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Abstract: The proliferation of autonomous trucking demands a sophisticated understanding of the
risks associated with the diverse U.S. interstate system. Traditional risk assessment models, while
beneficial, do not adequately address the state and regional variations in factors that significantly
impact the safety and efficiency of autonomous freight transport. This study addresses the problem by
developing a composite risk index that evaluates the safety of U.S. interstate routes for autonomous
trucking, considering both state and regional differences in traffic volumes, road conditions, safety
records, and weather patterns. The potential for autonomous trucking to transform the freight
industry necessitates a risk assessment model that is as dynamic and multifaceted as the system it
aims to navigate. This work contributes a regionally sensitive risk index using GIS methodologies,
integrating data from national databases, and applying statistical analysis to normalize risk factors.
The findings reveal significant state and regional disparities in risk factors, such as the predominance
of precipitation-related risks in the Southeast and traffic in the Far West. This work provides a
targeted approach to risk assessment for policymakers and infrastructure planners and offers a
strategic tool for logistics companies in optimizing autonomous trucking routes. The long-term
benefit is a scalable model that can adapt to evolving data inputs and contribute to the broader
application of risk assessment strategies in various domains.

Keywords: continuous utilization; geographic information systems (GISs); labor cost reduction;
national regulations; risk assessment methodologies; supply chain agility; transportation efficiency

1. Introduction

Autonomous trucking has the potential to revolutionize freight transport, promising
enhanced safety, reduced emissions, and improved efficiency [1]. However, the safe
integration of autonomous trucking into the national transportation infrastructure presents
a complex challenge. While the literature widely acknowledges the potential safety and
efficiency benefits of autonomous vehicles (AVs), the focus on autonomous trucks (ATs)
warrants specific attention. ATs will have a disproportionate impact on the freight industry
compared with passenger cars due to their larger size, weight, and operational complexity,
which introduce distinct challenges in traffic management, infrastructure wear, and accident
severity. Additionally, the economic implications of AT deployment, given their role in the
supply chain, justify a dedicated analysis of their unique risk factors.

The safety and efficiency of autonomous trucking are contingent upon myriad factors,
including traffic volumes, road quality, accident rates, and weather conditions that span a
diverse geography [2]. The heterogeneity of risk factors across the U.S. interstate system
presents a considerable obstacle. For example, while the I-95 corridor in the Southeast might
be prone to high traffic volumes and severe weather patterns, the I-5 in the Pacific Northwest
may contend with road roughness due to heavy vehicle traffic and varied topography and
climate conditions. Such variability demands a complex yet refined approach to risk
assessment that current methodologies do not sufficiently address. Current models for
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risk assessment in transportation are either overly broad, neglecting regional variations, or
are too fragmented, lacking a holistic view of interstate networks. The literature lacks a
granular yet comprehensive risk analysis to facilitate strategic planning and policymaking
for AT deployments across different regions of the United States.

The goal of this paper is to develop and validate a composite risk index that quantita-
tively evaluates the safety of U.S. interstate routes for the emerging autonomous trucking
industry. The aim is to determine the relative contributions of traffic volumes, road quality,
accident rates, and weather conditions to the overall risk profile of interstate segments,
and how these contributions vary by state and region across the United States. To achieve
this goal, this work employs geographic information systems (GISs) for spatial analysis
of traffic and environmental data, integrates data from national databases such as the
Highway Performance Monitoring System (HPMS) and the Fatality Analysis Reporting
System (FARS), and utilizes statistical methods to normalize and analyze risk factors.

The contributions of this work are multifold. First, it provides a robust, data-driven
methodology for risk assessment specific to autonomous trucking. Second, this paper
identifies regional patterns in risk factors, enabling targeted risk mitigation strategies.
Finally, it supports the assertion that a uniform national strategy for the deployment of
autonomous trucking is less effective than a region-specific approach. This research thus
offers a significant value proposition for stakeholders in transportation, logistics, and policy
development, aiming to navigate the complexities of autonomous freight transportation
safely and efficiently.

The organization of the rest of this paper is as follows: Section 2 reviews the literature
on autonomous trucking but with a focus on deployment strategies and risk evaluation.
Section 3 describes the workflow developed to source and process data for the effective
visualization of risk patterns. Section 4 discusses the analytical results and implications for
stakeholders seeking to benefit from AT deployments. Section 5 concludes the research and
suggests future work.

2. Literature Review

This section reviews existing literature, focusing on the opportunities and challenges
of ATs, deployment risk assessments, and identifying gaps in the literature.

2.1. Opportunities and Challenges

ATs offer significant benefits, including safety improvements, operational efficiency, re-
duced labor and fuel costs, and enhanced driving ease [3]. Significant economic advantages
come from replacing the driver [4], achieving almost continuous vehicle utilization [5],
avoiding traffic by prioritizing nighttime operations, and reducing road damage by operat-
ing at night when lower temperatures reduce the impact of load stress [6]. AT advancement
could profoundly affect the supply chain and society at large, potentially boosting pro-
ductivity, GDP, and employment [7]. ATs can also address rising e-commerce demands
sustainably through increased fuel efficiency, utilization, and reduced accidents [8].

