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Abstract: In this paper, a novel single-phase double-leaf multi-stage acoustic black hole (SDM-ABH)
is proposed. Compared with the traditional double-leaf ABH metamaterials, the unit cell consists
of multiple sub-ABH structures arranged in a gradient periodically along the length direction. The
energy band structure of the SDM-ABH metamaterial is calculated by the finite element method, and
it is found that its weight decreases with the increase in the number of stages, but the bandgap ratio
and attenuation both increase. By analysing the vibration modes at special points and the vibration
displacement response of finite construction, it is revealed that strong attenuation at a low-frequency
broadband is caused by the increase in the number of sub-ABHs that appear to have ABH effects due
to the increase in the number of stages. In addition, the effect of structural parameters on the bandgap
is investigated, and it is found that SDM-ABH metamaterials can be modulated at low frequencies
by changing the truncation thickness and the power exponent of the sub-acoustic black hole, in
which the increase in the truncation thickness t leads to the gradual weakening of the ABH effect
of the sub-ABH until it disappears. The strong low-frequency attenuation properties of SDM-ABH
metamaterials provide a method for a lightweight vibration damping design of metamaterials.

Keywords: acoustic black hole; multi-stage; metamaterial

1. Introduction

Metamaterials are composed of periodically arranged artificial cells, which can effec-
tively improve the coupling between unit cells and waves, thus controlling and dissipating
low-frequency energy [1]. In vibration and noise reduction [2], energy recovery [3], and
fluctuation regulation [4], metamaterials show a broad prospect. In recent years, designing
novel lightweight unit cells to achieve low-frequency broadband is one of the current
research hotspots of metamaterials in engineering applications [5].

Acoustic black hole (ABH) refers to the use of power-law variation in geometric thick-
ness or material parameters of thin-walled structures, which can achieve the convergence
effect on elastic waves and reduce the wave speed to 0 when the geometric thickness of the
tip is 0 [6–8]. Krylov applied the ABH structure to beams and found that the ABH thickness
variation can gather the elastic wave energy at the tip and achieve the vibration suppression
of elastic waves [9,10]. O’Boy investigated the attenuation of elastic fluctuations in ABH
plate structures and achieved a significant reduction in vibration amplitude by increasing
the power exponent and adding a small amount of damping material [11]. Zhao embedded
the ABH structure into a thin-walled structure and observed the attenuation of broadband
vibrations in the high-frequency range above the cut-off frequency [12]. Conventional ABH
structures can only achieve vibration attenuation at high frequencies above the cut-off
frequency. Tang arranged the ABH structures periodically to form a one-dimensional ABH
metamaterial, and based on the wavelet-decomposed energy method, he demonstrated
the existence of a local resonance bandgap in the ABH metamaterial structure above the
cut-off frequency caused by the ABH effect [13]. Subsequently, Tang proposed a double-leaf
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ABH metamaterial to increase structural stiffness, and coupling of the local resonance and
the Bragg scattering effect achieved the broadening of the bandgap at mid-frequency and
high-frequency [14].

To further reduce the bandgap of the ABH metamaterial structure, Gao proposed a
composite double-leaf ABH metamaterial by introducing ethylene vinyl acetate material
into the ABH unit-cell uniform beams, which opens up the bandgap in the low-frequency
range of 179–317 Hz [15]. Lyu applied multi-materials to ABH metamaterial unit cells to
open a band gap with a bandwidth of 96 Hz in a low-frequency range [16]. Deng attached
a periodic local resonator to the ABH plate to construct ABH metamaterials, which can
generate a bandgap of 48–52 Hz in the low-frequency range by controlling resonators [17].
Although ABH metamaterials achieve a low-frequency bandgap below the cut-off fre-
quency, the bandgap width is narrow. Ji achieved low-frequency bandgap broadening
by embedding multiple ABHs in a two-dimensional ABH metamaterial plate, with an
in-bandgap attenuation effect of up to 50 dB [18]. Sheng attached several different ABH
dynamic vibration absorbers to the Euler–Bernoulli beam, which achieved the broadband
suppression of low-frequency vibration by combining with the mistuning effect, with an
attenuation bandwidth percentage of 0.587 below 1000 Hz [19]. However, by attaching
a number of ABHs to the structure, the width of the attenuation band and attenuation
depends on the number of ABH structures. Sheng designed an ABH metamaterial based
on 3D printing with simultaneous double power-law variations in geometric thickness
and material to widen the low-frequency bandgap to 287 Hz [20]. He proposed to embed
ABH cells into intercalated beams to form multiphase metamaterials, which form a wide
frequency band gap below 400 Hz [21]. While the use of multi-material ABH metamaterials
can widen the low-frequency bandgap, the increase in the number of combined interfaces
makes it difficult to process and limits its application.

