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Abstract: In this paper, we present a novel self-supervised framework for Sentiment Cue Extraction
(SCE) aimed at enhancing the interpretability of text sentiment analysis models. Our approach
leverages self-supervised learning to identify and highlight key textual elements that significantly
influence sentiment classification decisions. Central to our framework is the development of an
innovative Mask Sequence Interpretation Score (MSIS), a bespoke metric designed to assess the
relevance and coherence of identified sentiment cues within binary text classification tasks. By
employing Monte Carlo Sampling techniques optimized for computational efficiency, our framework
demonstrates exceptional effectiveness in processing large-scale text data across diverse datasets,
including English and Chinese, thus proving its versatility and scalability. The effectiveness of our
approach is validated through extensive experiments on several benchmark datasets, including SST-2,
IMDb, Yelp, and ChnSentiCorp. The results indicate a substantial improvement in the interpretability
of the sentiment analysis models without compromising their predictive accuracy. Furthermore, our
method stands out for its global interpretability, offering an efficient solution for analyzing new data
compared to traditional techniques focused on local explanations.

Keywords: sentiment cue extraction; self-supervised learning; interpretable machine learning

1. Introduction

In the rapidly evolving landscape of the information age, the prolific growth of textual
data on various online platforms has propelled Natural Language Processing (NLP) into a
position of increased importance. Within this domain, sentiment analysis [1], also referred
to as opinion mining, stands out as a critical area. This process involves the automatic
detection and interpretation of sentiments, emotions, and subjective information within
textual data [2]. The application of sentiment analysis spans a wide spectrum, from the
analysis of customer feedback in product reviews to the evaluation of public sentiment on
social media platforms [3].

In the ever-evolving digital landscape, the exponential growth of textual data across
various online platforms has elevated NLP to a critical technological frontier. Among the
myriad applications of NLP, sentiment analysis plays a pivotal role. This field, focusing
on the automatic detection and interpretation of sentiments, emotions, and subjective
information within textual content, finds widespread application from analyzing customer
feedback in product reviews to monitoring public sentiment on social media platforms.
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Despite the remarkable advances and successes in sentiment analysis, a significant
hurdle persists: the challenge of interpretability, which encompasses the difficulty of under-
standing and explaining how sentiment analysis models make their decisions, particularly
in terms of identifying specific factors or textual elements that influence these decisions [4].
Traditional sentiment analysis models are often criticized for their “black-box” nature,
which obscures the transparency of their decision-making processes [5]. This opacity
generates concerns about accountability and dependability, especially in scenarios where
precision and reliability are paramount.

To mitigate these concerns, our research introduces a novel self-supervised framework
focused on sentiment cue extraction. This approach involves the identification and extrac-
tion of crucial linguistic elements—such as specific words, phrases, or syntactic patterns,
referred to as “sentiment cues” in this paper—that significantly influence sentiment de-
termination. Our approach is instrumental in demystifying the decision-making process
of sentiment analysis models, thus contributing to a deeper understanding and trust in
these systems.

For example, in finance, discerning the exact cues that drive sentiment predictions
can be a game changer for market analysis [6–8]. Similarly, in healthcare, the analysis of
sentiment cues in patient feedback, particularly from online sources, is essential to improve
the quality of healthcare services. By evaluating positive and negative sentiments expressed
in patient reviews, healthcare providers can identify strengths and areas for improvement
in their services, such as facility cleanliness, staff behavior, and general patient care [9].

Our study introduces a groundbreaking framework based on self-supervised learning
that incorporates sequence labeling techniques to significantly improve the interpretability
of sentiment analysis models. Traditional approaches in sentiment cue extraction often
involve labor-intensive and time-consuming data annotation processes. Existing inter-
pretability methods for text classification models, while offering partial solutions, primarily
depend on local interpretative methods. These local methods typically require individual
training for each data instance, presenting significant challenges in efficiently handling
new data.

In contrast, our innovative approach uses the abundance of existing annotated senti-
ment classification data through self-supervised learning. This enables our framework to
interpret sentiment classification models in scenarios where explicit annotation is lacking, ef-
fectively facilitating sentiment cue extraction. Importantly, this methodology transcends the
boundaries of local interpretability techniques, offering a global interpretability approach.
Such a global perspective allows for a more holistic and comprehensive understanding of
the model’s decision-making process across various instances, rather than being confined
to localized, instance-specific explanations.

To the best of our knowledge, ours is the first work to combine Monte Carlo methods
with self-supervised learning to address the global interpretability issue in binary text
classification [10–12]. The key contributions of our research are as follows.

• We propose a Self-Supervised Sentiment Cue Extraction (SS-SCE) method. This ap-
proach, inspired by the concept of interpretability in text classification models, accom-
plishes the extraction of sentiment cues from texts under conditions of scarce labeled
data through a global interpretability analysis of the text classification models.

• We have developed a pseudo-label generation scheme for sentiment cue extraction
models. This scheme selects appropriate mask sequences as pseudo labels for the
sentiment cue extraction model based on the prediction results of a trained text classi-
fication model. Furthermore, we enhance the efficiency of pseudo-label generation by
employing a Monte Carlo Sampling strategy.

• We have introduced the Mask Sequence Interpretation Score (MSIS) metric, designed
to evaluate generated mask sequences based on the prediction results of a text classifi-
cation model, thereby providing a basis for the generation of pseudo labels. Empirical
evidence demonstrates the effectiveness of our MSIS metric.
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The remainder of this paper is organized as follows: Section 2 discusses related work,
providing background on sentiment analysis, self-supervised methods for information ex-
traction, interpretability in machine learning, and the use of Monte Carlo methods. Section 3
details our methodology, explaining the sentiment cue extraction process, the use of Monte
Carlo sampling, label sequence selection, and the sentiment cue extraction algorithm. In
Section 4, we present our experimental setup, the datasets used, and a thorough evaluation
of the performance of the SS-SCE framework. This includes an in-depth analysis of our
results and a comparative study with state-of-the-art interpretability methods. Finally,
Section 5 concludes the paper, summarizing our key findings, discussing the implications
and potential applications of our work, and suggesting avenues for future research.

2. Related Works
2.1. Sentiment Analysis

Sentiment analysis, also known as opinion mining, is a crucial subfield of NLP that
focuses on discerning and categorizing opinions expressed in text [13,14]. Its primary goal
is to determine the writer’s position toward specific topics or the general polarity of the
sentiment of the text. This analysis typically involves categorizing text polarity at various
levels: document, sentence, or feature/aspect level, determining whether the expressed
opinion is positive, negative, or neutral [3].

With the advent of deep learning, sentiment analysis has undergone significant ad-
vances. Models such as Bidirectional Encoder Representations from Transformers (BERT)
and its variants have been extensively employed for nuanced sentiment analysis, enhanc-
ing context and semantic understanding [15,16]. Moreover, transformer-based models
like GPT-3 have pushed the boundaries further in generating human-like text, which is
advantageous for more intricate sentiment analysis scenarios [17].

Sentiment analysis finds extensive applications across various domains, from cus-
tomer service and market research to social media monitoring and political campaigns.
It is essential for businesses and organizations to gauge public opinion, conduct market
research, monitor the reputation of the brand and the product, and understand customer
experiences [1].

In today’s era of advanced NLP technology, sentiment analysis has emerged as a
highly focused research area within the field, benefiting from a plethora of readily available
high-quality datasets, such as IMDb [18] and SST-2 [19]. This availability has injected
significant vitality into research in this direction. However, the “black box” nature of
many deep learning models used in sentiment analysis poses another major limitation.
These models, while powerful, often lack transparency in their decision-making processes,
making it difficult for users to understand and trust their predictions.

Furthermore, sentiment analysis faces challenges in detecting nuances such as sarcasm,
irony, and context-dependent meanings. Future research may involve more sophisticated
models that understand complex human emotions and incorporate multimodal data (text,
images, and videos) to better understand sentiments [20].

The field of sentiment analysis in NLP continues to be dynamic, with ongoing efforts
to enhance the accuracy and versatility of sentiment detection algorithms. As computa-
tional models evolve, their ability to discern sentiments from text is expected to become
increasingly refined and sophisticated.