ATs promise to mitigate supply chain bottlenecks and the bullwhip effect, enhancing
supply chain agility and efficiency [9]. This strategic advantage allows for operational
redesign by leveraging the reliability and flexibility of ATs. Moreover, there is consensus in
the literature that autonomous vehicles in general will significantly contribute to accident
reduction by eliminating causes due to human error [10]. However, the transition to ATs
faces barriers, including societal acceptance, privacy, security, and legal challenges [11].
Addressing these concerns requires developing standards for data use, enhancing cyberse-
curity, and clarifying legal liabilities. Moreover, the absence of unified national regulations
presents another hurdle, necessitating a balanced approach by states to encourage testing
while ensuring public safety [12].
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2.2. Deployment Risk Assessments

The literature on autonomous trucking deployment risk assessment spans various
methodologies aimed at safe and efficient integration into transportation networks. Road
roughness poses a risk to AV operation because they must accurately assess roughness levels
to adjust actuations such as speed and acceleration to maintain operational stability [13].
Climate change has also emerged as a catalyst for road deterioration, particularly rutting
damage caused by extreme weather changes [14]. Precipitation poses challenges because
AVs must automatically assess the levels of skidding and hydroplaning on wet surfaces to
adjust for safe operation [6]. Rain that leads to flooding can also challenge the performance
of autonomous navigation systems. Advanced sensor fusion and more advanced machine
learning methods become necessary to enhance operational reliability in adverse weather
conditions [15].

Studies have also shown that truck operation is associated with higher crash risks
relative to cars [16]. High traffic variability also challenges the safe operation of AVs because
their sensors and actuators must react quickly [17]. For example, in congested situations,
erratic human driving behavior, like sudden lane changes or aggressive maneuvers, can be
unpredictable for AVs to handle, potentially causing crashes. Studies have also shown that
crash risk is a dynamic quantity that has considerable spatial and temporal variations [18].
These studies highlight the importance of tailored risk assessment frameworks to address
the unique challenges of ATs. Frameworks leveraging driving simulators [19], trajectory
planning [20], liability considerations [21], and cybersecurity [22] illustrate the diverse
application and critical nature of comprehensive risk assessments. Collectively, this body
of work highlights the need for interdisciplinary approaches to ensure the safe integration
of ATs into the transportation ecosystem.

2.3. Literature Gaps

Despite consensus on the transformative potential of ATs, their deployment presents
unique challenges in risk assessment, particularly due to the dynamic nature of interstate
transportation. Current research often focuses on risk factors in maintenance [23] and
trajectory planning [24], steering away from the complex interplay of risk factors in route
selection. There is a noted gap in utilizing GISs for comprehensive autonomous trucking
route risk assessments and in integrating national databases into risk models [12]. The
variability in regional risk factors and the lack of comprehensive risk indices tailored to
autonomous trucking expose the need for sophisticated risk assessment frameworks. This
study aims to fill these gaps by proposing a composite risk index that leverages GISs and
national transportation databases, offering a novel contribution to the transportation risk
assessment field.

3. Methodology

This workflow integrates GISs for spatial analysis, data management techniques for
processing and normalizing data, and statistical methods for risk assessment, showcas-
ing an interdisciplinary approach to develop a comprehensive risk index to inform AT
deployment planning.

3.1. Data

The workflow utilized data from three large publicly available datasets from various
United States government agencies as follows:

HPMS: The Highway Performance Monitoring System, updated in 2020 and main-
tained by the U.S. Bureau of Transportation Statistics [25]. The data contain layers of
individual GIS shapefiles, one per U.S. state. Each shapefile layer contains many rows of
linear objects, each representing a road segment. Attributes for each linear segment include
state and county information, route number, geometric characteristics, the international
roughness index (IRI), and the average annual daily traffic (AADT), a measure of the
average number of vehicles that travel on the segment per day.
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FARS: The Fatality Analysis Reporting System, updated in 2021 and maintained by
the U.S. Bureau of Transportation Statistics [26]. The shapefile contains a single layer
with geospatially encoded points representing a single fatal accident. Attributes include
characteristics of the crash and environmental conditions at the time.

NCEI: The National Centers for Environmental Information (NCEI) dataset contains
the mean annual precipitation from 1901 to 2000 for each U.S. county tracked [27].

3.2. Analytical Workflow

Figure 1 illustrates the data synthesis workflow consisting of individual procedures
that are either coded in software or implemented using a GIS tool.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 4 of 19 
 

roughness index (IRI), and the average annual daily traffic (AADT), a measure of the av-
erage number of vehicles that travel on the segment per day. 

FARS: The Fatality Analysis Reporting System, updated in 2021 and maintained by 
the U.S. Bureau of Transportation Statistics [26]. The shapefile contains a single layer with 
geospatially encoded points representing a single fatal accident. Attributes include char-
acteristics of the crash and environmental conditions at the time. 

