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Abstract: Determining the key characteristics of a ship during the concept and preliminary design
phases is a critical and intricate process. In this study, we propose an alternative to traditional
empirical methods by introducing a model to estimate the main particulars of diesel-powered Z-Drive
harbor tugboats. This prediction is performed to determine the main particulars of tugboats: length,
beam, draft, and power concerning the required service speed and bollard pull values, employing
Bayesian network and non-linear regression methods. We utilized a dataset comprising 476 samples
from 68 distinct diesel-powered Z-Drive harbor tugboat series to construct this model. The case study
results demonstrate that the established model accurately predicts the main parameters of a tugboat
with the obtained average of mean absolute percentage error values; 6.574% for the Bayesian network
and 5.795%, 9.955% for non-linear regression methods. This model, therefore, proves to be a practical
and valuable tool for ship designers in determining the main particulars of ships during the concept
design stage by reducing revision return possibilities in further stages of ship design.

Keywords: Bayesian network; ship main particulars prediction; ship design; harbor tugboats;
non-linear regression

1. Introduction

The process of ship design involves intricate phases, including concept, preliminary,
and detailed design for production. This multifaceted endeavor, depicted as a spiral in
Figure 1 [1], unfolds through concept design, preliminary design, contract design, and
production design stages. Concept design, also known as feasibility verification, stands out
as the cornerstone of ship design, given its role in translating the requirements of the mission
or ship owner into precise naval architecture and engineering specifications. This phase
involves conducting preliminary estimates for critical elements of the proposed vessel,
including dimensions, power requirements, and alternative feature sets such as speed range,
bollard pull and cargo capacity. Moreover, in the preliminary design stage, it necessitates
the creation of essential technical documentation, including the ship’s line plan, while
further refining fundamental ship features to align with the owner’s needs and economic
considerations. Following concept design, the process advances to contract design, which
involves the meticulous preparation of technical specifications for shipbuilding, along with
the completion of necessary calculations and naval architecture drawings. Subsequently,
detail design, or production design, represents the concluding phase of ship design, where
detailed workshop plans for ship construction are developed. This iterative process, likened
to a spiral, ensures that adjustments made to any parameter affecting ship characteristics
prompt corresponding modifications throughout the design stages, ultimately leading to
the realization of an optimal solution in line with economic criteria and owner requirements.
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Throughout these design stages, the focus is on optimizing the main particulars of 
the tugboat to ensure it can effectively fulfill its role in servicing ships in busy ports and 
harbors. By considering these factors at every stage of the design process, harbor tugs 
must be adapted to meet the specific demands of their operating environments while en-
suring safety, efficiency, and reliability. 

Naval architects grapple with a plethora of ship parameters, encompassing the main 
dimensions, strength, hull form, displacement, resistance, powering, freeboard, machin-
ery, endurance, capacities, trim, stability, economic considerations, efficiency, environ-
mental impact, and cost factors [2]. Critical ship features, such as stability, power require-
ments, and economic efficiency, hinge significantly on the main dimensions. Thus, speci-
fying parameters like length (L), width (B), draft (T), depth (D), freeboard (F), and block 
coefficient (CB) is a pivotal aspect of ship design, where these dimensions are harmonized 
to meet the ship’s design conditions. For example, the important considerations for harbor 
tugboats include a high bollard pull capacity to tow large ships at a very low speed during 
towing and pushing duties, a service speed that enables tugboats to reach their destina-
tions faster, and maneuverability to navigate congested harbors. 

The traditional approach involves using statistical regression equations based on 
data from a comparable ship with known features [3]. In the preliminary design phase, 
designers play a crucial role in defining a ship’s major features based on implicit client 
requirements, including draft length, service speed range, and bollard pull capacity. De-
signers iteratively adjust dimensions by analyzing comparable ships or resort to empirical 
formulations and machine learning (ML) methods like neural networks (NN) to predict a 
ship’s main particulars and to analyze dynamic systems, especially in early design stages 
[4–7]. During the early design stage of a ship, it could benefit from using an ML approach, 

Figure 1. A ship design process model.

Throughout these design stages, the focus is on optimizing the main particulars of
the tugboat to ensure it can effectively fulfill its role in servicing ships in busy ports and
harbors. By considering these factors at every stage of the design process, harbor tugs must
be adapted to meet the specific demands of their operating environments while ensuring
safety, efficiency, and reliability.