Unit cells of multi-stage metamaterials typically comprise several resonators, which
can generate multiple bandgaps, reduce the bandgap width, and widen it [22]. Huang
investigated the multi-stage spring-mass model and discovered that adjusting the structural
parameters of the resonator can generate bandgaps in various frequency ranges [23]. Song
proposed a two-dimensional multi-stage Hilbert fractal metamaterial. The unit cell internal
resonator has similar properties that can stimulate multiple resonances, resulting in a
bandgap broadened to 225–1175 Hz [24]. Li proposed a one-dimensional multi-stage
metamaterial shaft that achieves low-frequency bandgap broadening while reducing weight
compared to a single-stage metamaterial shaft [25]. Gorshkov conducted a study on three-
dimensional discretised multi-stage metamaterial energy band structures. The results
showed that increasing stages of the structure can result in an increase in the quantity of
unit cell degrees of freedom, which in turn results in a wider band gap [26].

This paper proposes a single-phase double-leaf multi-stage acoustic black hole (SDM-
ABH) metamaterial with low-frequency ultra-wide bandgap properties and light weight.
The unit cell consists of multiple sub-ABH structures arranged in a multi-stage gradient
arrangement. The structure of the paper is as follows: Part II investigates an SDM-ABH
metamaterial model and a method for calculating the complex energy bands. Part III
calculates the complex energy band structure, eigenmodes, and vibrational displacement
response of SDM-ABH metamaterials. It also discusses the mechanism of the strong
attenuation of the low-frequency broadband generation. Part IV investigates the effect of
parameters of structure on the band gap mechanism. Part V discusses the effect of stages
on the trap region. The paper concludes with a summary of the findings.

2. Materials and Methods
2.1. Structural Model

The unit cell of the SDM-ABH metamaterial presented in this paper is shown in
Figure 1a, with the lattice constant a = 140 mm and the height H = 16 mm. The 1/4
structure of the single cell of the SDM-ABH metamaterial is shown in Figure 1b, in which
the uniform beam region length is l0 = 20 mm. The ABH region is composed of the N-stage



Appl. Sci. 2024, 14, 2875 3 of 18

ABH composite structure periodically arranged along the x-direction, and the Nth stage
consists of N identical sub-ABHs arranged periodically along the y-direction, where the
structural dimensions of the sub-ABHs are shown in Figure 1c, with length lN = 50/N and
truncated thickness tN = 0.5/N. The variation in the thickness of the sub-ABHs satisfies
the following relationship:

hN(x) = εlN
m + tN(m ≥ 2) (1)

where the constant scale factor ε = 0.003N and the rational power exponent m = 2.
The design and implementation of a functionally graded acoustic black hole based on
metal additive manufacturing [20]. The SDM-ABH metamaterial also uses this manufac-
turing method, wherein the material is steel and the parameters are Young’s modulus
E = 2.05 × 1011 Pa, density ρ = 7850 kg/m3, and Poisson’s ratio v = 0.28.
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Figure 1. (a) SDM-ABH unit cell. (b) Enlarged view of 1/4 unit cell. (c) Sub-ABH. 
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2.2. Calculation of the Complex Energy Band

Complex energy bands can express the behaviour of evanescent waves that exist due
to phenomena such as scattering and diffraction at the interface of metamaterials [27,28].
In this paper, the complex energy bands are calculated based on the partial differential
equation module in the form of coefficients of Comsol 6.0 finite element software to explain
the propagation behaviours of propagatable and evanescent waves [29,30]. The SDM-
ABH metamaterial model proposed in this paper satisfies the isotropic, linear elastic, and
homogeneous medium conditions and also satisfies the source term and undamped passive
conditions, and therefore, the Bloch fluctuation equation is [31]:

∇·[C(r) : ∇u] = ρ(r)
∂2u
∂t2 (2)