NCEI: The National Centers for Environmental Information (NCEI) dataset contains 
the mean annual precipitation from 1901 to 2000 for each U.S. county tracked [27]. 

3.2. Analytical Workflow 
Figure 1 illustrates the data synthesis workflow consisting of individual procedures 

that are either coded in software or implemented using a GIS tool. 

 
Figure 1. The data synthesis workflow. 

The “GIS Extract” procedure of the workflow kept only those linear objects repre-
senting interstate routes, along with their AADT and IRI features, by setting a filter for 
F_SYSTEM = 1. For example, Figure 2 shows the result of extracting the linear GIS objects 
representing the two interstate routes (red lines) in North Dakota. The blue lines represent 
other roadway types. The workflow then iteratively joined the extracted interstate shape-
files until it processed the shapefile layers for all states of the contiguous United States 
(CONUS). 

 

Figure 1. The data synthesis workflow.

The “GIS Extract” procedure of the workflow kept only those linear objects repre-
senting interstate routes, along with their AADT and IRI features, by setting a filter for
F_SYSTEM = 1. For example, Figure 2 shows the result of extracting the linear GIS objects
representing the two interstate routes (red lines) in North Dakota. The blue lines repre-
sent other roadway types. The workflow then iteratively joined the extracted interstate
shapefiles until it processed the shapefile layers for all states of the contiguous United
States (CONUS).
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The spatial joining of the precipitation polygons of U.S. counties averaged the mean
annual precipitation across intersecting road segments. Figure 3 depicts the mean annual
precipitation for CONUS counties from 1901 to 2000. This illustration helps to interpret the
results of where risk factors dominate.
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In processing the FARS data, the workflow kept only the data for crashes on the inter-
state routes. The workflow then spatially joined those to the previously joined shapefiles
containing the AADT, IRI, and precipitation values for each interstate segment.

Due to the fragmented regulatory constraints among states, autonomous trucking
companies often make deployment decisions at the state level [28]. Therefore, the workflow
aggregated the risk index for an entire interstate section that falls within individual states.
In preparation for merging aggregated values at the state and road levels, the GIS procedure
created a merge key containing a string of the state abbreviation and the interstate route
number. The data aggregation that followed computed the mean values for AADT, IRI, and
precipitation and the sum of fatalities along the entire interstate within a state. Performing
the aggregation on an extracted data table was more convenient due to the enhanced
programming functions available outside of the GIS environment. Specifically, the authors
used Python along with programming libraries such as pandas, seaborn, and scipy to plot
descriptive statistics of each factor such as bar charts and box plots to visualize the risk
factors across states and regions.

The next strategy was to normalize the four factors within the [0, 1] range so that they
became more comparable in a unitless dimension. The normalization is as follows:

N(x) =
x − xmin

xmax − xmin
(1)

This study defines the composite risk index (CRI) as a uniformly weighted linear
combination of the four normalized factors as follows:

CRI =
w1·N(TV) + w2·N(RC) + w3·N(SR) + w4·N(WP)

∑4
i=1 wi

(2)

where the following are true:

• TV represents the traffic volume.
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• RC denotes the road condition in terms of roughness.
• SR stands for safety records such as fatalities.
• WP indicates weather patterns, with mean annual precipitation in this context.
• N() is the normalizing function in Equation (1).
• w1, w2, w3, and w4 are weights assigned to each risk factor, reflecting their relative im-

portance. The summation in the denominator ensures that the CRI remains normalized
and comparable.

This baseline research sets all the weights to unity because there is currently no other
information about their relative importance in the overall risk, which future work will
explore. This definition ensures a uniform approach to risk assessment across all states and
routes. The results section further justifies this definition by showing that, statistically, the
factors lack correlation.

The selected measures of correlation between x and y variables were the Spearman’s
rank and the Kendall’s tau correlation coefficients because these methods do not assume that
both variables are normally distributed [29]. The Spearman’s rank correlation coefficient ρ
is a nonparametric measure of the monotonicity of the relationship between two variables.
Spearman’s correlation converts the variables into rank data and then assesses how well a
monotonic function can describe the relationship between these ranks. The Spearman’s
rank correlation coefficient S is

S = 1 −
6∑ d2

i
n(n2 − 1)

(3)

where the following are true:

• di is the difference between the ranks of corresponding variables xi and yi.
• n is the number of observations.

A Spearman correlation of +1 or −1 occurs when there is a perfect monotonic re-
lationship between the two variables, while a correlation of 0 indicates no monotonic
relationship.