Naval architects grapple with a plethora of ship parameters, encompassing the main
dimensions, strength, hull form, displacement, resistance, powering, freeboard, machinery,
endurance, capacities, trim, stability, economic considerations, efficiency, environmental
impact, and cost factors [2]. Critical ship features, such as stability, power requirements,
and economic efficiency, hinge significantly on the main dimensions. Thus, specifying
parameters like length (L), width (B), draft (T), depth (D), freeboard (F), and block coefficient
(CB) is a pivotal aspect of ship design, where these dimensions are harmonized to meet the
ship’s design conditions. For example, the important considerations for harbor tugboats
include a high bollard pull capacity to tow large ships at a very low speed during towing
and pushing duties, a service speed that enables tugboats to reach their destinations faster,
and maneuverability to navigate congested harbors.

The traditional approach involves using statistical regression equations based on data
from a comparable ship with known features [3]. In the preliminary design phase, designers
play a crucial role in defining a ship’s major features based on implicit client requirements,
including draft length, service speed range, and bollard pull capacity. Designers iteratively
adjust dimensions by analyzing comparable ships or resort to empirical formulations
and machine learning (ML) methods like neural networks (NN) to predict a ship’s main
particulars and to analyze dynamic systems, especially in early design stages [4–7]. During
the early design stage of a ship, it could benefit from using an ML approach, where a
large number of configurations must be tested, which could be prohibitive to achieve
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using Computational Fluid Dynamics (CFD) or model experiments. It may provide fast
predictions with non-linearities taken into account, overcoming the inaccuracies in linear
analytical methods currently used in the early design stages [7].

Neural networks are poised to emerge as a pivotal tool in the initial phase of ship
design, offering, among other capabilities, the estimation of crucial ship particulars [3]. A
comprehensive examination of machine learning applications in sustainable ship design
and operation is outlined in a study by [7]. Ref. [6] developed a series of artificial neural
network (ANN) and regression equations to predict container ship dimensions, including
the length between perpendiculars, breadth, draft, and side depth, utilizing deadweight,
TEU capacity, and ship speed as input variables; ref. [8] demonstrated that augmenting the
dataset with synthetic data and analyzing it using artificial neural networks (ANNs) can
yield favorable outcomes concerning the main particulars of container ships. Employing
artificial intelligence (AI) techniques, ref. [3] utilized multilayer perceptron and gradient-
boosted trees for predicting key parameters of container ships. Ref. [2] applied non-linear
regressions to ascertain the main dimensions, light ship characteristics, and dimensional
relationships across various ship types.

Furthermore, neural network (NN) methods have found application in diverse mar-
itime domains, encompassing ship resistance prediction [9–12], ship engine power [13,14]
and performance forecasting [15–17], ship hydrostatics [18], ship hydrodynamics, and mo-
tion prediction [19–21], as well as condition-based maintenance of machinery systems [22]
and fault diagnosis [23]. The effectiveness of regression methods in accurately estimating
both point and range estimates for parameters has been well-documented through re-
search across various disciplines of science [24,25]. However, in general, machine learning
algorithms tend to replace traditional statistical methods [26].

Addressing the probabilistic dependency structure between multiple parameters ne-
cessitates a strategic approach. This strategy involves employing a learning algorithm to
construct a neural network capable of answering diverse inquiries. The Bayesian method is
adept at avoiding erroneous categorical decisions regarding conditional independencies,
conducting model averaging for small datasets, managing missing data, and discerning
between models [27]. Notably, its advantages include suitability for small and incomplete
datasets, potential for structured learning, integration of diverse information sources, ex-
plicit treatment of uncertainty, and support for decision analysis and prompt responses.
Leveraging these advantages, various Bayesian models have been demonstrated [28–30]
for parameter identification and prediction of ship motions and maneuverability, con-
tributing to the prediction of vessel hydrodynamics. Additionally, Bayesian networks
find application in risk assessment [31–34], accident scenario analysis [35–37], reliability
analysis [38,39], and fuel consumption analysis [40,41] within the maritime domain.