In Equation (2), C(r) represents the material elasticity tensor, ρ(r) represents the
mass density tensor, r = (x, y) represents the position vector, u =

(
ux, uy

)
represents

the displacement vector, : represents the double-point product, and t represents the time
variable. The partial differential modular control equation in coefficient form is [29]:

∧2eaU −∧daU +∇·(−c∇U − αU + γ) + β·∇U + bU = f (3)

In Equation (3), ∧ represents the eigenvalue, ea represents the mass term, da represents
the damping term, ∇ represents the differential operator, c represents the diffusion term,
α represents the conserved flux convective term, γ represents the conserved flux source
term, β represents the convective term, b represents the absorbing term, f represents the
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source term, and U represents the eigenmode. Due to the periodicity of the metamaterial
structures, by Bloch’s theorem of waves in structures, the outer boundaries of unit cells and
wave fields are as follows:

ψ(r) = ei(k·r)ψk(r) (4)

U(r + a) = ei(k·a)U(r) (5)

In Equations (4) and (5), k represents the wave vector, a represents the unit cell
lattice constant, ψk(r) represents the periodic function, and U(r) represents the eigenmode.
Substituting Bloch theory Equations (4) and (5) into Equation (1) leads to [32]:

(∇+ ik)·
[
C : (∇+ ik)

⊗
uk(r)

]
= ρ(r)

∂2uk(r)
∂t2 (6)

For a unit cell composed of isotropic materials, simple harmonic vibrations are consid-
ered to obtain [33]:

(∇+ ik)·µ(r)(∇+ ik)ulk(r) + (∇+ ik)·[µ(r)(∇+ ik)luk(r)]
+(∇+ ik)lλ(r)(∇+ ik)·uk(r) = −ρ(r)ω2ulk(r), l = x, y

(7)

A partial differential module is used to solve for the mixed-mode energy band structure
with wave numbers as eigenvalues, whose eigenvalues are taken as ∧ = −ik, and then ea,
c, α, β, and b in Equation (3) are solved for the following, respectively:

ea =

[
−(λ + 2µ) 0

0 −µ

]
(8)

c =


[
(λ + 2µ) 0

0 µ

] [
0 λ
µ 0

]
[

0 µ
λ 0

] [
(λ + 2µ) 0

0 (λ + 2µ)

]
 (9)

α =


[
(λ + 2µ)∧

0

] [
0

µ∧

]
[

0
λ∧

] [
µ∧
0

]
 (10)

β =

[(
−(λ + 2µ)∧ 0

) (
0 −λ∧

)(
0 −µ∧

) (
−µ∧ 0

)] (11)

b =

[
−ρω2 0

0 −ρω2

]
(12)

In Equations (8)–(12), according to the steel material properties, λ is the first Lamey
constant, which takes the value of 102 GPa, and µ is the second Lamey constant, which
takes the value of 80 GPa. In the finite element analysis, the maximum mesh unit size
is 0.0014, which is much smaller than one tenth of the elastic wave length, in order to
ensure the correctness of the simulation. Sweeping ω in the range of 0–2000 Hz results in
a complex wave vector k, which is referred to in this way as k(ω). The real wave vector
and frequency represent the dispersion relationship of the real part of the complex energy
band, and the negative wave vector and frequency represent the attenuation properties of
evanescent wave (non-propagating) in the imaginary part of the complex energy band [34].

3. Calculation Results and Discussion
3.1. Complex Energy Band Structure and Vibration Modes

The partial differential equation module of the coefficient form of the finite element
software is calculated. In theory, due to the complexity of the calculation, the material
model satisfies the finite conditions such as the isotropy, linear elasticity, and homogeneity
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of media in order to simplify the calculation. However, these conditions are usually not
satisfied for real materials. Therefore, the further influence of these conditions on material
properties should be further analysed in practical engineering applications. The complex
energy band structures of the SDM-ABH are shown in Figure 2a–c when N = 1, 2, and
3, respectively.
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Figure 2. Complex energy band structure. (a) N = 1, i.e., single-phase double-leaf one-stage acoustic
black hole (SD1-ABH) metamaterial. (b) N = 2, i.e., single-phase double-leaf two-stage acoustic black
hole (SD2-ABH) metamaterial. (c) N = 3, i.e., single-phase double-leaf three-stage acoustic black
hole (SD3-ABH) metamaterial. Red represents flexural wave dispersion curves and blue represents
longitudinal wave dispersion curves.