Kendall’s correlation coefficient K assesses the strength and direction of the association
between the two variables. It evaluates their ordinal association by considering the number
of concordant and discordant pairs of data points. The formula for Kendall’s tau is

K =
C − D√

(n0 − n1)(n0 − n2)
(4)

where the following are true:

• C and D are the numbers of concordant and discordant pairs, respectively.
• n0 − n(n − 1)/2.
• n1= ∑ ti(ti − 1)/2 for each group of tied ranks in the first quantity.
• n2= ∑ uj(uj − 1)/2 for each group of tied ranks in the second quantity.
• n is the number of observations.
• Concordant pairs are pairs of observations where the ranks for both elements agree

(i.e., both ranks are higher or both are lower in each pair), while discordant pairs are
those where the ranks disagree (one rank is higher in the first element of the pair, and
the other rank is higher in the second element).

The last three procedures of the workflow evaluated the composite risk index in terms
of the distribution of its components and composite index, including testing for a normal
distribution and interpreting its spatial distribution on a map. This entailed merging
the aggregated factors by state and route back into the GIS platform. The analysis also
provided a regional view of the risk index components to assess the spatial distribution of
its dominant components.
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4. Results

The following subsections discuss the distribution of risk factors, the relationship
among risk factors, the distribution of risk by route, the distribution of risk by state, and
the distribution of risk by region.

4.1. Risk Factor Distribution

Table 1 summarizes the overall statistics of the risk factors for both the original and
normalized values. The mean AADT was approximately 52,727 vehicles, with a standard
deviation (STD) of 39,141, indicating a wide range of traffic levels across the road segments.
The average IRI value was around 92.57, with a standard deviation of 31.74, suggesting
variability in road surface conditions. The mean precipitation level was 38.43, with a 14.24
standard deviation, reflecting differing weather conditions across locations. On average,
there were approximately 11 fatalities per road segment per state, but with a high standard
deviation of 19, indicating significant variability in safety outcomes.

Table 1. Risk factor statistics.

Original Normalized
Risk Factor Mean STD Mean STD

AADT 52,727 39,141 0.212 0.167
IRI 92.57 31.74 0.266 0.159

Fatalities 11 19 0.058 0.106
Precipitation 38.43 14.24 0.486 0.199

Figure 4 shows box plots of the distribution of the four risk components by region.
For reference, Figure 5 shows the U.S. regional definitions according to the U.S. Bureau of
Economic Analysis, which mirror current AT testing. The box plots provide a visualization
of the central tendency, dispersion, and skewness of the data distribution, highlighting
outliers as diamond shaped points. The edges of the colored boxes represent the interquar-
tile range (IQR) from Q1 to Q3, representing the middle 50% of the data. The line within
the box represents the median value. The whiskers above and below the boxes represent
the maximum and minimum values, respectively, excluding outliers. The individual dots
above the whiskers represent outlier values, defined as 1.5 times the IQR.
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AADT: The Far West region exhibits the widest IQR, suggesting a high variability in
AADT. The Rocky Mountain region shows a comparatively low median and small IQR,
which could indicate more uniform traffic patterns with fewer extreme values.

IRI: The median IRI values across the regions do not vary significantly; however, the
Southeast, Far West, and Mideast regions have a larger spread of IRI scores, indicating a
wide range of road quality. Outliers are present in several regions, most notably in the
Southeast, which could be indicative of particularly rough patches of interstate.

Fatalities: The Southwest stands out with the highest median value for fatalities and
several outliers, which might be a point of concern for transportation safety in that region.
The New England, Mideast, Great Lakes, and Plains regions have notably lower median
values and fewer outliers, suggesting fewer fatalities on their interstates.

Precipitation: The Southeast has the highest median precipitation, which is consistent
with its climatic patterns, as shown in Figure 3. The Far West has a significant number
of outliers, showing that some areas receive much higher rainfall. The Rocky Mountain
region shows lower precipitation levels, with a particularly tight IQR, indicating consistent
weather patterns in terms of precipitation. These box plots provide valuable insights for
AT deployment planning. For example, high variability in AADT could require dynamic
planning for freight movement. High IRI values may necessitate more frequent maintenance
schedules, and high fatality rates could lead to increased insurance costs and the need
for enhanced safety measures. Finally, precipitation data could be crucial when planning
routes to avoid weather-related delays. These results provide a quantitative foundation for
policy recommendations and strategic planning.

Figure 6 presents a pair plot with histograms and scatter plots, illustrating the rela-
tionships between the four normalized variables. The histograms on the diagonal show the
distribution of each variable, while the scatter plots show the relationships between pairs
of variables. The scatter plots in the upper right triangle of the grid annotate the Spearman
correlation coefficient and its corresponding p-value. Similarly, the lower left triangle of
the grid annotates the Kendall correlation coefficient and its corresponding p-value. These
values can lead to the following interpretations:

AADT vs. IRI: A positive correlation (S = 0.28, K = 0.19), suggesting that as traffic
volume increases, so does the roughness of the road, potentially due to more wear and tear.

AADT vs. Fatalities: A positive correlation (S = 0.26, K = 0.18), implying that higher
traffic volumes might be associated with an increase in fatalities, due to a greater risk
of accidents.
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AADT vs. Precipitation: A positive correlation (S = 0.07, K = 0.05), which might
indicate that regions with higher traffic also tend to have more precipitation, though the
correlation is weak and might not be significant.