According to related studies, while traditional empirical methods retain value for
certain aspects of ship design, the increasing complexity and evolving nature of modern
ships necessitate the adoption of alternative approaches to ensure optimal performance,
efficiency, and compliance with regulatory standards. Neural network (NN) methods,
as one of these alternative approaches, are utilized across various disciplines within the
maritime industry and are also applied in the ship design process. However, in the studies
carried out to determine the main dimensions of the ship during the ship design phase,
it was seen that the studies were concentrated on only a few cargo ship types such as
container ships, and a specific study was required for a specific type of ship, harbor
tugboats. Furthermore, this paper uniquely focuses on applying ML methods, specifically
Bayesian networks and non-linear regression, to predict the main particulars of harbor
tugboats during the concept design stage. While prior studies predominantly focused
on cargo ship types, such as container ships, our work addresses the distinctive design
parameters of harbor tugboats, providing valuable insights for decision making in ship
design. The study involves developing a model, and the vessel’s data are evaluated using
Bayesian network and non-linear power regression approaches. The results are assessed
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using error metrics like mean square error (MSE), absolute percentage error (MAPE), and
determination coefficients (R) for comparison.

The primary objective of this study is to present a model with a proposed methodology,
serving as a valuable and practical tool for ship designers during the concept design stage of
tugboats. This approach enhances the efficiency of the design process, minimizing the need
for revisions in later stages. A significant contribution of this study is its demonstration
that ML methods can be applied to ship types with distinctive design parameters, such as
tugboats, designed for specific purposes beyond cargo transportation.

The remainder of this paper is organized as follows: Section 2 outlines the method-
ology, data collection, pre-processing, and the developed prediction model. Section 3
provides findings from the case study, and finally, Section 4 concludes the study.

2. Material and Methods
2.1. Bayesian Regularization

Bayesian networks serve as statistical tools utilized to model causal connections and
uncertainties among distinct events. These networks depict data relationships within a
probabilistic framework, visually outlining the interrelations among a sequence of events
and employing probability distributions to articulate the dependence of each event on
others [42].

For example, consider the assessment of a health condition where symptoms exhibited
by a patient may correlate with specific illnesses. Bayesian networks are well-suited for
modeling such scenarios, as they can ascertain the likelihood that symptoms like a cough,
fever, and headache indicate a particular ailment [43,44].

These networks facilitate the computation of event probabilities and provide insights
into their interrelationships. In essence, Bayesian networks aid in understanding how an
event unfolding within a given context may impact other scenarios. As a result, they find
extensive applications across diverse domains, including decision making, prognostication,
and risk assessment.

A Bayesian network is a graphical representation of an uncertain collection of quan-
tities, also known as a directed acyclic graph (DAG), along with a set of conditional
probability tables that correspond to the structure of the DAG [45]. The network consists of
a sequence of probability nodes (ovals) and directed arcs connecting these nodes. Nodes
represent stochastic variables, defined as a set of discrete states, with each state associated
with a probability measure. The arcs between variables denote conditional probability
dependencies, signifying the likelihood of a dependent variable Y (child node) being in
a specific state for each combination of states of the preceding variables X (parent node).
The presence of a directed arc from node X to node Y indicates that X has a direct influence
on Y, specified by the conditional probability P(Y|X). Bayesian networks do not allow for
directed loops. Despite its concise design, the graphical representation offers a compre-
hensive probabilistic depiction of the scenario. A key feature of Bayesian networks is their
ability to infer from evidence observed at any node, with new knowledge traversing the
network and updating all variables in the model under Bayes’ rule [46].

Bayesian regularization, as a network training function, optimizes weight and bias
values using Levenberg–Marquardt optimization. This method minimizes a combination
of squared errors and weights, identifying the optimal combination to construct a network
with robust generalization. Implemented in MATLAB R2013b as the “trainbr” trainer, the
training process depends on the function’s parameters. Validation vectors are employed
to halt training prematurely if the network’s performance on the validation vectors does
not improve or remains constant for “max_fail” epochs consecutively. Bayesian regular-
ization does not use a separate validation set but includes it in the training set [10]. Test
vectors serve as an additional check for the network’s generalization but do not impact
the training. Enabling validation by setting “max_fail” to any strictly positive number
ensures weight/bias minimization with shorter training times. Regarding the performance
function, this approach shares the same constraint as “trainlm”.
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2.2. Non-Linear Regression

Non-linear regression, a statistical technique, is employed to model intricate rela-
tionships between variables that elude capture by linear models. Despite the challenges
inherent in model selection and estimation, its versatility in capturing diverse patterns in
data is invaluable for understanding complex relationships.