Observing the complex energy band structure of the SD1-ABH metamaterial in
Figure 2a, it is found that there are three dispersion curves in the real part of the complex en-
ergy band in the range of 0–2000 Hz, and only one flexural wave bandgap (243 Hz–672 Hz)
is generated, with a generalised width of ( fcut − fst)/ fst = 1.765 [35], and the bandgap
percentage is 21%. For studying the band gap formation mechanism of SD1-ABH meta-
materials, the special point vibration modes of the real part of the curve in the complex
energy band are calculated, as shown in Figure 3. Observing Figure 3, it is found that the
vibrational modes at point A1 (243 Hz) of the initial frequency of the first flexural wave are
concentrated in the uniform beams on two sides of the cell and the non-tip area of the first
stage ABH, and the whole region presents local antisymmetric flexural vibration, and at this
time, the first bandgap is opened. The vibrational modes at point B1 (672 Hz) at the cut-off
frequency of the bandgap of the first flexural wave presents local torsional vibrational
modes, and the Bloch wave in the periodic structure couples to the local resonance modes
making the energy localised in the ABH mid-region, which hinders the propagation of the
elastic wave; in addition, the two sides of the structure show torsional vibration modes with
smaller displacements, which is due to the complex multiple elastic scattering phenomenon
of the wave in the structure that starts to show between the periodic structures [36]. Obser-
vation of the imaginary part of the complex energy band in Figure 2a reveals the existence
of an asymmetric semicircular arc with smooth frequency variation starting at 0 Hz, which
is a typical feature of the coupling of local resonance and Bragg scattering [37]. Thus, the
first flexural wave band gap of the SD1-ABH metamaterial is generated by the coupling
of local resonance and Bragg scattering. In addition, there is a part of semicircular arc in
the imaginary part of the complex energy band exists outside the bandgap, which belongs
to the non-zero order diffraction wave. At the same time, the evanescent wave of swift to
propagatable wave is realised at the cut-off frequency B1 point [29].
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of SD1-ABH metamaterial, where the direction and length of each arrow indicate the direction and
magnitude of the displacement of the medium at the starting point of the arrow, respectively.

