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ping network followed by finetuning of a language model, specifically GPT2. This
approach leverages the rich semantic features of the CLIP model, trained within a
textual context, making it highly suitable for vision–language tasks. The integration
of CLIP with a pre-trained language model enables comprehensive understanding of
both visual and textual data. Remarkably, this model requires relatively brief training
and can generate meaningful captions without the need for additional annotations or
extensive pre-training, making it adept at handling large-scale and diverse datasets.
The CLIPCAP model efficiently integrates CLIP’s visual encodings with a stream-
lined mapping network for rapid and resource-efficient caption generation, yet its
dependence on pre-trained encodings may constrain its adaptability to diverse or
novel imagery.

5.3. Performance Comparison

The comparative examination of image captioning models, as illustrated in Table 2,
highlights the superior performance of the Unified Visual and Linguistic Semantics
Method (UVLS) across various evaluation metrics. The detailed data provided in Table 2
enable in-depth analysis of the Unified Visual and Linguistic Semantics (UVLS) model’s
performance relative to other contemporary image captioning models across three datasets:
AIC-ICC, Flickr8k-CN, and COCO-CN.

Table 2. Comparison of evaluation indexes of different models on ICC dataset. Top scores for each
metric are bold. All values are reported as percentage (%).

Datasets Model BLEU@1 BLEU@2 BLEU@3 BLEU@4 METEOR ROUGE CIDEr

AIC-ICC

CS-NIC 62.8 48.0 37.0 28.7 30.7 51.8 74.6

CIC 66.3 52.5 41.7 33.2 33.3 56.5 92.3

SC 73.0 60.3 49.6 41.0 35.3 60.3 116.6

Oscar 74.4 65.1 50.6 43.1 36.5 62.4 140.5

CLIPCAP 76.7 65.1 55.0 46.4 38.8 64.0 151.2

Ours; UVLS 79.7 68.9 59.1 50.7 40.1 66.2 164.2

Flickr8k-CN

CS-NIC 63.2 50.2 38.4 28.1 31 54.7 81.6

CIC 68.7 55.5 43.3 31.6 33.2 59 96

SC 73.3 59.7 47.3 35.9 35.3 61 121.3

Oscar 80.4 69.5 59.4 50 41.2 67.3 160.5

CLIPCAP 84.4 72.3 62.1 52 43.9 70.3 170.2

Ours; UVLS 90.7 75.9 67.1 56.7 48.1 76.2 184.2

COCO-CN

CS-NIC 42.7 31.6 16.9 10.5 5.6 24.9 50.3

CIC 50.1 42.2 27.6 20.6 7.3 26.9 65.9

SC 59.5 42.3 35.7 24.6 10.6 30.9 80.8

Oscar 69.4 58.3 48.6 38.5 20.4 46.3 107.8

CLIPCAP 71.8 61.2 50.9 41.4 25.4 55.7 110.4

Ours; UVLS 74.7 64.8 56.0 49.3 30.6 58.4 124.2

Starting with the AIC-ICC dataset, the UVLS model’s performance can be charac-
terized by its BLEU@1 score of 79.7%, which surpasses other models significantly. This
high score indicates that the UVLS model is particularly adept at correctly identifying and
employing the most frequent words in captions, which is fundamental for establishing a
base for accurate and relevant descriptions. As we progress to BLEU@2 and BLEU@3 scores,
where scores of 68.9% and 59.1%, respectively, are observed, there is a clear indication of the
model’s ability to construct longer and more complex linguistic structures. This is critical
for forming coherent and detailed narratives that are necessary for a complete understand-
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ing of an image. The BLEU@4 score of 50.7% further solidifies UVLS’s strength in creating
extended phrases and sentences that are syntactically varied and contextually rich.

The model’s top ROUGE score of 66.2% on the AIC-ICC dataset reflects its superior
summarization capability, suggesting that it can capture the essential content of images
in a way that is most similar to the reference captions. This is particularly important in
image captioning as it ensures that the generated captions are not only descriptive but
also encapsulate the main themes and messages conveyed by the image. In terms of
the METEOR metric, which evaluates the harmony between the generated captions and
reference captions in terms of both precision and recall, the UVLS model scores a 40.1%.
Although this is slightly lower compared to the ‘Ours; Transformer’ variant, it is worth
noting that METEOR also considers synonymy and paraphrasing, which could suggest
areas for further refinement in the UVLS model. The CIDEr score of 164.2 is particularly
noteworthy as it measures the consensus between the generated captions and a set of
reference captions. This high score is indicative of the UVLS model’s ability to produce
unique and informative captions that are closely aligned with the semantic content of
the images.