2.2. Self-Supervised Methods for Information Extraction

Self-supervised learning in NLP has emerged as a fundamental approach to informa-
tion extraction, harnessing the potential of unlabeled data to train predictive models. This
paradigm involves creating learning tasks in which models predict certain parts of the
input using other parts [21–23].

By utilizing large volumes of unlabeled data, self-supervised learning allows models
to learn rich representations. These representations are beneficial for diverse downstream
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NLP tasks, especially valuable in contexts where labeled data are scarce or expensive to
acquire [16,21].

Among the popular methodologies in self-supervised learning, Masked Language
Modeling (MLM) stands out. MLM is a key technique in self-supervised learning, notably
used by BERT. It involves hiding some words in a sentence and training the model to predict
these hidden words using the surrounding context. This process aids in understanding the
context and relationships between words [16].

Permutation-based language modeling, as introduced by XLNet, is another significant
methodology. It extends the concept of MLM to predict a token based on all permutations of
tokens in a sentence. This approach offers a more comprehensive context understanding [22].

Additionally, models like BART [23] and Text-to-Text Transfer Transformer (T5) [24]
utilize a corrupted text generation task for pre-training. In this approach, models learn to re-
construct the original text from a corrupted version, thereby enhancing their understanding
of language structure and coherence [23].

In the evolving landscape of self-supervised learning models, the Generative Pre-
trained Transformer (GPT) series by OpenAI marks a pivotal juncture [17,25,26]. Unlike
BERT, renowned for its bidirectional approach to language comprehension, GPT models
excel at text generation by predicting the subsequent word in a sequence. Consequently,
while BERT shines in nuanced language understanding tasks, GPT excels in producing
coherent and contextually apt text.

Continuing this trajectory, ChatGPT (https://chat.openai.com (accessed on 19 March
2024)), a notable addition to the GPT lineage, heralds further breakthroughs. Specifically,
ChatGPT exemplifies the prowess of large-scale language models across an array of uses,
from crafting human-like narratives to conducting nuanced sentiment analyses. Its adapt-
ability for fine-tuning targeted tasks significantly expands its utility and effectiveness
in addressing diverse NLP challenges. Parallel to ChatGPT’s emergence, a myriad of
other large language models like Gemini (https://gemini.google.com/ (accessed on 19
March 2024)) and ERNIE Bot (https://yiyan.baidu.com/ (accessed on 19 March 2024)) have
surfaced, enriching the field with their distinct contributions.

However, these advancements are not without challenges. ChatGPT’s closed-source na-
ture hinders research transparency and restricts community-driven enhancements. Moreover,
the substantial computational resources required to operate or fine-tune such models often
necessitate reliance on cloud-based APIs provided by the developers. This reliance raises
concerns regarding cost-effectiveness, latency issues, and data privacy implications [27,28].

Self-supervised learning has achieved remarkable success in tasks such as named
entity recognition, relation extraction, and event extraction. By pretraining on extensive
text corpora, these models capture nuanced language patterns, significantly increasing
their task performance [29,30].

2.3. Interpretability of Deep Learning Models

The interpretability of deep learning models in NLP is a vital research area, concen-
trating on deciphering and explaining how these models make decisions. This aspect is
particularly critical in applications where trust and transparency are paramount [4,31].

Interpretability in deep learning models is essential to validate and improve model
performance, ensure fairness, and provide information on model behavior, especially in
areas such as healthcare, finance, and legal applications [31].

Several techniques have been developed to enhance the interpretability of deep learn-
ing models. These include attention mechanisms, which underscore parts of the input
data most relevant to the model decision [32], and Local Interpretable Model-Agnostic
Explanations (LIME), which approximate the model locally using interpretable models [5].
In addition, researchers also use topic models such as Latent Semantic Analysis (LSA) and
Latent Dirichlet Allocation (LDA) to achieve interpretability [33]. For example, Xiong and
Li [34] combined LDA with deep learning models to not only grade student essays but also
identify the characteristics of excellent essays in terms of language expression.

https://chat.openai.com
https://gemini.google.com/
https://yiyan.baidu.com/
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Despite these advances, understanding deep learning models, particularly transform-
ers, remains challenging. Their black-box nature often hinders the understanding of their
predictive reasoning [4].

Future research in model interpretability is likely to focus on developing more ro-
bust generalizable techniques that offer clear explanations of model decisions, including
integrating interpretability directly into model architecture and training [35].

As deep learning models continue to advance and find application in critical domains,
the significance of interpretability will only escalate. Ensuring that these models are
transparent and that their decisions are understandable is key to their successful and
ethical application.

2.4. Monte Carlo Methods

Monte Carlo methods represent a class of computational algorithms that employ
repeated random sampling to yield numerical outcomes. In the realms of NLP and machine
learning, these methods are applied across a spectrum of tasks, including optimization,
numerical integration, and probabilistic inference [36,37].

The foundational principle of Monte Carlo methods is the utilization of randomness to
address problems that, while theoretically deterministic, are complex in nature. These meth-
ods are particularly effective in computing quantities that are challenging for deterministic
algorithms, largely because of their high-dimensional characteristics.

In the field of NLP, Monte Carlo methods have found extensive applications in lan-
guage modeling, particularly in tasks that encompass uncertainty and probabilistic models.
A notable example of their application is in Bayesian learning methodologies, where they
are instrumental in estimating the posterior distributions of model parameters [38].

Recent progress in Monte Carlo methods has geared towards enhancing both efficiency
and accuracy, especially within the context of deep learning. Techniques such as Markov
Chain Monte Carlo (MCMC) have been adapted for compatibility with complex model
structures, including deep neural networks [37].

A primary challenge in the implementation of Monte Carlo methods within NLP
pertains to the computational demands, which are accentuated when large datasets and
intricate model architectures. Consequently, future research is anticipated to focus on the
development of more efficient sampling techniques and the integration of Monte Carlo
methods with other machine learning approaches [39].

3. Task Definition

The primary aim of this study is to enhance the interpretability of sentiment classifica-
tion models applied to texts. Specifically, our focus is on identifying the key factors—words
or phrases within a text—that sentiment classification models rely on to determine the
sentiment polarity of that text. These influential words or phrases are collectively referred
to as “Sentiment Cues”. Therefore, we term the task we explore in this paper as Sentiment
Cue Extraction (SCE). This endeavor seeks to uncover and articulate the rationale behind
sentiment polarity judgments made by these models, making the decision-making process
more transparent and understandable to both users and researchers.

To clarify the task of SCE more distinctly, let us illustrate with the following two
examples:

• Instance 1: Very friendly customer service.
• Instance 2: If I could give a zero star, I would!

Here, the word “friendly” in the first instance allows us to identify its sentiment
as positive; similarly, the phrase “zero star” in the second instance indicates a negative
sentiment. Hence, “friendly” and “zero star” serve as what we define as sentiment cues.
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4. Methodology
4.1. Overview of Our Method

To address the SCE task, this paper conceptualizes SCE as a sequence labeling task.
This perspective allows for a systematic approach to identifying sentiment cues across
varying textual instances.

Given an instance X = {x1, x2, · · ·, xn}, our objective is to assign a corresponding label
set Y = {y1, y2, · · ·, yn}, where yi = 1 signifies that the element constitutes a significant
sentiment cue. For example, regarding Instance 1, the corresponding X and Y are as
illustrated in Equations (1) and (2), respectively.

X = {“Very”, “ f riendly”, “customer”, “service”, “.”}, (1)

Y = {0, 1, 0, 0, 0}. (2)

However, a principal challenge within this work is the absence of annotated data
for the SCE task, meaning that Y is unknown within the dataset. To address this, we
introduce a Self-Supervised Sentiment Cue Extraction (SS-SCE) method that employs self-
supervised learning to tackle the SCE task. In the SS-SCE framework, we utilize a sentiment
classification model, which has been widely labeled, to generate pseudo labels for the SCE
task. These pseudo labels, derived from samples X in the sentiment classification dataset,
serve as inputs and outputs for constructing the SCE training dataset, thereby enabling the
training of an SCE sequence labeling model. The fundamental steps of this approach are
depicted in Figure 1.