IRI vs. Fatalities: A negative correlation (S = −0.29, K = −0.21), suggesting that better
road quality (lower roughness) could be associated with more fatalities, potentially due to
higher speeds on smoother roads.

IRI vs. Precipitation: A negative correlation (S = −0.10, K = −0.07), which is also weak,
indicating a negligible relationship between road roughness and precipitation.

Fatalities vs. Precipitation: A negative correlation (S = −0.08, K = −0.06), which
could suggest that higher precipitation might correlate with fewer fatalities, though this is
counterintuitive; the weak correlation suggests it may not be a significant predictor.

The p-values provide a measure of confidence in the existence of a monotonic rela-
tionship. All the p-values are extremely low, indicating that all the results are statistically
significant. This indicates that there is sufficient evidence to reject the null hypothesis,
which states there is no association (i.e., the correlation is zero) between the two variables.
This suggests that there is a monotonic relationship between the two variables.
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4.2. Risk Factor Relationships

The histograms along the diagonal plots of Figure 6 show the frequency distributions
of each variable, normalized to fit the same scale for comparison. The AADT distribution is
right-skewed, indicating a higher frequency of lower traffic volumes. The IRI distribution is
also right-skewed, indicating a higher frequency of lower smoother interstate segments. The
distribution for fatalities is heavily right-skewed, with most data points toward the lower
end, indicating fewer fatalities are more common. The precipitation data show a peak near
the center of the distribution, indicating that the precipitation of most interstate segments
is near the average, but a minority have either low or high precipitation levels. One caution
in interpreting these results is that they do not account for possible confounding variables.
Furthermore, correlation does not imply causation, and the relationships observed here
would need further analysis to establish any causal links.

Figure 7 is a histogram overlaid with a Gaussian (normal) probability density function.
The histogram represents the observed distribution of the composite risk index (Risk Index),
while the red curve indicates the estimated normal distribution based on the data. The
inset provides key statistics including the mean (1.023) and the standard deviation (STD),
which is 0.322. The histogram shows the frequency of the risk index in terms of density,
with the x-axis representing the risk index value and the y-axis representing the density
of these values. The distribution is symmetric around the mean, which aligns with the
assumption of normality. The formal test for normality evaluated the Kolmogorov–Smirnov
(KS) statistic (0.023), which is a measure of the maximum distance between the observed
cumulative distribution and the expected cumulative distribution. The KS test is preferable
when assessing the similarity between distributions without making assumptions about
their underlying shapes or parameters [30]. The null hypothesis is that the data are normally
distributed. The p-value (0.941) of the test indicates the probability of observing the KS
statistic (or one more extreme) under the null hypothesis. The high p-value suggests that
the test cannot reject the null hypothesis, implying that the distribution of the composite
risk index does not significantly differ from a normal distribution. Hence, the interpretation
is that risks associated with interstate routes are normally distributed. This facilitates the
categorization of risks at the standard deviation boundaries. For example, a risk index
of less than or greater than one standard deviation, respectively, can represent low and
high risk, respectively, whereas risk indices within one standard deviation can represent
medium risk.
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4.3. Route Risk Distribution

Figure 8 is a map displaying the U.S. Interstate Highway System, with routes color-
coded according to the deviation from the mean of the risk index. This map helps with
visualizing geographic variations in risk across the interstate network. The routes in
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blue have an average risk index that is less than one standard deviation below the mean,
indicating lower-than-average risk. Conversely, the routes in red have an average risk index
that is more than one standard deviation above the mean, indicating higher-than-average
risk. The other two colors represent routes that have an average risk index within one
standard deviation of the mean, representing slightly lower (green) and slightly higher
(orange) than average risk, respectively. The color gradation provides a quick reference to
identify areas that might require more in-depth analysis or increased safety measures for
AT deployments.
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The map integrates the risk index with spatial analytics to inform decision-making
processes for transportation planning and safety management. It will help stakeholders to
visualize and prioritize resource allocation for infrastructure improvements, enforcement of
safety regulations, and implementation of advanced technologies aimed at risk reduction.
The concentration of higher-risk routes (indicated in red) in certain areas could be a result
of multiple factors, such as high traffic volumes, poor road conditions, higher accident
rates, or severe weather conditions. Conversely, routes with lower risk scores are associated
with better infrastructure, less traffic, safer driving conditions, or milder weather.