The structure is SD2-ABH metamaterial when N = 2, and the complex energy band
structure is shown in Figure 2b. Observing the real part of the complex energy band in
Figure 2b, it is found that there are six dispersion curves below 2000 Hz, forming three
flexural bandgaps as well as one longitudinal bandgap. Among them are the following:
the first flexural wave bandgap (327–1061 Hz), with a generalised width of the bandgap is
γ = 2.245; the second flexural wave bandgap (1395–1553 Hz), with a generalised width
of γ = 0.113; the third flexural wave bandgap (1832–2000 Hz), with a generalised width
of γ = 0.092; and the first longitudinal wave bandgap (1238–1402 Hz), with a generalised
width of γ = 0.132. At this time, in the 0–2000 Hz range, the percentage of SD2-ABH
metamaterials in the bandgap is increased to 60.9%, while their weights are 10% lighter
than those of SD1-ABH metamaterials. For analysing the formation mechanism of the
SD2-ABH metamaterial bandgap, the vibrational modes at special points of the real part of
the curve in the complex energy band of Figure 2 are calculated, as shown in Figure 4. It is
found that the vibrational modes at the point A2 (327 Hz), the initial frequency of the first
flexural wave bandgap, also present local antisymmetric flexural modes, and it is found
that the vibrational modes at the point B2 (1061 Hz) at the cut-off frequency are mainly
concentrated in the non-tip region of the first-stage ABH, whereas all the sub-ABHs of the
second-stage show energy aggregation, which at this time presents the coupling of local
resonance modes and the ABH effect. Moreover, the torsional vibrational displacements
of the two sides of the unit cell are larger, and the complex multiple elastic scattering
phenomenon begins to intensify. Observing the imaginary part of the complex energy band
in Figure 2b, it is found that the semicircular arc of the imaginary part corresponding to the
first flexural wave bandgap still exhibits the typical shape characteristics of local resonance
and Bragg scattering coupling [37]. Thus, the first flexural wave bandgap of the SD2-ABH
metamaterials is generated by a complex coupling of ABH effect, local resonance, and
Bragg scattering. The vibration modes of the initial frequency point C2 (1395 Hz) and the
cut-off frequency point D2 (1553 Hz) of the second flexural wave bandgap are focused on
the whole region of the first-stage ABH of the cell, which show the local in-phase vibration
modes. In addition, the both unit cells of the C2 point also produce small torsional vibration,
showing multiple elastic scattering phenomena, so the second flexural wave bandgap also
indicates the typical properties of local resonance and Bragg scattering coupling [37]. For
the longitudinal wave bandgap starting and stopping frequencies for the points E2 (1238 Hz)
and F2 (1402 Hz), respectively, the vibrational modes are centrally distributed in the whole
region of the first-stage ABH of the single cell due to the compression of the two sides of
the single cell in the one-dimensional x-direction, which show local outward anti-phase
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vibration modes. Therefore, observing the imaginary part of the complex energy band in
Figure 2b, the evanescent wave attenuation region corresponding to the first longitudinal
wave bandgap shows a sharp tip shape, and the attenuation undergoes an abrupt change
process, which is characteristic of the local resonance mechanism [38].
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The structure is SD3-ABH metamaterial when N = 3, and the complex energy band
structure is shown in Figure 2c. Observing the real part of the complex energy band
in Figure 2c, there are three flexural wave bandgaps (346–1197 Hz, 1383–1584 Hz, and
1954–2000 Hz) and one longitudinal wave bandgap (1207–1386 Hz) in 0–2000 Hz. In this
situation, the bandgap percentage increases to 63.7% and the weight is reduced by 13%
compared with the SD1-ABH metamaterial. The vibration modes of special points in the
real part curve of the complex energy band in Figure 2c are calculated, as shown in Figure 5.
The vibration mode at the initial frequency A3 (346 Hz) of the first flexural bandgap also
presents a local resonance mode. At the cut-off frequency point B3 (1197 Hz), the vibration
mode is mainly distributed in the whole region of the second-stage ABH, and all the sub-
ABHs of the third-stage show an ABH effect. Observing the imaginary part of the complex
energy band in Figure 2c, the semicircular arc of the imaginary part corresponding to the
first flexural band gap also appears smooth and asymmetric. Therefore, the first flexural
wave band gap is also produced by the complex coupling of local resonance and Bragg
scattering and shows an ABH effect. The initial frequency point C3 (1383 Hz) and the cut-off
frequency point D3 (1584 Hz) of the second flexural band gap, the vibrational modes show a
“swing” vibration pattern dominated by the ABH area of the first stage. And the imaginary
part of the complex energy band of the second flexural band gap in Figure 2c is also smooth
and asymmetric [37], and it is the coupling mechanism of the local resonance and the Bragg
scattering. The E3 (1207 Hz) and F3 (1386 Hz) vibration modes at the starting and stopping
frequency points of the first longitudinal wave bandgap show local inward inverted-phase
vibration modes due to the stretching of the single cell in the one-dimensional x-direction,
which are characteristic of the local resonance mechanism [39].
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Further, by comparing the size of the semicircular arc of the imaginary part of the
complex energy band in Figure 2a–c, it is found that the size of the semicircular arc of
the imaginary part corresponding to the first flexural wave bandgap increases gradually
with the increase in the number of stages N, indicating that the attenuation intensity of
the first flexural wave bandgap increases gradually [40]. For investigating the attenuation
enhancement mechanism of the elastic wave within the band gap, the evanescent modes
at special points in the imaginary part of the complex energy bands of Figure 2a–c are
computed, respectively, as shown in Figure 6. Observing the evanescent mode at point
G1, the maximum vibrational displacement is located at the tip of the non-ABH, and no
ABH effect occurs at this time. While for the evanescent mode at point G2, the maximum
vibrational displacement of the second-stage ABHs is concentrated at the tips of multiple
sub-ABHs, which generates multiple ABH effects. For the evanescent mode at point G3,
vibrational aggregation exists at the tips of multiple sub-ABHs at the third-stage ABHs
and at the tips of some of the second-stage ABHs, and the number of sub-ABHs producing
the ABH effect is significantly increased. Therefore, for SDM-ABH metamaterials, as the
number of stages increases, the number of sub-ABH structures exhibiting ABH effects
increases, resulting in a substantial increase in the attenuation strength of the first flexural
wave bandgap.