Figure 1. This figure illustrates the workflow of our self-supervised sentiment cue extraction method.
“Input” and “Label” represent the roles of “An Instance” and “Pseudo Label” within the “Generated
Instance”, respectively. The bold arrows indicate the process of training the corresponding models
using the dataset.

Figure 1 illustrates the basic workflow of our method. Initially, we train a sentiment
classification model based on a sentiment classification dataset. Building on this, we
generate candidate sequences of pseudo labels (referred to as the Candidate Sequences
in the figure) for an instance within the dataset and then use the sentiment classification
model to select one sequence from these candidates as the pseudo label. Thus, by taking an
instance as input and using the obtained pseudo label as the label, we can form a sequence
labeling instance (referred to as the Generated Instance in the figure). By generating such
generated instances for other instances in the sentiment classification, we can compile a
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dataset (referred to as the Generated Dataset in the figure) that is suitable for training the
SCE model. Based on this dataset, the SCE model can then be trained.

In the following sections, we will introduce our method in detail.

4.2. Generating Dataset for Sentiment Cue Extraction
4.2.1. Generation of Candidate Sequences

As described earlier, for an input X, it is necessary to generate several candidate
sequences of pseudo labels, denoted by Yc = {yc

1, yc
2, · · ·, yc

n}. Theoretically, for an input
X of length n, there are 2n possible configurations for Yc. This implies that for n = 20,
Yc could have over 1 million possible combinations—a daunting figure. This calculation
pertains to just a single data instance, whereas training the SCE model requires thousands of
such pseudo-labeled data instances. Enumerating all possible combinations is impractical,
both in terms of time and computational resources. Therefore, we employ the Monte Carlo
Sampling [40] method to randomly generate a specified number of candidate sequences,
significantly reducing the time complexity associated with generating these candidate
sequences. The Monte Carlo Sampling algorithm we use is outlined in Algorithm 1. This
approach allows us to efficiently produce a manageable subset of potential label sequences
for further analysis and selection, ensuring the feasibility of the SCE model training process.

Algorithm 1 Monte Carlo Sampling for generating one candidate sequence

Require: instance X, sampling ratio p
1: Yc ← ∅
2: for i ∈ [1, 2, . . . , n] do
3: generate g uniformly at random in the range [0, 1]
4: if g < p then
5: yc

i ← 1
6: else
7: yc

i ← 0
8: end if
9: Add yc

i to Yc

10: end for
11: return Yc

In Algorithm 1, we commence by specifying a sampling ratio p. For each element xi
in X, we randomly generate a decimal number g uniformly within the range of 0 to 1. If
g < p, then yc

i is set to 1; otherwise, it is set to 0. This mechanism ensures that each yc
i

has a probability p of being assigned the value 1. Consequently, it can be inferred that the
proportion of elements labeled 1 in the generated sequence Yc is expected, on average, to
be p.

This method does more than simply allow for the manipulation of positive label
density within candidate sequences; it also facilitates the emulation of varied labeling
densities in scenarios devoid of pre-annotated data by modulating the p-value. Ideally,
p should mirror the proportion of tokens in the text X that significantly influence the
sentiment classification model’s decision-making process, equivalent to the proportion of
elements valued at 1 in Y. However, this proportion is unknown. Therefore, to generate
candidate sequences as comprehensively as possible, we employ multiple values for p
during the sampling process, conducting sampling under these varied p-values.

4.2.2. Sentiment Classification Model

As demonstrated in Figure 1, selecting an optimal pseudo label from the array of
candidate sequences involves scoring each candidate. Within the SS-SCE framework, this
scoring process is facilitated by a sentiment classification model. Herein, we provide an
overview of the sentiment classification model used in the SS-SCE context.

In our research, the sentiment classification model is built on BERT as the encoding
mechanism, mainly due to its ability to effectively capture contextual nuances within the
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text. BERT, a transformer-based model, stands out for its dynamic encoding capabilities,
compared to static word vector methods, such as GloVe [41], which may not fully grasp the
context-dependent aspects of language.

Moreover, compared to GPT [25,26], another transformer-based architecture, BERT
is more aligned with our needs. While GPT excels in text generation tasks due to its
unidirectional nature, BERT’s bidirectional training strategy makes it particularly suitable
for understanding the nuanced expressions of sentiment in texts. This bidirectionality
allows BERT to gather context from both sides of a token, offering a richer representation
of the input text and enhancing the model’s ability to discern the underlying sentiment.

Additionally, sentiment classification models within the academic community often
leverage BERT-based architectures, facilitating straightforward comparisons with other
models in the field.

When encoding the input X using BERT for our sentiment classification model, it is
necessary to prepend a [CLS] token at the beginning and append a [SEP] token at the end of
X. Thus, the actual sequence inputted into BERT becomes X = {[CLS], x1, x2, · · ·, xn, [SEP]}.
For text classification tasks, the encoding of the [CLS] token is typically utilized to represent
the encoding of the entire sentence.

To facilitate comparisons with other models, we have constructed a remarkably
straightforward binary text classification model fsc based on the base version of BERT. In
this model, fsc, the enhanced input X is encoded using BERT, resulting in a 768-dimensional
vector representation, h768

X . This vector, specifically derived from the encoding of the [CLS]
token, is then transformed into a two-dimensional vector, h2

X , via a fully connected layer.
Subsequently, a softmax function converts h2

X into a pair of probabilities that indicate the
likelihood of X belonging to categories 0 (negative sentiment) and 1 (positive sentiment),
respectively. The sentiment classification model fsc can thus be expressed as:

fsc(X) = softmax(FC768×2(BERT(X)[CLS])) (3)

where FC768×2 denotes the fully connected layer mapping the 768-dimensional BERT
encoding to a 2-dimensional output, and BERT(X)[CLS] refers to the representation of
the [CLS] token produced by BERT, which serves as the aggregate representation of the
enhanced input text for classification purposes.

Accordingly, for an input, the model yields the following probability pair:

(pc0, pc1) = fcls(X), (4)

where pc0 and pc1 correspond to the probabilities of X being classified under negative and
positive sentiments, respectively. Consequently, the sentiment prediction for X by fcls is
determined as:

C = arg max(pc0, pc1), (5)

This procedure also facilitates the computation of the Probability Discrepancy between
the categories:

∆P = |pc0 − pc1|. (6)

In this context, ∆P, referred to as “Probability Discrepancy”, is utilized to assess the
intensity of the sentiment inclination prediction made by fsc for X. A larger ∆P value
indicates a more pronounced sentiment inclination in X, reflecting the model’s confidence
in its sentiment classification.

4.2.3. Mask Sequence Interpretation Score

In the SCE task, for a given input X with labels Y, there exists an inverse sequence
Ȳ = {1− y1, 1− y2, · · ·, 1− yn}. As defined by the task, if the token xi in X is identified as
an SC within X, then the corresponding label yi is assigned a value of 1; if not, yi is set to
0. This principle suggests that masking all tokens xi in X for which yi = 1, resulting in a
masked input XȲ, would hinder the sentiment classification model’s ability to accurately
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determine the sentiment inclination of XȲ. Conversely, retaining only the tokens in X,
where yi = 1, and masking those with yi = 0, to create a new input XY, should enable the
sentiment classification model to predict its sentiment inclination effectively.

In typical scenarios, to obtain XY, it is necessary to replace tokens xi in X corresponding
to yi = 0 in Y with a meaningless symbol like [MASK]. However, BERT provides a more
straightforward solution for us. By using Y as the attention mask directly input into BERT,
it automatically disregards tokens xi in X corresponding to yi = 0 in Y.