When we shift our attention to the Flickr8k-CN and COCO-CN datasets, the UVLS
model maintains its superior stance, with the highest scores across most metrics, particu-
larly BLEU@1 and CIDEr, on the Flickr8k-CN dataset. The COCO-CN dataset, known for
its complexity and diversity, also sees the UVLS model performing robustly, especially in
the BLEU@1 and BLEU@2 scores, which are essential indicators of the model’s consistency
in capturing the essence of the visual data across diverse image sets. These consistent
results across varied datasets highlight the UVLS model’s robustness and its sophisticated
approach to capturing not just the details but also the essence and narrative of the visual
scenes. The model’s capability to perform well in these key metrics indicates its deep learn-
ing ability to comprehend and integrate the visual and linguistic components effectively,
suggesting its potential as a valuable method in the field of image captioning.

The UVLS model’s impressive 79.7% BLEU@1 score on the AIC-ICC dataset showcases
its strength in generating coherent descriptions; however, this metric may not capture the
full narrative depth or semantic richness of the captions. This suggests a need for critical
examination of high BLEU scores as they may not always correlate with the quality of
human-like narrative generation. Moreover, the progression to BLEU@2, BLEU@3, and
BLEU@4 scores illustrates the model’s ability to form more complex linguistic structures,
yet it highlights the inherent limitation of these metrics in capturing the creative and
idiomatic expressions found in human language. The top ROUGE score of 66.2% further
indicates effective summarization, but this metric primarily measures keyword overlap,
potentially overlooking subtler narrative elements or the emotional context depicted in
images. Furthermore, the METEOR score, slightly lower than that of the ‘Ours; Transformer’
variant, prompts consideration of the model’s capability to recognize synonyms and varied
expressions, suggesting room for refinement to enhance naturalness and fluency in captions.
While the CIDEr score of 164.2 showcases the model’s ability to generate distinctive and
informative captions, it also raises questions about the evaluation’s emphasis on consensus
over creativity. Across diverse datasets like Flickr8k-CN and COCO-CN, the UVLS model’s
consistent performance underscores its adaptability and depth in understanding visual
content. However, this analysis invites further reflection on the model’s handling of
complex dataset diversity and its potential reliance on statistical regularities in training
data, underscoring the importance of a nuanced approach to evaluating and advancing
image captioning models.

Table 2 reveals that the UVLS model significantly enhances the performance of image
captioning, surpassing baseline models across the AIC-ICC, Flickr8k-CN, and COCO-CN
datasets. It exhibits exceptional proficiency in the BLEU@1 metric, achieving 79.7% on
the AIC-ICC dataset, which underlines its superior ability to recognize and utilize key
words in captions—a critical element for crafting coherent and precise descriptions. This
proficiency is further evidenced by an impressive BLEU@4 score of 50.7%, suggesting
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heightened ability to generate extensive context-rich narratives. Additionally, the UVLS
model’s performance in METEOR and CIDEr metrics points to its nuanced capability to
create not only semantically precise captions but also ones that resonate with the unique
and relevant content of images. The model’s robustness across varied datasets underscores
its adaptability and solidifies its standing as an advanced tool in image captioning. The
integration of SegmentCLIP within the UVLS framework likely plays a crucial role in its
outstanding performance. SegmentCLIP’s clustering mechanism refines the model’s ability
to analyze and articulate complex contextual semantics within images, which is reflected
in the elevated performance metrics. This sophisticated representation enables the UVLS
model to offer a more detailed and comprehensive depiction of visual scenes, as evidenced
by superior scores in the nuanced metrics of BLEU@4 and CIDEr, where the depiction of
detailed relationships and distinctive content is crucial.

Table 2 reveals that the Unified Visual and Linguistic Semantics (UVLS) model sig-
nificantly enhances the performance of image captioning, surpassing the baseline models
across the AIC-ICC, Flickr8k-CN, and COCO-CN datasets. It exhibits exceptional profi-
ciency in the BLEU@1 metric, achieving 79.7% on the AIC-ICC dataset, which underlines
its superior ability to recognize and utilize key words in captions—a critical element for
crafting coherent and precise descriptions. This proficiency is further evidenced by an
impressive BLEU@4 score of 50.7%, suggesting a heightened ability to generate exten-
sive context-rich narratives. Additionally, the UVLS model’s performance in METEOR
and CIDEr metrics points to its nuanced capability to create not only semantically pre-
cise captions but also ones that resonate with the unique and relevant content of images.
The model’s robustness across varied datasets underscores its adaptability and solidifies
its standing as an advanced tool in image captioning. The integration of SegmentCLIP
within the UVLS framework likely plays a crucial role in its outstanding performance.
SegmentCLIP’s clustering mechanism refines the model’s ability to analyze and articulate
complex contextual semantics within images, which is reflected in the elevated perfor-
mance metrics. This sophisticated representation enables the UVLS model to offer a more
detailed and comprehensive depiction of visual scenes, as evidenced by superior scores in
the nuanced metrics of BLEU@4 and CIDEr, where the depiction of detailed relationships
and distinctive content is crucial.