Non-linear regression analysis is a statistical method used to predict the value of a de-
pendent variable based on the value of an independent variable. It assesses the association
between variables by examining the coefficient values of the relevant parameters. This anal-
ysis employs a mathematical equation that characterizes the line or curve representing the
best fit for the relationship between the dependent variable (Y) and the independent vari-
able (X). The coefficient of determination, denoted as R2, signifies the extent of variability
in Y attributed to X.

As a foundation for approximating the relationship between bollard pull and the other
output parameters, power functions are selected. This phrase is commonly used as power
function that given in Equation (1) [47]:

Y = a Xb + Ei , (1)

where a and b represent the random coefficients, and the random errors are represented
by Ei.

R-squared, the coefficient of determination can be used as [48].

R2 = 1 − ∑N
i=1(ti − oi)

2

∑N
i=1(ti − oi)

2 , (2)

where t represents the goal value, o represents the output, o is the average value of the
samples, and N is the number of samples.

2.3. Prediction Error Metrics

The network performance function was determined by the mean square error (MSE)
that is represented in Equation (3). For comparisons, the statistical approach of the mean
absolute percentage error (MAPE) value was utilized and represented in Equation (4) [16].

MSE =
1
n ∑N

i=1(ti − oi)
2, (3)

MAPE =
1
n ∑N

i=1

∣∣∣ ti−oi
oi

∣∣∣ ∗ 100, (4)

where t represents the goal value, o represents the output, and N is the number of samples.

2.4. Methodology

The structure of the implemented methodology for this study is depicted in Figure 2.
The methodology comprises three primary steps: data collection and pre-processing,
model implementation using Bayesian network and non-linear regression algorithms, and
obtaining the model results. In the application of the Bayesian network algorithm, the pre-
processed data are segregated into three branches: training data, test data, and validation
data. The model yielding the most accurate output is determined through testing with real
data reserved specifically for this purpose. The performance of the model is assessed based
on the error analysis of the obtained output parameters. The closer the values of calculated
error metrics are to zero, the more successful the model results are considered to be.
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3. Case Study

A tugboat, though small in size, is a powerful vessel utilized for various towage
operations, including search and salvage, firefighting, assisting, transporting, escorting,
maneuvering, and berthing other marine vehicles when required within the tugboat’s
operational scope [49]. Consequently, tugboats can be designed to fulfill one or more of
these functions [50].

Tugs are typically classified according to their operational context, delineated by dis-
tinctions among harbor, ocean-going, coastal, and river environments, as well as the nature
of their tasks. Additionally, these vessels are further stratified based on the configuration
or propulsion systems they employ [51]. Several propulsion system arrangements exist,
with the four most prevalent being: conventional propulsion systems, Azimuth Stern Drive
(ASD), Tractor tug with Rudder Propellers, and Voith Water Tractor, also known as Voith
Schneider Propeller (VSP) tug. A profile view of the different types of tugboats is given in
Figure 3 [52].
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Presently, the predominant propulsion systems employed in modern ship-assist tugs
consist of Z-drive which are equipped with the azimuthing propulsors or VSP configura-
tions, with harbor tugs typically spanning from 20 to 32 m in length and featuring power
outputs ranging from 2000 to 4000 kW, albeit subject to variations dictated by port size and
the spectrum of ships serviced [51].
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Azimuthing thrusters or azimuthing propulsors, which have been widely utilized for
numerous years, are characterized by either non-ducted or ducted propeller configurations,
further subdivided into pusher or tractor units, as illustrated in Figure 4.
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In general, the maximum speed and bollard pull of tugboats are critical performance
measures that directly affect the effectiveness, safety, and efficiency of port tug operations.
Tugboats must possess a high bollard pull to exert adequate force for safely and effectively
towing or pushing large ships in various environmental conditions [53]. Tugs are con-
structed to exceed bollard pull forces through the optimization of their underwater hull
form, leveraging hydrodynamic forces to generate higher pull forces [52]. Moreover, a
higher maximum speed enables tugboats to reach their destinations more swiftly; handle
larger ships efficiently, thus reducing the time and effort needed for maneuvering opera-
tions; and respond promptly to changing situations and position themselves effectively.

The paramount requirements for a tug are the bollard pull and maximum speed,
determined during the concept design phase. This determination is contingent upon
factors such as the size and type of the ship the tug is designed to assist, the number of tugs
in the port, and environmental conditions like currents, tides, and winds prevalent in the
tug’s operational area. All tugs, particularly harbor tugs, must be designed to be highly
maneuverable with exceptional stability.