Therefore, for X, when using Y as the mask sequence, we obtain:

(pY
c0, pY

c1) = fsc(X, Y), (7)

yielding the sentiment category prediction:

CY = arg max(pY
c0, pY

c1), (8)

and calculating the Probability Discrepancy as:

∆PY = |pY
c0 − pY

c1|. (9)

Similarly, when using the inverse sequence Ȳ as the mask sequence, we can determine:

(pȲ
c0, pȲ

c1) = fsc(X, Ȳ), (10)

with the corresponding sentiment category determined by:

CȲ = arg max(pȲ
c0, pȲ

c1), (11)

and the Probability Discrepancy for XȲ calculated as:

∆PȲ = |pȲ
c0 − pȲ

c1|. (12)

When selecting a candidate sequence Y as the pseudo label, the ideal scenario aims to
maximize ∆PY while ensuring that CY = C, and simultaneously minimize ∆PȲ. However,
this approach might lead to an extreme case where all elements of Y are set to 1 and all
elements of Ȳ are set to 0. In such a scenario, XY would be identical to X, and XȲ would
contain no informative content, which, while adhering to the principle, is not desirable for
effective sentiment cue extraction. To circumvent this issue, it is preferable to have as few
elements labeled as 1 in Y as possible. To achieve this balance, we introduce the Ratio of
Cue Tokens (RCT), calculated as follows:

RCT =
∑(Y)

n
(13)

where ∑(Y) represents the number of elements valued at 1 in Y, and n denotes the total
number of elements in Y.

Moreover, within X, there may be tokens that inversely affect the prediction of X’s
sentiment inclination. Such tokens might cause fsc to predict the sentiment category of XȲ

as being entirely opposite to that of X. In these situations, it is desirable for ∆PȲ to be as
large as possible to reflect a clear differentiation in sentiment inclination.

Taking into consideration the principles mentioned above, we propose an evaluation
metric named the Mask Sequence Interpretation Score (MSIS) as follows:
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MSIS =



∆PY

∆PȲ · RCT2
, C = CY ∩ ∆PȲ < ∆PY

∆PY · ∆PȲ

RCT2 , C = CY ̸= CȲ ∩ ∆PȲ ≥ ∆PY

0, Others

(14)

Algorithm 2 outlines the procedure for evaluating the MSIS for a given candidate
sequence Yc associated with an instance X.

Algorithm 2 Evaluating the candidate sequence Yc

Require: instance X, the sentiment category of the instance C, length of the instance n, well
trained sentiment classification model fsc, candidate sequence Yc = {yc

1, yc
2, · · ·, yc

n}
1: Ȳc ← ∅
2: for i ∈ [1, 2, . . . , n] do
3: Add 1− yc

i to Ȳc

4: end for
5: (pYc

c0 , pYc

c1 ) = fsc(X, Yc), (pȲc
c0 , pȲc

c1 ) = fsc(X, Ȳc)

6: CYc
= arg max(pYc

c0 , pYc

c1 ), CȲc
= arg max(pȲc

c0 , pȲc
c1 )

7: ∆PYc
= |pYc

c0 − pYc

c1 |, ∆PȲc
= |pȲc

c0 − pȲc
c1 |

8: RCTYc ← RCT(Yc, n) ▷ Refer to Equation (13)
9: MSISYc ← MSIS(C, CY, CȲc , ∆PYc

, ∆PȲc
) ▷ Refer to Equation (14)

10: return MSISYc

The process begins by creating an inverse sequence Ȳc, which serves as a complement
to Yc by inverting the binary values. This step ensures that we can compare the effects of
including versus excluding specific tokens identified as sentiment cues on the predictions
of the sentiment classification model.

Next, the algorithm employs fsc to calculate the probabilities of X belonging to each
sentiment category, both with and without the sentiment cues as indicated by Yc and Ȳc,
respectively. These probabilities allow the computation of the Probability Discrepancy (∆P)
for both sequences, offering insight into the decisiveness of the sentiment classification
under different conditions.

The RCT for Yc is then calculated, providing a measure of the proportion of tokens in
X identified as sentiment cues by Yc. This ratio is crucial for ensuring that the selection of
sentiment cues is both significant and minimal, avoiding over-representation of cues.

Finally, the MSIS for Yc is determined based on the sentiment category predictions
and Probability Discrepancies for both Yc and its inverse.

4.2.4. Process of Selecting Pseudo Label for X

Algorithm 3 details the comprehensive process for generating a pseudo label for an
instance X. This process involves evaluating multiple candidate sequences generated under
various sampling ratios, each with the aim of identifying the sequence that best represents
the sentiment cues within X. The algorithm utilizes a well-trained sentiment classification
model fsc to calculate the MSIS for each candidate sequence, ultimately selecting the
sequence with the highest MSIS as the pseudo label for X.

It should be noted that in order to ensure the RCT of the candidate sequences obtained
through sampling is as uniform as possible, covering different instances, we will uniformly
select several decimals between 0 and 1 to serve as sampling ratios.

By employing this algorithm for all instances in the dataset, a collection of pseudo
labels is generated, forming a dataset that can be used to train the SCE model.
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Algorithm 3 Process of selecting pseudo label for X

Require: instance X, the sentiment category of the instance C, length of the instance n,
well trained sentiment classification model fsc, set of sampling ratios {p1, p2, . . . , pk},
sampling number m

1: Y ← ∅ ▷ Initialize the pseudo label ad a empty set
2: MSISY ← 0 ▷ Initialize MSIS of Y with 0
3: for p ∈ {p1, p2, . . . , pk} do
4: for i ∈ [1, 2, . . . , m] do
5: Yc ← Generate a candidate sequence with X and p ▷ Refer to Algorithm 1
6: MSISYc ← Evaluate Yc ▷ Refer to Algorithm 2
7: if MSISYc > MSISY then
8: Y ← Yc ▷ Update Pseudo Label Y if a higher score is achieved
9: MSISY ← MSISYc ▷ Update the score accordingly

10: end if
11: end for
12: end for
13: return Y

4.3. Sentiment Cue Extraction Model

Our SS-SCE approach conceptualizes the SCE task as a sequence labeling problem.
This requires performing a binary classification for each token xi within the input X.
Consequently, the architecture of the SCE model is highly analogous to that of the sentiment
classification model, with a key distinction: while the sentiment classification model
focuses on classifying the [CLS] token to infer the overall sentiment of the input, the SCE
model extends this classification to all tokens within X. Therefore, the SCE model can be
formalized as follows:

fsce(X) = softmax(FC768×2(BERT(X))) (15)

where BERT(X) produces a sequence of 768-dimensional vector representations for each
token in X. The fully connected layer, denoted as FC768×2, maps each 768-dimensional
vector to a 2-dimensional output, corresponding to the binary classification for sentiment
cue detection. The softmax function is applied to these 2-dimensional vectors, yielding a
probability distribution over two classes (cue vs. non-cue) for each token in X.

After generating pseudo labels for each instance X in the train set, these labels will be
utilized as the ground truth for training the SCE model, fsce. It is important to note that
each X is augmented with [CLS] and [SEP] tokens at the beginning and end, respectively.
While these tokens are essential for BERT’s processing, they should not be overlooked by
fsce. Consequently, their corresponding labels in the pseudo label sequence are fixed to 1.
However, we do not consider these specific tokens ([CLS] and [SEP]) as sentiment cues.

5. Experiments
5.1. Dataset

To rigorously evaluate the methodology proposed in this paper, we perform exper-
iments using the IMDb [18] and SST-2 [19] datasets, both of which are sentiment classi-
fication datasets composed of English movie reviews. It is essential to note that BERT,
the underlying model, is limited to processing sequences of a maximum of 512 tokens.
Given that the IMDb dataset contains numerous instances exceeding this token limit, we
selectively use instances with a length not surpassing 512 tokens for our experimental data.

Furthermore, we meticulously curate a subset of review data from the Yelp (https:
//www.yelp.com/dataset (accessed on 19 March 2024)) website. From the original Yelp
dataset, we extract the top 14,000 reviews with the highest ratings and the bottom 14,000 re-
views with the lowest ratings. After random swab, this dataset is divided into 20,000 re-
views for training, 4000 for validation, and 4000 for testing.

https://www.yelp.com/dataset
https://www.yelp.com/dataset
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To further extend the scope of our evaluation and validate the versatility of our
methodology across different languages, we have incorporated the ChnSentiCorp dataset
(https://aistudio.baidu.com/datasetdetail/10320 (accessed on 19 March 2024)). This
dataset consists of Chinese-language hotel reviews, providing an opportunity to assess our
model’s performance in a non-English context.

The statistical characteristics of these four datasets are succinctly summarized in
Table 1.

Table 1. This table shows the sizes of the training, validation, and test sets for four different datasets.