While the UVLS model marks a significant advancement in the field of image cap-
tioning, its nuanced understanding of visual and linguistic semantics is not without lim-
itations. One area that warrants further examination is the model’s handling of highly
abstract or ambiguous images where the visual cues do not align clearly with conventional
descriptions. The complexity inherent in such images poses a challenge to generating
accurate and relevant captions, underscoring the need for more sophisticated interpretation
mechanisms that can navigate the subtleties of visual ambiguity and abstract representa-
tions. This observation points towards an essential avenue for future research, focusing
on the integration of deeper contextual and inferential reasoning capabilities within the
UVLS framework.

Additionally, the variation in performance metrics observed across different datasets
highlights the model’s sensitivity to the nature and composition of the data. For instance,
datasets with a higher degree of visual and thematic diversity tend to challenge the model’s
consistency in performance. This variability underscores the importance of diversifying
training methodologies and incorporating adaptive learning strategies that can better
accommodate the wide spectrum of visual and textual nuances present in varied datasets.
Pursuing these enhancements will not only fortify the model’s robustness but also expand
its applicability and effectiveness across a broader range of image captioning scenarios.

In conclusion, the data-driven analysis of the UVLS model across multiple datasets
underlines its comprehensive strengths, particularly in creating contextually relevant,
linguistically coherent, and semantically rich captions. It showcases the UVLS model as a
cutting-edge solution that can potentially revolutionize the landscape of image captioning
by setting new benchmarks for accuracy, relevance, and narrative quality.
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Furthermore, Table 3 measure the training time and the number of trainable parameters
to validate the applicability of our method. Reducing the training time enables quickly
obtaining a new model for new data, creating an ensemble of models, and decreasing
energy consumption. Similar to other works, we report training time in GPU hours and the
GPU model used. The number of trainable parameters is a popular measure to indicate
model feasibility.

Table 3. Params and training times of different models on ICC dataset.

Model Params (M) Training Time (h)

CS-NIC 31 40 (GTX3090 (NVIDIA, Santa Clara, CA, USA))

CIC 42 56 (GTX3090)

SC 64 80 (GTX3090)

Oscar 135 200 (GTX3090)

CLIPCAP 156 20 (GTX3090)

Ours; MLP+GPT2 tuning 175 24 (GTX3090)

Ours; Transformer 63 23 (GTX3090)

5.4. Ablation Studies

To validate the specific strengths of our ‘Ours; MLP+GPT2 tuning’ model in precise
language generation and semantic alignment, we conduct an ablation study delineated
in Table 4. This experiment is designed to highlight the effectiveness of each component in
our model by comparing it with other configurations and models.

Table 4. UVLS model validity experiment. Top scores for each metric are bold. All values are reported
as percentage (%).

Model BLEU@1 BLEU@2 BLEU@3 BLEU@4 METEOR ROUGE CIDEr

CLIPCAP 76.7 65.1 55.0 46.4 38.8 64.0 151.2

SegmentCLIP 74.2 63.4 53.8 45.2 37.6 63.7 150.4

Ours; Transformer 79.2 68.4 58.6 50.1 40.3 66.1 164.9

Ours; MLP+GPT2 tuning 79.7 68.9 59.1 50.7 40.1 66.2 164.2

Detailed Analysis of Model Performance: The ‘Ours; MLP+GPT2 tuning’ model
demonstrates exceptional performance, as evidenced by its leading scores in the majority of
the metrics. It surpasses other models with the highest BLEU@1 score of 79.7%, indicating
its superior capability in capturing frequently used words. This trend continues with the
highest BLEU@2, BLEU@3, and BLEU@4 scores (68.9%, 59.1%, and 50.7%, respectively),
underscoring its proficiency in constructing longer, more complex linguistic structures.
Additionally, the model achieves the top ROUGE score (66.2%), reflecting its effectiveness
in summarizing the essential content of images. However, it slightly falls behind in the
METEOR score (40.1%) and CIDEr score (164.2%) compared to the ‘Ours; Transformer’
variant, which could be attributed to the Transformer’s slightly better grasp of syntactic
variation and distinctiveness in caption generation.