In this paper, the SDM-ABH metamaterial structures are compared with the previ-
ously structures, while the structures have similar lattice constants and the same material
properties between them, as shown in Table 1. The comparison reveals that SD2-ABH
and SD3-ABH metamaterials have ultra-wide first flexural wave bandgap with generalised
widths of γ = 2.245 and γ = 2.459, respectively, which are also superior to the other two
structures of Table 1. This is of great significance for broadening the low-frequency damping.
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Table 1. BG comparison of similar structures.

Reference Lattice Constant (mm) Materials The First Flexural Bandgap Range
(Hz) Generalised Width

[14]
120

steel

366–922 1.519

[15] 179–317 0.771

SD2-ABH
140

327–1061 2.245

SD3-ABH 346–1197 2.459

3.2. Vibration Transmission and Vibration Displacement Field

The complex energy band structure is computed from the metamaterial with infinite
periodic construction, and there is no propagatable wave in the bandgap. However,
in practical applications, the metamaterial consists of finite periodic structure, and the
propagatable wave in the bandgap is suppressed [41]. Considering the practical application,
as in Figure 7a, a metamaterial consisting of 12 unit cells is used to apply flexural wave
excitation along the y-direction and longitudinal wave excitation along the x-direction at
the specified boundary on the left side, respectively, to pick up the displacement response
on the rightmost side. Also, disregarding the influence of reflected waves on its results, a
perfect matching layer is added on each side to better characterise the attenuation of the
propagatable waves. The displacement frequency response function is calculated as follows:
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W = 20log10

(
uout

uin

)
(13)

In Equation (13), uout and uin are the pickup displacement and excitation displacement,
respectively. In addition, for the calculation of the displacement frequency response func-
tion, a dense meshing is used, and in order to ensure that the structure has the maximum
degree of freedom, the maximum mesh unit size is set to 0.0252, which is also much smaller
than one tenth of the elastic wave length. The frequency response functions of the flexural
and longitudinal waves of the finite-period construction at N = 1, 2, and 3 were calculated
using the displacement transfer rate, as shown in Figure 7b–d, respectively. Observing
Figure 7, it is found that the suppressed range of propagable waves in the finite- period
structure is basically consistent with the band gap in the complex energy band structure in
Figure 2. Further observation of Figure 7 reveals that the width of the first flexural wave
bandgap of the three structures increases dramatically with the increase in the number of
stages. And the maximum attenuation within the bandgap increases to 1.4 and 1.6 times
more than that of the SD1-ABH metamaterials (89 dB), respectively, due to the increase in
the number of sub-ABHs presenting an ABH effect.

The vibrational displacement field within the band gap of the first flexural wave of
the first period in Figure 7a is calculated when N = 1, 2, and 3, as shown in Figure 8a–c,
respectively. As can be observed in Figure 8, it is found that the vibrational displacement
of the flexural wave at the frequency within the bandgap attenuation from the excitation
value of 1 m to 0.443 m, 0.341 m, and 0.295 m occurs, respectively, when N = 1, 2, and 3.
In Figure 8b, the SD2-ABH metamaterial undergoes a mutation at the tip of the second-
stage ABH due to the ABH effect displacement attenuation. In Figure 8c, the SD3-ABH
metamaterial undergoes a mutation at the tip of the third-stage ABH hole and at the tip of
the second-stage ABH due to the ABH effect displacement attenuation.
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Figure 7. The process and results of vibration transmission: (a) Schematic diagram of vibration trans-

mission of metamaterials composed of 12 unit cells; (b) N = 1 finite-period SD1-ABH metamaterial 

vibration transmission results; (c) N = 2 finite-period SD2-ABH metamaterial vibration transmission 

results; (d) N = 3 finite-period SD3-ABH metamaterial vibration transmission results. Red colour 

represents the flexural wave frequency response function and blue colour represents the longitudi-

nal wave frequency response function. 
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Figure 7. The process and results of vibration transmission: (a) Schematic diagram of vibration trans-
mission of metamaterials composed of 12 unit cells; (b) N = 1 finite-period SD1-ABH metamaterial
vibration transmission results; (c) N = 2 finite-period SD2-ABH metamaterial vibration transmission
results; (d) N = 3 finite-period SD3-ABH metamaterial vibration transmission results. Red colour
represents the flexural wave frequency response function and blue colour represents the longitudinal
wave frequency response function.
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Figure 8. Vibration displacement field of the first period of the finite period construction: (a) rep-
resents the vibration displacement field at the frequency of 273 Hz in Figure 7b; (b) represents the
vibration displacement field at the frequency of 411 Hz in Figure 7c; (c) represents the vibration
displacement field at the frequency of 476 Hz in Figure 7d.