The total engine power and hull from parameters of the tugboats with many other
parameters such as propeller parameters are limitations for tugboats’ maximum speed
and bollard pull force [54–56]. Therefore, the dependent parameters for tugboats, namely
bollard pull (BP) and ship speed (V), can be expressed as functions of the primary inde-
pendent variable parameters related to a tugboat’s main dimensions: length (L), width
(B), draft (T), block coefficient (CB), and main propulsion power (P). Additionally, other
independent variable parameters influencing the bollard pull and ship speed include the
vessel’s hull form, heel and trim conditions, and the configuration of the propulsion system,
encompassing the main engine(s) and power transmission equipment(s). Environmental
conditions, such as currents, waves, sea state, wave dimensions, water depth, and towing
rope length, also contribute to the variability of bollard pull and ship speed parameters [49].

3.1. Bayesian Network Structure

In this case study, the analysis is grounded in a compiled database encompassing the
key characteristics of tugboats. The focus is on exploring the relationship between the
dependent variables BP and P, and the independent variables L, B, T, and P. Each entry in
the database encapsulates a joint probability distribution across the variables within the
dataset. The primary aim of this section is to estimate the joint probability distribution of a
set of variables utilizing a Bayesian network as a representation. Figure 5 illustrates the
Bayesian network that has been trained for tugboats.
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3.2. Data Collection and Pre-Processing

In this study, an assessment is conducted on diesel-powered Z-Drive harbor tugboats
including azimuth stern drive (ASD), Rotortug, and Z-Tractor tugboats, equipped with
azimuthing propulsors, encompassing diverse main dimensions, speeds, and bollard
pull values. A dataset containing the main characteristics of over 200 tugboats which
are designed by well-known tugboat designers and built in leading shipyards in the
tug building industry is collected and compiled for analysis. To refine the dataset, pre-
processing steps are implemented, removing sister vessels that share identical designs to
avoid adversely impacting analysis distribution. Table 1 illustrates the range of parameter
variability within the dataset.

Table 1. Descriptive statistics of the dataset for listed tugboats.

Maximum Minimum Mean Median Mode Std Var

Length [m] 42.00 18.70 29.13 29.05 24.40 4.40 19.32

Beam [m] 16.00 9.20 12.21 12.02 12.00 1.24 1.55

Draft [m] 6.50 3.40 5.12 5.10 5.30 0.67 0.45

Draft, Max. [m] 7.20 3.95 5.58 5.60 5.70 0.67 0.45

Power [kW] 7600 1939 4269.22 4190 5050 951.64 905,609.22

Speed, Max. [knot] 15.10 11.50 13.05 13.00 13.00 0.75 0.57

Bollard Pull [mT] 120.00 31.71 71.25 70.00 70.00 16.04 257.41

As depicted in Table 1, a total of 476 data samples were obtained from 68 distinct
diesel-powered Z-drive harbor tugboat series equipped with azimuthing propulsors. These
tugboats exhibit an average length of 29.1 m, ranging from 18.7 to 42 m, and an average
bollard pull (BP) capacity of 71.25 metric tons, ranging from 31 to 120 metric tons. This
investigation aims to explore the relationship between vessel length and the distribution of
bollard pull and speed parameters.

Figure 6 presents the distribution of bollard pull and speed parameters, as well as the
conditional probability distribution relative to vessel length for the collected dataset. When
examining these conditional probability distributions, the peak probability is observed
around 70 metric tons BP at approximately 30 m in length and a speed of approximately
13 knots.
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Correlation Analysis

Regression analysis scrutinizes the mathematical relationship among two or more
variables, while correlation analysis assesses the direction and magnitude of this relation-
ship. Correlation analysis, as a statistical method, furnishes insights into the relationship,
direction, and strength of the correlation between variables.

The correlation coefficient serves as a metric indicating the strength of the relationship
between the dependent and independent variables. It gauges the linear relationship
between two variables and is unit-independent, ranging between −1 and 1. A coefficient
nearing 0 signifies a weak correlation, while a proximity to 1 indicates a strong correlation.

In this study, the Pearson correlation coefficient is computed from the collected data
and visually represented in Figure 7. The intricate relationship between these variables is
delineated in Figure 8. The figures illustrate a robust correlation between the data of length
(LOA), beam (B), draft (T), draft-maximum (Tmax), and power (P) and bollard pull (BP),
whereas the correlation with speed (V) is relatively weaker.