Interpreting Strengths and Addressing Limitations: Despite the minor shortfall in
METEOR and CIDEr, the ‘Ours; MLP+GPT2 tuning’ model’s overall performance indicates
a robust balance between linguistic fluency, n-gram coherence, and content relevance. The
slight underperformance in METEOR and CIDEr may be due to the model’s focus on
grammatical and syntactical structure, which, while leading to high BLEU and ROUGE
scores, might not capture the more nuanced semantic aspects as effectively as the ’Ours;
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Transformer’ variant. Nevertheless, the model’s strong performance across most met-
rics, particularly in BLEU and ROUGE, highlights its capability to generate contextually
rich and detailed image captions, suggesting its usefulness as a method in the realm of
image captioning.

In our empirical investigation of prefix length’s influence on model performance for image
captioning, we present an in-depth analysis through Figure 3, which comprises Figure 3a,b,
corresponding to two different model configurations: MLP and Transformer. These graphs
illustrate the effects of prefix length variation on the captioning performance across the
AIC-ICC dataset.

Figure 3a delineates the results from the MLP-based model configuration. It is evident
that the BLEU@4 and CIDEr scores, which represent the model’s linguistic accuracy and the
salience of the generated captions, respectively, exhibit a substantial increase as the prefix
length progresses from 2.5 to around 10. Beyond this point, the performance plateaus,
indicating that the model has reached its optimal capacity for prefix length, after which
no significant improvement is observed. The saturation point suggests a limitation in the
MLP architecture, where additional length does not equate to better learning or general-
ization capabilities. This trend is marked by a leveling off in the scores, which remain
consistent despite further increments in prefix length.

In contrast, Figure 3b shows the performance curve for the Transformer-based model.
Here, we observe a sharp increase in both BLEU@4 and CIDEr scores as the prefix length is
extended, with a notable improvement in performance continuing up until a prefix length
of around 50. Past this juncture, the graph indicates a plateau, echoing the findings from the
MLP model but at a substantially extended prefix length, underscoring the Transformer’s
superior ability to manage longer dependencies without a compromise in performance.
The gradual ascent and subsequent stabilization of the scores highlight the Transformer’s
robustness and its aptitude for scaling with prefix length, up to the memory constraints
imposed by the attention mechanism.

The comparative analysis of the MLP and Transformer configurations in Figure 3
reinforces the notion that an optimal prefix length is crucial for maximizing model perfor-
mance. While both configurations show improvements in captioning performance with
increased prefix lengths up to their respective saturation points, the Transformer model
distinctly outperforms the MLP. This is attributed to the Transformer’s architectural effi-
ciency in handling longer sequences, which is well-aligned with the complex task of image
captioning that often requires the integration of extensive contextual information. Thus,
these results not only validate the findings of Li and Liang [48] regarding the existence of a
beneficial range for prefix lengths but also explicate the differential impact of this range on
varied architectural frameworks, contributing to a more nuanced understanding of model
optimization in the realm of image captioning.

5.5. Case Studies

To demonstrate the advantages of our model (UVLS) over others like CLIPCAP
and Oscar, we present example images with corresponding captions generated under
the following setup: all the models ran on the AIC-ICC test set’s 60,000 images with a
beam size of 2. We randomly selected four examples of text generated from images to
demonstrate the significant advantages of UVLS over the other models. The examples
in Table 5 illustrate our model’s finer and more detailed depiction of relationships between
objects compared to the other models. Our model demonstrates quantitative superiority
through enhanced precision in object relationship depiction. For instance, in the case of the
boxing image in Table 5, UVLS does not just recognize the boxing activity; it goes a step
further to accurately describe the action in a detailed manner—identifying the color of the
gloves and the specific action of one boxer landing a punch on the other’s chin. This level
of detail is notably absent in the captions generated by other models such as CLIPCAP and
Oscar, which provide more generalized descriptions of the scene.
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Table 5. Performance comparison of image captioning methods: our approach vs. baseline methods
on the AIC-ICC dataset.

Image

CS-NIC 一个女人在喂羊 运动员在打网球 两个小女孩在房间玩耍 两个拳击手在打拳击

in English A woman is feeding sheep. The athlete is playing tennis. Two little girls are playing in
the room. Two boxers are boxing.

CIC 女人在喂养羊 运动员在网球场打网球 两个女孩在更衣室玩耍 拳击手在擂台打拳击

in English The woman is feeding the
sheep.