Figure 9 is a stacked bar chart that illustrates the composition of risk indices for
various U.S. interstate segments, categorized by regions. The risk components include
mean daily traffic, road roughness, fatalities, and precipitation. Each bar represents an
interstate segment identified by its number and associated region (e.g., MD_495 in the
Mideast region), with the total length of the bar corresponding to the composite risk index
for that segment. The chart displays the interstate segments ordered by risk index, with the
highest at the bottom. The grayscale color coding within each bar denotes the contribution
of each risk component to the total risk index as noted in the “Risk Components” legend.
This visualization allows for the comparison of risk profiles across different interstate
segments. For example, one can observe that precipitation is a predominant risk factor
for many of the interstate segments, especially those with the highest overall risk index.
The regional labels provide additional context by showing the geographical distribution
of these interstate segments. For instance, segments in the Southeast (e.g., FL_95, FL_395,
LA_110) rank near the top risk indices, which could be related to various factors such as
higher traffic volumes, road conditions, or regional driving behaviors.
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Figure 9 is essential for understanding the relative importance of each risk component
within each interstate segment and can guide targeted interventions. For transportation
planning, this figure emphasizes the need to address specific risk factors on certain routes,
which could be beneficial for prioritizing infrastructure investments, policymaking, and
risk mitigation strategies, especially in the context of enhancing safety for autonomous
trucking operations. Stakeholders can reference this figure when evaluating the application
of the risk index in identifying high-priority areas for AT deployment and the need for
tailored interventions based on the specific risk profiles of interstate segments considered.

4.4. State Risk Distribution

Figure 10 is a grouped bar chart displaying the average components of the risk index
for each state. The states are along the x-axis, ordered by the average risk index from
highest to lowest. The y-axis represents the average value of each risk component. Notably,
the variation across states is less than the variation across regions, as shown previously in
Figure 9. The chart’s color-coding identifies four different risk components, as indicated
in the legend. The segmentation of each state’s bar into these four colors shows the
contribution of each risk component to that state’s average risk index. This visualization
allows for cross-state comparisons of how different risk factors contribute to the overall
risk index. For instance, the chart shows that in the state with the highest average risk
index, precipitation is the largest contributor, followed by IRI, AADT, and then fatalities.
The pattern appears consistent in several states with the highest risk indices, indicating
that precipitation and road conditions are significant contributors to the risk index across
various states.
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Figure 11 is a choropleth map of the United States, where the color code for each state
is the deviation of its average risk index from the mean, measured in standard deviations.
This type of map visually conveys the geographic distribution of derived risk indices across
states. States colored in blue and red have risk indices that are more than one standard
deviation below and above the mean, respectively. The other colors show states with
intermediate risk indices, as indicated in the legend. States with higher risk levels are
mostly in the Southeast and Mideast. In contrast, the Rocky Mountain and Plains parts of
the country exhibit lower-than-average risk levels.
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The bar chart and accompanying map serve as tools for stakeholders assessing the
variation in risk profiles across states, informing federal and state-level decision making
on resource allocation for road safety improvements crucial to AT deployment. They can
highlight where investment in infrastructure is most needed, particularly in areas where
precipitation and road quality are predominant risk factors, thereby enhancing the safety
and efficiency of autonomous trucking operations. Moreover, these visualizations aid in
understanding regional disparities in traffic volume, road conditions, weather patterns,
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and safety statistics, which collectively shape the risk landscape. The insights derived
from these resources highlight the need for tailored interventions or technology in au-
tonomous trucking routes to address specific regional risk profiles, ensuring safe and
efficient transport across the national network.

4.5. Regional Risk Distribution

Figure 12 displays a choropleth map of the United States categorized by a region risk
index, which quantifies the risk level across different regions. The color-coded risk index
value for each region is according to the legend. The map illustrates significant regional
variations in risk, with the Southeastern states exhibiting the highest risk indices, while the
Rocky Mountain states have lower risk indices. The central states display a moderate level
of risk.
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Figure 13 is a stacked bar chart that breaks down the composition of the average risk
indices for regions in the United States. Each bar corresponds to a region, and the segments
within each bar represent the contribution of the four risk components as indicated in the
legend. The length of each colored segment within the bars indicates the proportion of each
risk component contributing to the region’s overall average risk index. The sum of these
segments equates to the total average risk index for the region. This visual representation
facilitates a comparative analysis of how different risk factors contribute to the overall
risk across regions. One observation is that precipitation, IRI, and AADT are significant
contributors to risk in all regions. However, the proportion of risk attributed to these factors
varies by region, reflecting regional differences in traffic patterns, infrastructure quality,
weather conditions, and safety outcomes.

Figure 14 provides further visualization of the relative strength of risk components
across regions. The bar chart depicts the mean proportional contribution of various risk
factors across different U.S. regions. The y-axis represents the mean proportional contribu-
tion, calculated as the average contribution of each risk factor to the total risk index for that
region. For instance, in the Far West, AADT makes up the most significant portion of the
risk index, while in the Southeast and New England regions, precipitation is the dominant
risk factor. The chart provides a clear visual comparison of how the significance of different
risk factors varies regionally.



Appl. Sci. 2024, 14, 2892 15 of 19
Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 19 
 

 
Figure 13. Risk index makeup by region. 

Figure 15 is a choropleth map of the United States with each state color-coded to 
represent the dominant risk factor from the developed risk index. The map provides a 
clear visual representation of which risk factor is most significant in each state, based on 
the analysis. For instance, states colored in purple have precipitation as their dominant 
risk factor, while those in orange are most affected by IRI. 