Upon detailed examination of the correlation analysis, it becomes evident that the most
robust correlations are evident between the P and BP variables, showcasing a substantial
correlation coefficient of 0.97. Additionally, a notable correlation emerges between the T
and Tmax variables, boasting a strong coefficient of 0.88. Subsequently, the correlations
between the P-Tmax and BP-Tmax variables follow closely behind with coefficients of 0.86.
Noteworthy as well is the relatively strong correlation coefficient of 0.84 observed between
the P and B variables. Moreover, another salient correlation within the matrix is apparent
between the B and BP variables, exhibiting a coefficient of 0.83, further accentuating the
interrelatedness among the variables.
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3.3. Implementation of Model

In the present analysis, a model utilizing Bayesian network and non-linear regression
methods was trained and assessed using the MATLAB program. As mentioned in the
preceding section, the validation dataset was employed to address the overfitting issue,
with a maximum validation failure set at 100. Back-propagation learning was conducted
on a single hidden layer with 10 hidden nodes. A total of 476 data samples from 68 distinct
diesel-powered Z-drive harbor tugboat series were collected for this investigation [6]. The
dataset was partitioned such that 70% of the samples were allocated to the training set, 15%
to the validation set, and another 15% to the test set. The training set exclusively served for
training the network, while the test set was used to evaluate network performance. The
activation functions “logsig” and “purelin” were applied to the hidden layer and output
layer, respectively [5]. The distribution graphs of output parameters, specifically those
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related to vessel length (L) with input parameters bollard pull (BP) and ship speed (V), are
presented in Figure 6 along with their conditional probability distributions.

The structure of a neural network (NN) comprises multiple processing units capable
of bidirectional communication through connections with varying weighting factors. Gen-
erally, not all neural networks possess a structure that includes the following components:
input layer, signals, hidden layer(s), and output layer. The number of neurons in the input
and output layers depends on the nature of the problem being addressed, considering the
number of variables and outcomes.

Input values (xi) from previous layers are processed in a single artificial neuron using
bias (b) and weights (wi), as seen in the below Equation (5) [17]:

S = b + ∑n
i=1 wi ∗ xi, (5)

The structure of the Bayesian network model for this investigation is depicted in
Figure 9. This model has two inputs (bollard pull and speed) and ten hidden layers with
five outputs (length, beam, draft, draft-maximum, and power).
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3.4. Performance of Model

The established model is evaluated with the parameters of the collected and pre-
processed dataset in the MATLAB program. After the 754th attempt, both the validation and
test sets had an upward trend for the Bayesian network. The best validation performance
was thus reached at epoch 754. Figure 10 depicts the performance graph of the constructed
Bayesian network.
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Figure 11 depicts the regression graph between the estimated Bayesian network model
values and actual ship data. The observed determination of coefficients (R) for training,
test, and the total process were 0.99977, 0.99651, and 0.99906, respectively.
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Non-linear regressions were presented in two distinct groups based on the input
variables, bollard pull (BP), and vessel speed (V) in this case study. In the first group, power
functions were determined with respect to bollard pull (BP) values, whereas in the second
group, power functions were determined with respect to vessel speed (V) values.

The power function coefficients are predicted with a 95% confidence level for the
bounds. The equations of predicted non-linear regression functions with their coefficients
of determination values for this case study are presented in Table 2.

Table 2. Non-linear regressions’ power functions and coefficients of determination of case study.

Non-Linear
Regression Group 1 Functions

Coefficient of
Determination (R2)

Non-Linear
Regression Group 2 Functions

Coefficient of
Determination (R2)

Length [m] BP = 4.338 L0.4477 0.4383 V = 0.319 L1.757 0.4626

Beam [m] BP = 2.484 B0.3747 0.6891 V = 1.497 B0.817 0.2159

Draft [m] BP = 0.7528 T0.4508 0.6064 V = 0.360 T1.034 0.2129

Draft, Max. [m] BP = 0.79 Tmax
0.4596 0.7527 V = 0.455 Tmax

0.976 0.2266

Power [kW] BP = 73.15 P0.9535 0.9368 V = 29.020 P1.942 0.2656

3.5. Model Outputs

This study aimed to develop a Bayesian network model and simple power regression
with a power function equation to predict the key characteristics of a tugboat during the
early design phase. Bollard pull (BP) and vessel speed (V) were selected as the input vari-
ables, with length, beam, draft, maximum draft, and power serving as the output variables.