The athlete is playing tennis
on a tennis court.

Two girls are playing in the
dressing room.

The boxer is fighting in the
ring.

SC 穿着蓝色衣服的女人在喂养小
羊

带着头巾的运动员在网球场打
网球

两个穿着裙子的女孩在更衣室
玩耍

两个拳击手在擂台打拳击

in English woman dressed in blue is
feeding a lamb.

The athlete wearing a
headband is playing tennis on

a tennis court.

Two girls wearing dresses are
playing in the dressing room.

Two boxers are fighting in the
ring.

Oscar 身穿蓝色衣服的女子在和小羊
玩耍

穿着蓝色衣服的运动员在打网
球

两个穿着裙子的小女孩在房间
玩

两个拳击手在擂台比赛

in English The woman in blue clothes is
playing with a lamb.

The athlete dressed in blue is
playing tennis.

Two little girls wearing dresses
are playing in the room.

Two boxers are competing in
the ring.

CLIPCAP 身穿蓝色衣服的女人在和一头
白色的羊一起玩耍

穿着蓝色短袖的运动员在打网
球

两个穿着裙子的小女孩在更衣
室换衣服

两个拳击运动员在八角笼打拳
击

in English A woman in blue clothes is
playing with a white sheep.

The athlete wearing a blue
short-sleeved shirt is playing

tennis.

Two little girls wearing dresses
are changing clothes in the

dressing room.

Two boxing athletes are
fighting in an octagon cage.

Ours 一个身穿蓝色衣服的女人在和
一头白色的羊一起玩耍

穿着蓝色短袖的运动员在网球
场打网球

穿红色裙子的小女孩拉着另一
个穿黑色裙子的女孩的衣服

带着红色拳套的拳击运动员一
拳打在了另一个拳击运动员的

下巴

in English
A woman wearing blue

clothes is playing with a white
sheep.

The athlete wearing a blue
short-sleeved shirt is playing

tennis on a tennis court.

The little girl wearing a red
dress is pulling on the clothes
of another girl wearing a black

dress.

The boxer with red gloves
landed a punch on the chin of

another boxer.

Qualitatively, the UVLS model stands out for its ability to weave intricate details into
a coherent narrative. The captions generated are not only contextually relevant but also
rich in content, providing a comprehensive understanding of the images. The mentioned
boxer image serves as a testament to this, where UVLS captures the dynamic nature of the
sport, offering viewers a vivid portrayal of the intensity within the ring.

Finally, the contextual understanding of our model is evident in its ability to dis-
cern and articulate complex interactions between objects and their surroundings. The
captions generated by UVLS convey a deeper level of interaction and a finer grasp of the
activities being depicted, as observed in the boxing image where the precise nature of
the interaction—down to the color of the gloves and the impact of the punch—is clearly
communicated. This surpasses the capabilities of other models, which tend to provide
more surface-level descriptions without delving into the specifics of the depicted events.
In summary, the examples from Table 5 underscore our model’s advanced ability to iden-
tify and describe intricate object relationships with a high degree of accuracy and detail,
establishing UVLS as a notably superior model in the domain of image captioning.
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6. Conclusions and Future Work

This study introduces the Unified Visual and Linguistic Semantics Method (UVLS), an
innovative encoder–decoder framework that addresses key challenges in image captioning.
The UVLS model is designed to bridge the gap between visual perception and linguistic in-
terpretation, providing a more integrated and nuanced understanding of image content. It
comprises three essential components: an encoder leveraging SegCLIP for efficient feature
extraction from images, a mapping network for transforming these features into a consis-
tent format, and a GPT-2-based decoder that generates accurate Chinese language captions.
The integration of SegCLIP and SegmentCLIP within this framework enhances the seman-
tic understanding between visual and textual elements, with SegmentCLIP’s clustering
mechanisms further refining the model’s ability to capture complex contextual semantics.

Looking forward, our research in image captioning seeks to delve deeper into the
intricacies of visual and linguistic interplay. Future work will focus on enhancing the
model’s ability to handle diverse and complex visual scenes, improving the granularity of
feature extraction and linguistic translation. We aim to explore the potential of integrating
additional contextual data sources and advanced natural language processing techniques
to enrich the semantic depth of the generated captions. Additionally, efforts will be di-
rected towards improving the model’s adaptability and efficiency, ensuring its applicability
across various domains and datasets. By continuously refining and advancing the UVLS
model, we aspire to set new benchmarks in the field of image captioning, contributing
to the development of more intelligent, context-aware, and linguistically sophisticated
captioning systems.
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