The above maps and their complementary bar charts are useful tools for stakeholders 
in transportation and logistics to dissect the geographic distribution of risks and strategize 
accordingly. They facilitate an integrated analysis by illuminating how these regional fac-
tors coalesce to form a multifaceted risk landscape. The spatial visualization supports the 
case for regional prioritization in transportation planning and the development of infra-
structure, especially within high-risk areas such as the Southeastern states. Targeting in-
vestments to mitigate specific risks could bolster the safety of autonomous trucking routes 
in those regions. Moreover, the map highlights a critical need for region-specific policy 
frameworks that adeptly address the varied nature of transportation risks. It highlights 
the intricate nexus of factors behind regional transportation risks to help stakeholders 
craft focused, data-driven strategies in transportation management. 

The regional disparities in risk contributions suggest a targeted allocation of re-
sources. For instance, regions plagued by road roughness may require heftier infrastruc-
tural investments, while those where precipitation poses significant risk could benefit 
from the adoption of weather-adaptive logistics planning. Together, these visual tools em-
phasize the imperative for a multifaceted approach to infrastructure enhancement, tech-
nological advancement, and nuanced policymaking, all of which are fundamental to am-
plifying safety and efficiency within the national transportation framework. 

Figure 13. Risk index makeup by region.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 16 of 19 
 

 
Figure 14. Risk component proportions by region. 

 
Figure 15. Dominant risk factors by state. 

5. Discussion 
The development of the composite risk index presented in this paper supports the 

need for a multifaceted assessment of risks associated with the deployment of autono-
mous trucking across the U.S. interstate system. While previous studies have examined 
transportation risks in isolation, this work synthesizes these risks into a singular, actiona-
ble index. This work also highlighted the critical importance of regional variations in risk 
factors, a dimension often overlooked in existing models. The analysis of the risk index, 
as visualized through the series of figures in the results section, reveals a complex tapestry 
of regional risk factors that influence the safety and efficiency of autonomous freight trans-
portation. By integrating GIS methodologies with national traffic and safety databases, the 
constructed model captures the multifaceted nature of transportation risks. Using a quan-
titative approach offers a replicable and scalable model for risk assessment, capable of 
processing complex datasets to yield precise, actionable insights. The quantitative analysis 
enables a rigorous, data-driven exploration of risks, distinguishing it from more subjective 
approaches and emphasizing its value in strategic decision making. Identifying key 

Figure 14. Risk component proportions by region.

Figure 15 is a choropleth map of the United States with each state color-coded to
represent the dominant risk factor from the developed risk index. The map provides a clear
visual representation of which risk factor is most significant in each state, based on the
analysis. For instance, states colored in purple have precipitation as their dominant risk
factor, while those in orange are most affected by IRI.
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The above maps and their complementary bar charts are useful tools for stakeholders
in transportation and logistics to dissect the geographic distribution of risks and strategize
accordingly. They facilitate an integrated analysis by illuminating how these regional
factors coalesce to form a multifaceted risk landscape. The spatial visualization supports
the case for regional prioritization in transportation planning and the development of
infrastructure, especially within high-risk areas such as the Southeastern states. Targeting
investments to mitigate specific risks could bolster the safety of autonomous trucking routes
in those regions. Moreover, the map highlights a critical need for region-specific policy
frameworks that adeptly address the varied nature of transportation risks. It highlights
the intricate nexus of factors behind regional transportation risks to help stakeholders craft
focused, data-driven strategies in transportation management.

The regional disparities in risk contributions suggest a targeted allocation of resources.
For instance, regions plagued by road roughness may require heftier infrastructural in-
vestments, while those where precipitation poses significant risk could benefit from the
adoption of weather-adaptive logistics planning. Together, these visual tools emphasize
the imperative for a multifaceted approach to infrastructure enhancement, technological
advancement, and nuanced policymaking, all of which are fundamental to amplifying
safety and efficiency within the national transportation framework.