Moreover, Figure 12 illustrates the actual and predicted output values using a Bayesian
network and power regression for length (L), beam (B), draft (T), and power (P). These are
presented in plots depicting the conditional mean as a function of bollard pull (BP) and
vessel speed (V).

The results depicted in Figure 12 indicate that both the Bayesian network and power
regressions yield moderate results compared to the actual data, confirming the coherence
of the predictions. However, while the results for the bollard pull values between 60 and
80 metric tons are more accurate, deviations are observed for the maximum and minimum
pull values.
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3.6. Model Error

The mean squared error (MSE) histogram of the developed model is summarized in
Table 3. Upon scrutinizing the error rates resulting from the implementation of this collected
statistical data with the developed model, it is observed that the Bayesian network method
exhibits lower mean absolute percentage error rates in predicting the length and main
engine power output parameters. Conversely, the power regression method demonstrates
superior error rates in determining the other output parameters.

Table 3. Prediction errors of the developed model—MSEs.

Output
Parameter

Mean Squared Errors (MSEs)

Bayesian Network Power Regression Group 1 Power Regression Group 2

Length 7.15 10.69 10.23

Beam 0.68 0.47 1.20

Draft 0.35 0.18 0.35

Draft, Max. 0.30 0.11 0.34

Power 20,181.19 56,410.33 655,323.72

Length 7.15 10.69 10.23

To assess the efficacy of the developed model, error metrics were computed from the
prediction results for both the Bayesian network and power regression. The calculated
mean absolute percentage errors (MAPEs) for each output parameter—length, beam, draft,
maximum draft, and power—are presented in Figure 13, while the averages of the MAPEs
are depicted in Figure 14.
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4. Results and Discussion

The aim of this study was to develop a Bayesian network model to predict the main
particulars of a Z-Drive harbor tugboat equipped with azimuthing propulsors at the concept
and preliminary design phases; the bollard pull (BP) and ship speed (V) were used as the
input layer, and the length (LOA), beam (B), draft (T), draft-maximum (Tmax), and power
(P) were used as the output layer with ten hidden layers.

When analyzing the performance graph of the constructed Bayesian network, as
visualized in Figure 10 and depicted in Figure 11, it becomes apparent that the optimal
validation performance was achieved at epoch 754, with a mean squared error (MSE)
calculated as 1184.1913. Moreover, the determination coefficients (R2) for the training,
testing, and overall process of the Bayesian network were found to be 0.99977, 0.99651,
and 0.99906, respectively, indicating a high level of consistency between the actual and
expected values. These findings underscore the reliability of the model. In the case of
the implemented power regressions group 1 and 2, the coefficients of determination were
0.4383 and 0.4626, 0.6891 and 0.2159, 0.6064 and 0.2129, 0.7527 and 0.2266, and 0.9368
and 0.2656 for LOA, B, T, Tmax, and P, respectively. Notably, although the coefficients of
determination for the speed (V) parameter are relatively low, this can be attributed to the
weaker correlation with speed (V) in the dataset used.

When examining the actual and predicted values of the output parameters depicted
in Figure 12, it becomes apparent that the actual values closely align with the predicted
values. Furthermore, upon evaluating the mean absolute percentage error (MAPE) values
presented in Figure 13, it is evident that the model yields results with a lower error rate,
particularly within the range of 60 to 80 metric tons.

Figure 14 illustrates the average mean absolute percentage errors (MAPEs) for the
developed model. It can be observed that the MAPE values for all datasets were deter-
mined as 7.71%, 5.17%, 9.57%, 8.28%, and 2.14% for LOA, B, T, Tmax, and P in the Bayesian
network, respectively. Meanwhile, for the power regressions group 1 and 2, the corre-
sponding values were 9.38% and 8.77%, 4.16% and 6.89%, 6.47% and 9.43%, 4.69% and
8.77%, and 4.29% and 15.90% for LOA, B, T, Tmax, and P, respectively. The average of
these values was calculated as 6.574% for the Bayesian network and 5.795% and 9.955% for
power regressions groups 1 and 2, respectively. Notably, among the output parameters,
the maximum mean error occurred at 71.81%, while the mean error for all datasets was
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relatively acceptable. However, it is worth mentioning that power regression 2 exhibited a
relatively high MAPE value, despite the overall error being within an acceptable range.