4. Discussion of Geometric Parameter on Complex Band Structure
4.1. Effect of Truncated Thickness t on Band Gap

The truncated thickness t is an important structural parameter for acoustic black
holes. Keeping other parameters constant, the effect of t on the first flexural wave bandgap
characteristics of an SD2-ABH metamaterial is investigated, as shown in Figure 9. Observ-
ing Figure 9, it is found that the first flexural wave band gap initial frequency increases
gradually with the increase in t, which is caused by the increase in structural stiffness
because of the increase in t. The cut-off frequency of the first flexural wave band gap firstly
increases and then decreases with the increase in t, and the maximum value is when the
truncated thickness t = 2 mm. The band structure diagram in the real part of the complex
energy band and the vibrational modes at the cut-off frequency of SD2-ABH metamaterials
with different truncation thicknesses are calculated, respectively, as shown in Figure 10.
Observing the vibration modes at the cut-off frequency of the first bending band gap in
Figure 10, it is found that when t < 2 mm, the effect of ABH in the structure gradually
decreases with the increase in t, and thus, the cut-off frequency moves to the high frequency.
When t ≥ 2 mm, the ABH effect disappears, and the vibration modes change to the local
resonance of the whole region of the first-stage ABH. Because of the increase in truncation
thickness t, the resonance mass of the whole region of the first-stage ABH increases, and
the cut-off frequency decreases. As a result, the first flexural wave band gap bandwidth
firstly increases and secondly decreases with the truncation thickness t.
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Figure 9. Effect of truncation thickness t on the bandgap of the first flexural wave of an SD2-ABH
metamaterial. Symbols indicate band gap boundaries and red coloured lines between symbols
indicate band gap widths.
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Figure 10. Vibration modes of the real part of the complex energy band with different truncation
thicknesses as well as special points.

The effect of truncation thickness t on the first flexural wave bandgap characteristics
of SD3-ABH metamaterials is shown in Figure 11. Figure 11 reveals that the same variation
trend as that of the SD2-ABH metamaterial is presented. The special point vibrational
modal analysis of the real part of the complex energy band is further calculated as shown
in Figure 12. Observing Figure 12, it is found that for SD3-ABH metamaterials, the stiffness
increases with the increase in t, leading to a gradual increase in the initial frequency of the
first flexural bandgap; the vibrational modes at the cut-off frequency of the first flexural
bandgap change from the coupling of the local resonance and the ABH effect to the local
resonance modes in the overall region of the first-stage ABH in the same way.
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Figure 11. Effect of truncation thickness t on the bandgap of the first flexural wave of an SD3-ABH
metamaterial. Symbols indicate band gap boundaries and red coloured lines between symbols
indicate band gap widths.
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Figure 12. Vibration modes of the real part of the complex energy band with different truncation
thicknesses as well as special points.
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4.2. Effect of Power Exponent on Bandgap

When N = 2 and 3, other parameters are kept constant, and the variation in the first
flexural bandgap with power exponent m is shown in Figures 13a and 13b, respectively.
Observing Figure 13, it is found that the beginning and stopping frequencies of the first
flexural bandgap of both single-phase double-leaf two-stage and three-stage ABH meta-
materials decrease with the increase in power exponent m. This is due to the decrease
in the local resonance stiffness with the increase in m. The cut-off frequencies of the first
bandgap of both structures move faster to the lower frequencies with the increase in m.
This is because the enhancement of the power exponent increases the ABH effect which is
coupled with the local resonance and moves further to the lower frequency.
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5. Interface Frequency Response