5. Discussion

The development of the composite risk index presented in this paper supports the
need for a multifaceted assessment of risks associated with the deployment of autonomous
trucking across the U.S. interstate system. While previous studies have examined trans-
portation risks in isolation, this work synthesizes these risks into a singular, actionable
index. This work also highlighted the critical importance of regional variations in risk
factors, a dimension often overlooked in existing models. The analysis of the risk index, as
visualized through the series of figures in the results section, reveals a complex tapestry of
regional risk factors that influence the safety and efficiency of autonomous freight trans-
portation. By integrating GIS methodologies with national traffic and safety databases,
the constructed model captures the multifaceted nature of transportation risks. Using a
quantitative approach offers a replicable and scalable model for risk assessment, capable of
processing complex datasets to yield precise, actionable insights. The quantitative analysis
enables a rigorous, data-driven exploration of risks, distinguishing it from more subjective
approaches and emphasizing its value in strategic decision making. Identifying key drivers
of risk in different regions contributes a more targeted approach for informed decisions in
route planning, infrastructure development, and policy formulation.
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General observations are that precipitation emerges as a significant risk factor across
most regions, aligning with the pre-existing understanding that weather conditions are a
primary contributor to transportation risks. To reduce regional bias, the analysis did not
make a distinction between different types of precipitation such as rain versus snow and
ice. This is based on the notion that any type of weather condition will affect the accuracy
of sensors such as cameras, which can impede operational performance. The findings
show how factors such as road roughness, traffic levels, precipitation, and fatality rates
contribute differentially across regions. For example, in the Southeast and New England
regions, precipitation emerged as a dominant risk factor, whereas, in the Far West, traffic
volume and road roughness played more substantial roles. This distinction is crucial, as it
highlights the regional specificity of risk profiles and challenges the notion of a one-size-
fits-all approach to transportation risk management. Furthermore, the distinction between
risk factors across regions emphasizes the need for customized risk management strategies,
moving beyond a generic approach to address the specific challenges and requirements of
each region.

The implications of these findings are vast. For policymakers, this research provides
a data-driven foundation for regional infrastructure planning and AV legislation. For
the logistics industry, it offers a strategic guide for long-term route planning and risk
mitigation that can enhance the safety and reliability of autonomous trucking operations.
Furthermore, this work advances the body of knowledge by providing a methodological
framework that can be adapted and applied to other areas of transportation risk assessment
and infrastructure management.

Despite its strengths, this research has some limitations. The risk index developed
relies on the availability and accuracy of data from national databases, which may not
capture real-time changes or the variability in local road conditions and traffic patterns.
Furthermore, the normalization of risk factors to a uniform scale, while useful for compari-
son, may oversimplify the complexity of individual factors. The uncorrelatedness of factors
may not capture non-linear effects among them, requiring a more complex evaluation such
as employing empirical orthogonal function (EOF) analysis.

The methodology outlined in this study serves as a blueprint for future investigations
to adopt advanced statistical models and real-time data integration, further refining the
precision and applicability of the risk index. Acknowledging the dynamic nature of trans-
portation risks, future endeavors will explore the potential of machine learning techniques
to predict emerging risk patterns, enhancing the adaptability and resilience of autonomous
trucking networks to evolving environmental and traffic conditions. For instance, the
inclusion of instantaneous precipitation intensity data could enrich the granularity and
immediacy of the risk assessment, particularly for short-term operational decisions under
specific weather conditions and specific routes. Future research should consider integrating
qualitative assessments to enrich the quantitative analysis, offering a more comprehensive
understanding of risk factors and their impact on autonomous trucking operations.

The contributions of this work are instrumental for various stakeholders, including
transportation planners, policymakers, and the autonomous trucking industry. By pro-
viding a comprehensive risk assessment tool, it paves the way for more targeted and
effective strategies in transportation safety and logistics management. The methodology
and findings of this study set a precedent for future research, which should continue to
refine risk assessments and adapt to the evolving landscape of autonomous transportation.

6. Conclusions

The strategic implementation of autonomous trucking hinges on an intricate under-
standing of the risks involved in navigating the diverse U.S. interstate landscape. This
study addressed the critical need for a regionally sensitive risk assessment tool, comple-
menting broad-brush approaches that do not consider the localized intricacies of risk factors
influencing transportation safety and efficiency. This comprehensive analysis informed the
creation of a composite risk index, meticulously constructed using GISs and corroborated
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by data from established national databases. The findings illuminate the pronounced
regional variations in risk factors, with AADT, IRI, fatalities, and precipitation contributing
unevenly across different states. This study substantiated these findings by employing
robust methods that synergize spatial analysis with statistical normalization to distill com-
plex datasets into a coherent risk profile. The benefits of this contribution are manifold,
particularly for entities involved in the integration of autonomous trucking networks, such
as transportation agencies, policymakers, and logistics companies. The detailed maps of
risk factors provided can help to inform decision making about where to focus enhanced
road safety protocols, prioritize infrastructural investments, and select routes to reduce risk.

This research provides a blueprint for adapting risk assessment methodologies to other
domains within transportation and beyond, where state and regional factors significantly
influence operational risks. The practical applications of this work range from informing
national transportation safety guidelines to aiding in the design of AV navigation systems
that can dynamically respond to the risk profiles of the routes they traverse. The ability to
adapt and generalize this method to address different scales and scopes of risk assessment
is central to its long-term value. This study’s approach echoed broader themes such as the
interplay between technology and infrastructure, and the importance of data-driven policy.

Future work will focus on addressing the limitations discussed earlier, particularly the
need for real-time data integration and the refinement of risk factor weighting within the
index. Further research may also explore the application of machine learning techniques to
predict and adapt to emerging risk patterns, thereby enhancing the resilience and reliability
of autonomous trucking routes. The workflow presented ensures that future explorations
into transportation risk assessment are both grounded in empirical evidence and attuned
to regional variability.
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