In the context of power regression, the coefficient of determination (R-squared) is
commonly computed by software to assess the goodness of fit of the model, similar to its
application in linear regression. However, given that power regression entails a non-linear
relationship between variables, the calculation of R-squared entails comparing the variation
accounted for by the model to the total variation present in the dataset. Meanwhile, the MSE
and MAPE results demonstrate that the developed Bayesian network model, along with
the implemented power regression models, presents a promising approach for predicting
the main characteristics of the azimuthing-propulsor-equipped Z-Drive harbor tugs during
the initial stages of ship design.

5. Conclusions

The determination of a ship’s main particulars during the design phases constitutes
a significant and intricate process, necessitating the evaluation of relationships among
numerous parameters. Traditionally, these relationships are established through statistical
methods or empirical formulas based on data from existing ships. However, conventional
statistical methods and empirical formulas often depict relationships between two factors
in isolation, disregarding others. Consequently, novel approaches have gained prominence
in the determination of a ship’s main particulars.

In this study, a model employing a Bayesian network and non-linear regression was
developed to predict the primary characteristics of a Z-Drive harbor tugboat equipped
with azimuthing propulsors capable of meeting the specified bollard pull and speed re-
quirements. The case study utilized a dataset comprising main particulars from 68 distinct
azimuthing-propulsor-equipped Z-Drive harbor tugboat series, derived from a collection
of over 200 existing tugboats, with sister ships eliminated. The dataset was analyzed using
the developed model, and the results were compared.

Upon examining the distribution of the bollard pull input relative to the other output
parameters in the calculated results, it was observed that the accuracy of the results was
higher within the 60 to 80 metric tons bollard pull range, while deviations were noted
for the maximum and minimum bollard pull values. In conclusion, the developed model
proves most effective for the early design of tugs with bollard pull capacities ranging from
60 to 80 metric tons. The results of the case study, the presented descriptive methodology,
and the developed model collectively emerge as crucial tools for decision makers and ship
designers in the conceptual design process for determining a ship’s main dimensions.

Furthermore, this study demonstrates that machine learning methods can be applied
to the design of ship types with unique parameters, such as tugboats designed for specific
purposes rather than cargo-carrying ships. Neural network models, exemplified by the
Bayesian network in this study, present themselves as viable alternatives to traditional
statistical and empirical methods. This model proves to be a practical and valuable tool for
ship designers in determining the main particulars of ships during the concept design stage
by reducing revision returns possibilities in further stages of ship design like expensive
Computational Fluid Dynamics (CFD) and conventional ship model tests. Therefore, the
neural networks streamline this process by offering faster and more cost-effective pre-
dictions compared to traditional methods, which entail time-consuming and expensive
extensive physical testing and computational simulations, thus diminishing the necessity
for expensive prototyping and testing. This approach not only reduces costs at the prelimi-
nary design stage but also enhances time efficiency and mitigates risks which are associated
with proposed designs.

The utilization of machine learning methodologies, particularly neural network mod-
els such as the Bayesian network, in the design of ships with unique parameters like
tugboats is poised to yield numerous advantages, including enhanced accuracy, expedited
design iterations, adaptability, and improved time and cost efficiency. These advancements
herald an innovative shift in ship design, enabling the utilization of data-driven insights
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to develop vessels that are safer, more efficient, and technologically advanced, tailored to
meet contemporary design requirements.

The models proposed within this research are dynamic in nature and specifically
tailored for tugboats. However, in forthcoming studies, these models have the potential
to be modified for various other vessel types. Achieving this adaptation necessitates
updating the inputs in accordance with the specific characteristics of the target ship type.
Furthermore, future research endeavors hold the promise of enhancing model robustness
through parameter optimization techniques. Future studies may delve into incorporating
additional ship parameters such as displacement, tonnage, vessel hull form coefficients,
towing speed, the number of propellers, propeller diameters, which are not considered
here, constructing models with greater accuracy through larger datasets, or exploring
alternative neural network modeling methods for different specific ship types. Furthermore,
neural network models can be integrated into existing design software utilized by ship
designers and naval architects, enabling predictive modeling capabilities to be seamlessly
incorporated into the ship design workflow. This enables ship designers to leverage
advanced analytical tools without requiring specialized expertise in machine learning.
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