Dataset Training Set Size Validation Set Size Testing Set Size

SST-2 60,000 7349 872
Yelp 20,000 4000 4000

IMDb 17,008 4310 21,500
ChnSentiCorp 9146 1200 1200

5.2. Experimental Setup

We initially train sentiment classification models for each of the three datasets. Then,
for each instance X in the training and evaluation sets of each dataset, we generate candidate
sequences using Algorithm 1. Since it is not possible to predict the proportion of tokens in
X that are sentiment cues, denoted as p, we test different values of p from the set {0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7}.

For both the sentiment classification model and the sentiment cue extraction model,
we employed the bert-base-uncased (https://huggingface.co/bert-base-uncased (accessed
on 19 March 2024)) architecture as our encoder and employed softmax [42] as the decoder.
The learning rate is set to 0.00001, and we use the Adam optimizer with the applied
cross-entropy loss function.

In the training phase of the SCE model, we primarily use cross-entropy loss as the
main evaluation metric. We systematically selected the model parameters that achieved the
minimum loss in the validation set as the final parameters of the model.

All computations are performed on a Tesla V100-SXM2-16GB GPU manufactured by
NVIDIA Corporation, headquartered in Santa Clara, CA, USA. Due to variations in the
maximum length of samples in the three datasets and limitations in GPU memory, the
number of candidate sequences generated per run differed. Specifically, we generated
100 mask sequences for SST-2 and Yelp in a single run, while for IMDb and ChnSentiCorp,
we could only generate 10 mask sequences per run.

In training the classification and SCE models, we adjust the batch size based on the
dataset to optimize resource utilization and training efficiency. For SST-2 and Yelp, the
batch size is set to 32, accommodating a larger number of instances per training step due to
their relatively shorter text lengths. In contrast, for IMDb and ChnSentiCorp, which consist
of longer text instances, the batch size is set to 8.

5.3. Evaluation Metrics

To assess the effectiveness of our SS-SCE approach, evaluations are conducted from
both quantitative and qualitative perspectives.

5.4. Results and Analysis
5.4.1. Computational Efficiency of Monte Carlo Sampling

To assess the computational demands of our method, we performed Monte Carlo
Sampling in the training and validation sets of the SST-2, Yelp, IMDb, and ChnSentiCorp
datasets. We generated a fixed number of 10,000 candidate sequences for each instance.

To elucidate the computational efficiency of our Monte Carlo Sampling process, de-
tailed statistics are presented in Table 2. This table shows the Average Time Per Sampling
(ATPS) in milliseconds (ms) and the Average Time for the Optimal Mask Sequence (ATOMS)
in seconds (s) for each dataset.

https://aistudio.baidu.com/datasetdetail/10320
https://huggingface.co/bert-base-uncased
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Table 2. This table presents the average length of each instance in four datasets, the average time
consumed per sampling, and the average time to obtain the optimal mask sequence.

Metric SST-2 Yelp IMDb ChnSentiCorp

Average Length 32.02 79.57 265.02 90.49
ATPS (ms) 0.70 3.71 9.84 6.03
ATOMS (s) 1.49 19.84 49.68 30.27

As evident from Table 2, the time required for generating a single sample increases
with the length of the text, as does the average time to complete the sampling process
for obtaining the optimal mask sequence. This outcome indicates that our approach is
relatively less efficient for longer texts. As the length of the text increases, more time is
required to complete the sampling process.

5.4.2. Main Performance Evaluation

Given the absence of annotated data, it is challenging to directly apply traditional
sequence labeling evaluation metrics to assess SS-SCE. According to the definition of the
SCE task, the sentiment orientation of XY, obtained by masking X with the pseudo-label Y,
should align with that of X. Therefore, we can indirectly evaluate SS-SCE by comparing
the performance metrics of instances in the test set when using X as input versus using
XY as input in the sentiment classification model. Specifically, we calculate the accuracy,
precision, recall, and F1 scores for the test set when using X and XY as inputs, respectively,
and measure the performance loss caused by using XY as input.

Additionally, to statistically assess the impact of our SS-SCE method on the perfor-
mance of sentiment classification, we conduct a t-test comparing the predictions made
by the sentiment classification model for both the original input X and the input with
extracted sentiment cues XY. The null hypothesis (H0) posits that the SS-SCE method
does not significantly reduce the performance metrics of sentiment classification compared
to the original input X. The alternative hypothesis (H1), on the other hand, suggests a
significant reduction in these performance metrics, which would indicate an effect of the
SS-SCE method. We set the confidence level for this test at 0.01, meaning a p-value less than
0.01 is required to reject the null hypothesis. Rejecting H0 would imply that the SS-SCE
method significantly impacts the performance of the model, whereas failing to reject H0
would suggest that the SS-SCE method can extract sentiment cues without substantially
compromising classification accuracy.

However, relying solely on this is not sufficient, as there could be special cases where
all values of Y are 1, leading to XY = X. To avoid this scenario, we also evaluate using RCT,
which is the proportion of sentiment cues extracted by SS-SCE relative to the original input.

To demonstrate the effectiveness and detailed impact of SS-SCE on sentiment classifica-
tion accuracy, including any performance loss, Table 3 offers a comprehensive comparison.
This table contrasts the performance metrics—accuracy, precision, recall, and F1 scores—for
the original input (X) and the input with extracted sentiment cues (XY), across various
datasets. It quantifies the performance loss incurred using XY as input and includes RCT
to indicate the proportion of sentiment cues identified. Additionally, the table details the
results of the t-test, providing statistical insight into the significance of the differences
observed between the performances of X and XY.

For the SST-2 dataset, compared to the original input X, the prediction results using
XY as input show a decrease across all major metrics, but the decrease is within 0.1, and
the p-value from the t-test is greater than 0.01. This indicates that our SS-SCE method
effectively extracts the majority of sentiment cues from the SST-2 dataset, albeit with
some minor losses. The Ratio of Cue Tokens (RCT) is 0.1682, which means that tokens
identified as sentiment cues by SS-SCE constitute 16.82% of the total in the SST-2 test set.
This performance suggests that SS-SCE can extract sentiment cues without significantly
compromising the accuracy of sentiment classification.
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Table 3. This table displays accuracy, precision, recall, F1 scores, and performance loss for original (X)
versus cue-extracted (XY) inputs across SST-2, Yelp, IMDb, and ChnSentiCorp datasets. RCT values
and t-test results are also included to assess the extraction’s effectiveness.

SST-2 Yelp IMDb ChnSentiCorp

Metric X XY Loss X XY Loss X XY Loss X XY Loss

Accuracy 0.9300 0.8719 0.0585 0.9885 0.9748 0.0138 0.9328 0.8798 0.0531 0.9369 0.8367 0.1002
Precision 0.9379 0.9072 0.0307 0.9876 0.9723 0.0153 0.9305 0.8333 0.0971 0.9387 0.7940 0.1448

Recall 0.9182 0.8224 0.0958 0.9895 0.9776 0.0120 0.9359 0.9501 −0.014 0.9372 0.9174 0.0198
F1 0.9280 0.8627 0.0652 0.9886 0.9749 0.0136 0.9332 0.8879 0.0453 0.9380 0.8512 0.0867

RCT - 0.1682 - - 0.3795 - - 0.2858 - - 0.3148 -

pt-test >0.01 >0.01 <0.01 <0.01

For the Yelp dataset, the decline in metrics for XY is notably subtle, with all reductions
less than 0.02. Furthermore, the t-test results reveal no significant differences in metrics
between XY and X within this dataset. However, the relatively higher RCT indicates
that SS-SCE may employ a more lenient criterion when extracting sentiment cues on the
Yelp dataset.

Regarding the IMDb dataset, the results with XY as input show the highest decrease in
accuracy and precision among the three datasets, while the impact on recall is the opposite,
even surpassing the performance using X as input. This phenomenon could be attributed
to longer texts containing more distracting information, which our SS-SCE method is
adept at effectively filtering out. The relatively lower RCT value among the three datasets
corroborates this observation. Furthermore, the higher recall rate for XY suggests that
SS-SCE effectively extracts sentiment cues from X, improving the model’s ability to identify
relevant sentiment information. The p-value of the t-test being less than 0.01 indicates a
significant difference in the sentiment classification results between X and XY. Coupled
with the increase in recall, we consider this impact positive.