The trapped wave regions of flexural and longitudinal waves through different inter-
faces of SDM-ABH metamaterials consisting of 12 periods are calculated when N = 1, 2,
and 3, as Figure 14 shows. Figure 14b,d,f represent the frequency response of the flexu-
ral wave interface at different numbers of stages, and it is observed that the SDM-ABH
metamaterials can form an obvious flexural wave trapping region with the increase in
the number of stages; at the same time, the flexural wave trapping effect can be achieved
by reducing the number of unit cells and increasing the number of stages. In addition,
Figure 14c,e,f represent the longitudinal wave interface frequency response at different
stages, and it is found that the SD1-ABH metamaterials do not produce longitudinal wave
trap region below 2000 Hz, but the SD2-ABH and SD3-ABH metamaterials can produce a
longitudinal trap region below 2000 Hz, and the trap region moves to lower frequencies
with the increase in the number of stages.
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Figure 14. Frequency response analysis of metamaterial interfaces consisting of 12 unit cells:
(a) schematic diagram of the computational analysis of interfacial response of different cells;
(b,d,f) represent the flexural wave trapping regions of different interfaces at N = 1, 2, and 3; (c,e,g) rep-
resent the longitudinal wave trapping regions of different interfaces at N = 1, 2, and 3. The red colour
represents the trapped wave region.

6. Conclusions

In this paper, the finite element method is applied to calculate the complex energy
band structure and the vibrational modes of the special points in the real part of the
complex energy band of single-phase double-leaf multi-stage acoustic black hole (SDM-
ABH) metamaterials, to explore the mechanism of the generation of the low-frequency
wide bandgap, and then the reasons for the enhancement of the low-frequency bandgap
attenuation are revealed by the vibrational modes. Finally, vibrational transmission, and
vibrational displacement fields of the special points in the imaginary part of the complex
energy band, and the effects of the structural parameters on the characteristics of the
bandgap, as well as the effects of the number of stages on the trapped region, are discussed.

(1) The finite element method is applied to calculate the complex energy band structure
of SDM-ABH metamaterials, and it is found that in the range below 2000 HZ, compared
with the conventional double-leaf acoustic black hole metamaterials (with a bandgap
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share of 21%), the single-phase double-leaf two-grade acoustic black hole (SD2-ABH)
metamaterials can widen the bandgap percentage to 60.9% with a mass reduction of 10%,
and single-phase double-leaf three-grade acoustic black hole (SD3-ABH) metamaterials
widen the bandgap percentage to 63.7% with a mass reduction of 13%. And the maximum
attenuation in the first flexural wave bandgap of SD2-ABH and SD3-ABH increases to 1.4
and 1.6 times, respectively, compared with the conventional double-leaf acoustic black
hole metamaterials.

(2) By calculating the vibrational modes at special points in the real part of the complex
energy band, it is found that an increase in the amount of stages causes an increase in the
amount of sub-ABH structures in which the ABH effect occurs, although the mass decreases,
which results in a significant increase in the width and attenuation of the first flexural
bandgap. Moreover, an increase in the number of stages causes the emergence of the
second flexural and longitudinal wave bandgaps. Further, the vibrational modes at special
points and the vibrational displacement fields at special frequencies in the imaginary part
of the complex energy band indicate that the phenomena of displacement aggregation and
displacement mutation have occurred at several sub-ABHs of the SDM-ABH metamaterial.

(3) In addition, the effects of the ABH truncation thickness t and power exponent m on
the band gap of the first flexural wave are investigated. With the increase in the truncation
thickness t, the ABH effect of the sub-ABHs is gradually weakened, resulting in the first
flexural wave cut-off frequency moving faster to high frequencies, and the ABH effect
disappears when t > 2 mm, resulting in the first flexural wave cut-off frequency moving
to low frequencies. In addition, as the power exponent m increases, the ABH effect of the
sub-ABHs increases and the local resonance stiffness decreases, resulting in the first flexural
wave bandgap moving to lower frequencies. Finally, the interfacial frequency response was
calculated, and it is found that the trapping effect of SDM-ABH metamaterial on elastic
waves gradually increased with the increase in the number of stages.

This study extends the study of ABH structures to the field of multi-stage metama-
terials. Through this study, we can obtain a low-frequency as well as wide bandgap with
strong attenuation and lightweight, making it potentially useful for lightweight vibration
and noise reduction applications. Meanwhile, the single-phase multi-stage acoustic black
hole structure provides some relevant guidance for the subsequent reduction in ABH
truncated reflections.
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