On the ChnSentiCorp dataset, the RCT is 0.3148, indicating that 31.48% of tokens in X
were extracted as sentiment cues. In this context, the loss in recall is minimal, only 0.0198,
suggesting that SS-SCE likely captures the majority of sentiment cues. However, compared
to the IMDb dataset, the performance metrics on ChnSentiCorp are noticeably poorer. This
indicates that our SS-SCE method may have certain limitations when processing Chinese
data. This could be due to BERT’s character-level processing of Chinese, whereas Chinese
semantics are typically conveyed at the word level. Therefore, during the sampling process,
words might be segmented into characters that fail to express complete semantics, thereby
affecting the model’s performance.

In summary, the experimental results prove that our SS-SCE method achieves good
results on English datasets, especially on datasets with longer text lengths, where the
extraction of sentiment cues is more effective. However, there are clear deficiencies in the
Chinese dataset. In future research, we will consider addressing the issues encountered in
the Chinese dataset.

5.4.3. Model Generalization Tests

To ascertain the adaptability and generalizability of our proposed method, we conduct
cross-testing on three English datasets. Specifically, this involves using the model trained on
each dataset to test the other two datasets. Additionally, we combine the datasets generated
by the SS-SCE method from all three datasets to train a single sentiment cue extraction
model, which is then tested on all three datasets.

Additionally, we merge the datasets sampled from the three English datasets to train
collectively and conduct tests on each dataset individually. For the amalgamated dataset,
we use the term “combined” to denote it.

In the cross-testing, we continue to use the same evaluation metrics as those presented
in Table 3. It is noted that we use subscripts to denote the training dataset of the sentiment
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extraction model. For example, XY
SST-2 represents the XY generated by the sentiment cue

extraction model trained on the SST-2 dataset.
As shown in Table 4, when models trained on Yelp and IMDb datasets are tested on

SST-2, they show a notable performance decline, particularly in accuracy and recall. The
most pronounced drop is observed in the model trained on IMDb, with a 16.97% decrease
in accuracy. This can be attributed to the disparity in text length and complexity between
IMDb and SST-2 datasets. Although the precision of the IMDb-trained model remained
relatively stable, indicating a consistent ability to identify true positives, the substantial
decrease in recall, especially for this model, suggests challenges in capturing the full range
of sentiment cues in shorter SST-2 texts.

Moreover, the recall of XY
combined shows an improvement, indicating that the incorpo-

ration of Yelp and IMDb enhances the ability to extract sentiment cues. However, this
integration also introduces additional information, which adversely affects the accuracy
and precision of the model.

Table 4. This table shows the test results on the SST-2 dataset for models trained on SST-2, Yelp,
IMDb, and the combined dataset.

Metric X XY
SST-2 lossSST-2 XY

Yelp lossYelp XY
IMDb lossIMDb XY

combined losscombined

Accuracy 0.9300 0.8716 0.0585 0.8234 0.1067 0.7603 0.1697 0.8039 0.1261
Precision 0.9379 0.9072 0.0307 0.8549 0.0830 0.9195 0.0184 0.7495 0.1884

Recall 0.9182 0.8224 0.0958 0.7710 0.1472 0.5607 0.3575 0.9234 -0.005
F1 0.9280 0.8627 0.0652 0.8108 0.1172 0.6967 0.2313 0.8274 0.1006

RCT - 0.1682 - 0.1256 - 0.1012 - 0.1489 -

In Table 5, the adaptability of the models to the Yelp dataset is more promising. The
decrease in accuracy and the F1 score is less severe compared to their performance in the
SST-2 dataset. This implies that the models are better equipped to handle the moderate text
lengths and complexity of Yelp reviews. However, the performance of the model trained on
the IMDb dataset is significantly poorer, especially in terms of recall. Similarly, the model
trained on the combined dataset also experiences some degree of performance degradation,
which may be attributed to the influence of the IMDb dataset.

Table 5. This table shows the test results on the Yelp dataset for models trained on SST-2, Yelp, IMDb,
and the combined dataset.

Metric X XY
SST-2 lossSST-2 XY

Yelp lossYelp XY
IMDb lossIMDb XY

combined losscombined

Accuracy 0.9885 0.9650 0.0235 0.9748 0.0138 0.9260 0.0625 0.9655 0.0230
Precision 0.9876 0.9722 0.0154 0.9723 0.0153 0.9853 0.0023 0.9626 0.0250

Recall 0.9895 0.9577 0.0319 0.9776 0.0120 0.8655 0.1240 0.9484 0.0411
F1 0.9886 0.9649 0.0237 0.9749 0.0136 0.9215 0.0670 0.9554 0.0332

RCT - 0.1397 - 0.3795 - 0.2698 - 0.2773 -

Table 6 indicates that models trained on shorter text datasets, such as SST-2 and Yelp,
also perform effectively on the IMDb dataset, positively influencing accuracy. However,
there is a negative impact on recall. This suggests that while the models retain their ability
to correctly identify true positives in the context of longer texts, their capacity to capture
the full range of sentiment cues across the broader dataset is somewhat diminished.

These results indicate that while models trained on shorter texts, such as SST-2, exhibit
relatively better generalization capabilities across datasets, models trained on datasets
with longer texts, such as IMDb, show limited adaptability to shorter texts. Additionally,
when conducting cross-dataset experiments, training on a combination of multiple datasets,
although generally not outperforming training on their own respective datasets, tends to
yield better results than training on any single, different dataset. This implies that when
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extending SS-SCE to new data, considering training across multiple similar datasets could
enhance model performance. This strategy may leverage the diverse characteristics of each
dataset to build a more robust and adaptable model.

Table 6. This table shows the test results on the IMDb dataset for models trained on SST-2, Yelp,
IMDb, and the combined dataset.

Metric X XY
SST-2 lossSST-2 XY

Yelp lossYelp XY
IMDb lossIMDb XY

combined losscombined

Accuracy 0.9328 0.8925 0.0403 0.8709 0.0620 0.8798 0.0531 0.8934 0.0394
Precision 0.9305 0.9205 0.0099 0.8564 0.0761 0.8333 0.0971 0.9327 −0.0020

Recall 0.9359 0.8598 0.0762 0.8918 0.0441 0.9501 −0.014 0.8474 0.0921
F1 0.9332 0.8891 0.0441 0.8737 0.0594 0.8879 0.0453 0.8880 0.0452

RCT - 0.1153 - 0.1186 - 0.2858 - 0.2478 -

5.5. Case Study: Comparing SS-SCE with Established Interpretability Methods

To evaluate the unique contributions and effectiveness of SS-SCE, we perform a com-
parative analysis with established interpretability methods in text classification, including
LIME [5], LIG [43], OCC [44], SVS [45], and LDS [46].

For this comparison, we use the Thermostat tool (https://github.com/DFKI-NLP/
thermostat (accessed on 19 March 2024)) [47], which integrates state-of-the-art interpretabil-
ity methods, offering a unified platform for analysis. This tool allowed us to apply these
methods in a standardized way, ensuring a fair and consistent comparison between differ-
ent interpretability approaches.

Our analysis aimed not to compare SS-SCE directly with these methods, but to show-
case how SS-SCE’s focused approach on sentiment cues provides a different, potentially
more nuanced perspective in understanding model decisions, especially in the context of
sentiment analysis.

Using Thermostat, we applied interpretability models trained on various datasets,
such as IMDb with pre-trained language models such as BERT and ALBERT [48]. For a fair
comparison, we chose the interpretability model trained with BERT on the IMDb dataset. To
facilitate a comparison with SOTA methods, we manually annotated two selected instances,
a positive and a negative, from the IMDb test set. We then calculated the precision, recall,
and F1 score for each method’s sentiment cue extraction on these annotated instances. The
results of this comparative analysis are presented in Tables 7 and 8.

Table 7 shows that the SS-SCE models, particularly SS-SCESST-2, demonstrate superior
performance in extracting sentiment cues from the positive text instance when compared
with SOTA interpretability methods, SS-SCESST-2 achieved the highest precision of 0.7778,
recall of 0.8235, and F1 score of 0.8000, indicating a robust capability in accurately identify-
ing and recalling relevant sentiment cues.

The SS-SCE models trained on Yelp and IMDb datasets showed varying degrees of
effectiveness, with SS-SCEYelp displaying moderate performance and SS-SCEIMDb, showing
decent accuracy but lower effectiveness compared to SS-SCESST-2. This variation suggests
the influence of training data characteristics on the model’s performance.

In contrast, the standard interpretability methods, while useful in their own right,
exhibited lower performance metrics in comparison. LIME, LIG, OCC, SVS, and LDS
demonstrated lower precision, recall, and F1 scores, indicating a potential limitation in
their ability to capture the nuanced sentiment cues as effectively as the SS-SCE approach.

Table 8 presents the performance of different interpretability methods in extracting
sentiment cues from the negative text instance. The results indicate that the SS-SCE models,
particularly SS-SCEIMDb and SS-SCESST−2, perform effectively in this context, albeit with
some variations in precision and recall.

https://github.com/DFKI-NLP/thermostat
https://github.com/DFKI-NLP/thermostat
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Table 7. This table shows the performance comparison of our Self-Supervised Sentiment Cue Extraction
(SS-SCE) model trained on three datasets with SOTA interpretability methods on a positive instance.

Method Result Precision Recall F1

human
This is a great horror movie. Great plot. And a person with a fear of midgets will
definately love the evil midget! This is a must see for any horror fan. Finally a
lower budget movie with decent effects and a great cast! Highly recommended.

- - -

SS-SCESST-2

This is a great horror movie. Great plot. And a person with a fear of midgets will
definately love the evil midget! This is a must see for any horror fan. Finally a
lower budget movie with decent effects and a great cast! Highly recommended.

0.7778 0.8235 0.8000

SS-SCEYelp

This is a great horror movie. Great plot. And a person with a fear of midgets will
definately love the evil midget! This is a must see for any horror fan. Finally a
lower budget movie with decent effects and a great cast! Highly recommended.

0.5556 0.6250 0.5882

SS-SCEIMDb

This is a great horror movie. Great plot. And a person with a fear of midgets will
definately love the evil midget! This is a must see for any horror fan. Finally a
lower budget movie with decent effects and a great cast! Highly recommended.

0.6154 0.4706 0.5333

LIME
This is a great horror movie. Great plot. And a person with a fear of midgets will
definately love the evil midget! This is a must see for any horror fan. Finally a
lower budget movie with decent effects and a great cast! Highly recommended.

0.4286 0.3529 0.3871

LIG
This is a great horror movie. Great plot. And a person with a fear of midgets will
definately love the evil midget! This is a must see for any horror fan. Finally a
lower budget movie with decent effects and a great cast! Highly recommended.

0.5000 0.5294 0.5143

OCC
This is a great horror movie. Great plot. And a person with a fear of midgets will
definately love the evil midget! This is a must see for any horror fan. Finally a
lower budget movie with decent effects and a great cast! Highly recommended.

0.3600 0.5294 0.4286

SVS
This is a great horror movie. Great plot. And a person with a fear of midgets will
definately love the evil midget! This is a must see for any horror fan. Finally a
lower budget movie with decent effects and a great cast! Highly recommended.

0.4545 0.5882 0.5128

LDS
This is a great horror movie. Great plot. And a person with a fear of midgets will
definately love the evil midget! This is a must see for any horror fan. Finally a
lower budget movie with decent effects and a great cast! Highly recommended.

0.4118 0.4118 0.4118

The bold tokens represent the extracted sentiment cues.

SS-SCEIMDb achieved the highest precision (0.8571), reflecting its strong ability to
accurately identify relevant negative sentiment cues. However, its recall (0.3750) is relatively
lower, suggesting that, while it is precise, it may miss some relevant cues. Conversely,
SS-SCESST−2, with a recall of 0.5000, demonstrates a balanced performance with a precision
of 0.5714 and an F1 score of 0.5333. This balance indicates its ability to capture a broader
range of relevant cues while maintaining accuracy.

SS-SCEYelp, despite having the highest precision (0.8333), shows a lower recall (0.3125),
indicating a tendency to be very selective in cue extraction, which may lead to missing
some pertinent sentiment indicators.

In comparison, traditional interpretability methods show lower performance in both
precision and recall. LIME and LDS, in particular, demonstrate limited effectiveness in
accurately identifying negative sentiment cues. The lower performance of these methods
may be attributed to their design, which might not be as fine-tuned for sentiment cue
extraction as the SS-SCE approach.

Overall, the comparative analysis of sentiment cue extraction presented in
Tables 7 and 8 demonstrates the robustness and versatility of the SS-SCE models across
both positive and negative text instances. The SS-SCE models, especially SS-SCESST−2,
consistently exhibit a balanced performance in terms of precision and recall, highlighting
their ability to accurately and comprehensively extract sentiment cues. This is particularly
evident in SS-SCESST−2, which shows strong performance in both positive and negative
contexts. While SS-SCEIMDb and SS-SCEYelp demonstrate higher precision in specific in-
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stances, they sometimes compromise on recall, indicating a more selective extraction of
cues. In comparison to the SOTA interpretability methods, the SS-SCE approach stands out
for its enhanced capability to identify both explicit and subtle sentiment indicators.

Table 8. This table shows the performance comparison of our Self-Supervised Sentiment Cue
Extraction (SS-SCE) model trained on three datasets with SOTA interpretability methods on
a negative instance.

Method Result Precision Recall F1

human

Unfortunately, this movie is absolutely terrible. It’s not even laughably bad,
just plain bad. The actors do their best with what is the cheesiest script ever.
How scary can a movie be when the climax actually involves a roomful of mil-
lions of styrofoam peanuts?

- - -

SS-SCESST-2

Unfortunately, this movie is absolutely terrible. It’s not even laughably bad, just
plain bad. The actors do their best with what is the cheesiest script ever. How
scary can a movie be when the climax actually involves a roomful of millions of
styrofoam peanuts?

0.5714 0.5000 0.5333

SS-SCEYelp

Unfortunately, this movie is absolutely terrible. It’s not even laughably bad, just
plain bad. The actors do their best with what is the cheesiest script ever. How
scary can a movie be when the climax actually involves a roomful of millions of
styrofoam peanuts?

0.8333 0.3125 0.4545

SS-SCEIMDb

Unfortunately, this movie is absolutely terrible. It’s not even laughably bad,
just plain bad. The actors do their best with what is the cheesiest script ever.
How scary can a movie be when the climax actually involves a roomful of mil-
lions of styrofoam peanuts?

0.8571 0.3750 0.5217

LIME

Unfortunately, this movie is absolutely terrible. It’s not even laughably bad,
just plain bad. The actors do their best with what is the cheesiest script ever.
How scary can a movie be when the climax actually involves a roomful of
millions of styrofoam peanuts?

0.3125 0.3125 0.3125

LIG

Unfortunately, this movie is absolutely terrible. It’s not even laughably bad,
just plain bad. The actors do their best with what is the cheesiest script ever.
How scary can a movie be when the climax actually involves a roomful of mil-
lions of styrofoam peanuts?

0.5455 0.3750 0.4444

OCC

Unfortunately, this movie is absolutely terrible. It’s not even laughably bad, just
plain bad. The actors do their best with what is the cheesiest script ever. How
scary can a movie be when the climax actually involves a roomful of millions of
styrofoam peanuts?

0.2857 0.1250 0.1739

SVS

Unfortunately, this movie is absolutely terrible. It’s not even laughably bad,
just plain bad. The actors do their best with what is the cheesiest script ever.
How scary can a movie be when the climax actually involves a roomful of mil-
lions of styrofoam peanuts?

0.8571 0.3750 0.5217

LDS

Unfortunately, this movie is absolutely terrible. It’s not even laughably bad, just
plain bad. The actors do their best with what is the cheesiest script ever. How
scary can a movie be when the climax actually involves a roomful of millions of
styrofoam peanuts?

0.5000 0.2500 0.3333

The bold tokens represent the extracted sentiment cues.

Simultaneously, it is important to note that our approach represents a global inter-
pretability method, which significantly outperforms traditional techniques in terms of
efficiency when applied to new data. This global perspective enables a comprehensive un-
derstanding of the model’s decision-making process across various datasets and scenarios,
rather than focusing on individual instances.

5.6. Ablation Study on MSIS

To validate the effectiveness and contribution of each component within the MSIS, we
conduct an ablation study. This study systematically examines how the removal or alter-
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ation of each MSIS component affects the overall performance of our SS-SCE framework.
The components of MSIS are as follows.

Probability Discrepancy (PD): This component, denoted as ∆PY, assesses the clarity
of sentiment cues within the candidate sequence. It ensures that elements marked with
1 in the candidate sequence effectively contribute to the sentiment classification model’s
decision-making process.

Inverse Probability Discrepancy (IPD): Represented as ∆PȲ, it evaluates the absence
of sentiment cues within the inverse attention mask Ȳ.This ensures elements marked with 0
in Y do not contribute significantly to sentiment interpretation, emphasizing the specificity
of extracted cues.

Ratio of Cue Tokens (RCT): This component aims to minimize the inclusion of
irrelevant tokens in the candidate sequence, promoting a concise extraction of sentiment
cues. It is calculated as the proportion of 1s in Yc, with a higher RCT indicating a more
focused extraction of sentiment cues.

The results of our ablation study are summarized in Tables 9–12 . Each row represents
a variant of the MSIS, indicating the presence (+) or absence (-) of each component. Per-
formance metrics include the accuracy, precision, recall, and F1 score of the sentiment cue
extraction under each variant.

Table 9. This table shows the ablation study results for Mask Sequence Interpretation Score (MSIS)
components of SST-2 dataset.

PD IPD RCT Accuracy Precision Recall F1 RCT

+ + + 0.8716 0.9072 0.8224 0.8627 0.1682
- + + 0.7879 0.7595 0.8536 0.8038 0.1405
+ - + 0.7397 0.6764 0.9369 0.7856 0.0540
+ + - 0.8807 0.8586 0.9167 0.8867 0.5214

Table 10. This table shows the ablation study results for Mask Sequence Interpretation Score (MSIS)
components of Yelp dataset.

PD IPD RCT Accuracy Precision Recall F1 RCT

+ + + 0.9748 0.9723 0.9776 0.9749 0.3795
- + + 0.9635 0.9446 0.9844 0.9641 0.3928
+ - + 0.8395 0.7614 0.9869 0.8596 0.0181
+ + - 0.9838 0.9854 0.9819 0.9837 0.8910

Table 11. This table shows the ablation study results for Mask Sequence Interpretation Score (MSIS)
components of IMDb dataset.

PD IPD RCT Accuracy Precision Recall F1 RCT

+ + + 0.8798 0.8333 0.9501 0.8879 0.2858
- + + 0.8654 0.9529 0.7728 0.8535 0.1542
+ - + 0.6207 0.9586 0.2637 0.4136 0.0038
+ + - 0.9261 0.9176 0.9385 0.9279 0.8547

Table 12. This table shows the ablation study results for Mask Sequence Interpretation Score (MSIS)
components of ChnSentiCorp dataset.

PD IPD RCT Accuracy Precision Recall F1 RCT

+ + + 0.8367 0.7940 0.9174 0.8512 0.3148
- + + 0.8746 0.8444 0.9240 0.8824 0.5042
+ - + 0.6641 0.6392 0.7818 0.7033 0.0198
+ + - 0.9234 0.9227 0.9273 0.9250 0.8676
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As shown in Tables 9–12 , the ablation study systematically evaluates the contribution
of each component within the MSIS on the SST-2, Yelp, IMDb, and ChnSentiCorp datasets.
This study offers a nuanced understanding of how each element influences the framework’s
ability to extract and utilize sentiment cues.

Removing the PD component results in performance degradation across most metrics,
particularly evident in the reduction of precision and the F1 score. This suggests that PD
is crucial for identifying clear sentiment cues within the text, ensuring that the elements
marked as sentiment cues in the candidate sequence contribute effectively to the decision-
making process of the sentiment classification model. However, on the Chinese dataset,
the performance after removing the PD component is slightly better than the overall
performance with the complete MSIS. This may be attributed to the fact that the Chinese
language processes characters as the smallest units, rather than words. It is important to
note that while the removal of PD results in a decrease in RCT by 0.1894, the F1 score only
drops by 0.0312, illustrating the effectiveness of our method.

The absence of the IPD leads to a significant decrease in recall and a noticeable drop
in the RCT, indicating a diminished ability to exclude non-sentiment-related tokens from
being marked as sentiment cues. This highlights the IPD’s role in refining the specificity of
extracted cues by ensuring that elements marked with 0 in Y do not significantly contribute
to sentiment interpretation.

Removing RCT results in an improvement in sentiment classification performance but
at the cost of a substantial increase in RCT. This implies that while the RCT component
restricts the inclusion of irrelevant tokens in the candidate sequence, its absence leads to a
wider selection of tokens as sentiment cues, including potentially irrelevant ones.

In summary, each component of the MSIS plays a vital role in the sentiment cue extrac-
tion process. PD ensures the clarity and relevance of cues, IPD enhances the specificity of
cue extraction, and RCT promotes conciseness and focus. The ablation study demonstrates
the delicate balance between these components, underscoring their collective contribution
to the effectiveness of the SS-SCE framework.

6. Conclusions

In conclusion, our research introduces a novel self-supervised framework for senti-
ment cue extraction that significantly improves the interpretability of sentiment analysis
models. Through meticulous identification and extraction of key linguistic elements that
influence sentiment determination, our approach demystifies the decision-making pro-
cess of sentiment analysis models, thereby fostering greater trust and understanding in
these systems.

Our innovative use of Monte Carlo Sampling for efficient cue identification and
the development of the Mask Sequence Interpretation Score (MSIS) metric to evaluate
the extraction of sentiment cues represent substantial advances in the field of sentiment
analysis. Importantly, our methodology extends beyond traditional local interpretability
techniques, providing a global interpretability approach that enhances understanding
across various instances and datasets. The application of our method in diverse datasets,
such as SST-2, Yelp, IMDb, and ChnSentiCorp, demonstrates its effectiveness in extracting
pertinent sentiment cues.

However, our study is not without its limitations. The computational demands of our
approach, especially in handling longer texts, highlight the need for further optimization
to enhance efficiency without sacrificing accuracy. Additionally, while our method shows
promising results in extracting sentiment cues, the performance variability across different
text lengths and complexities suggests room for improvement in the generalizability and
adaptability of the model. Furthermore, when processing Chinese data, our method
faces additional challenges. This is partly due to BERT’s character-level processing of
Chinese, whereas Chinese semantics are more accurately represented at the word level.
Consequently, during sampling, words may be segmented into characters that fail to
convey full semantics, affecting the model’s performance. This aspect highlights the
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importance of tailoring our approach to better accommodate the linguistic characteristics
of Chinese, suggesting a direction for future research to improve the method’s applicability
and effectiveness in handling Chinese texts.

Looking forward, we see several avenues for future research. Enhancing the computa-
tional efficiency of our Monte Carlo Sampling process and exploring alternative sampling
techniques could address current limitations in processing longer texts. Further refine-
ment of the MSIS metric to better balance accuracy and interpretability could also produce
improvements in sentiment cue extraction. Moreover, extending our framework to incor-
porate multimodal data (text, images, and videos) could offer a more holistic approach
to sentiment analysis, reflecting the multifaceted nature of sentiment expression across
various media. Then, addressing the specific challenges of processing Chinese data, such
as adapting our approach to better capture the word-level semantics often lost in character-
level processing, also constitutes a critical area for future exploration. This would not only
improve the model’s performance on Chinese texts but also enhance its applicability and
effectiveness across linguistically diverse datasets.

Ultimately, our work contributes to the ongoing efforts to bridge the gap between
advanced sentiment analysis techniques and their interpretability, aiming to create more
transparent, reliable, and user-friendly NLP models. By emphasizing global interpretability,
our approach offers a scalable and comprehensive solution for understanding complex
sentiment analysis models. By continuing to refine and expand upon the foundations laid
by this study, we anticipate contributing to the development of sentiment analysis models
that are not only highly accurate but also thoroughly interpretable, ensuring their ethical
and effective application in sensitive domains.
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