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Abstract: In the context of escalating energy demands and the quest for sustainable waste manage-
ment solutions, this paper evaluates the efficacy of three machine learning methods—ElasticNet,
Decision Trees, and Neural Networks—in predicting energy recovery from municipal waste across
the European Union. As renewable energy sources increasingly dominate the energy production
landscape, the integration of Waste-to-Energy (WTE) processes presents a dual advantage: enhancing
waste management and contributing to the renewable energy mix. This study leverages a dataset in-
corporating economic and environmental indicators from 25 European countries, spanning 2013–2020,
to compare the predictive capabilities of the three machine learning models. The analysis reveals that
Neural Networks, with their intricate pattern recognition capabilities, outperform ElasticNet and
Decision Trees in predicting energy recovery metrics, as evidenced by superior performance in key
statistical indicators such as R-value, Mean Squared Error (MSE), and Mean Absolute Error (MAE).
The comparative analysis not only demonstrates the effectiveness of each method but also suggests
Neural Networks as a pivotal tool for informed decision-making in waste management and energy
policy formulation. Through this investigation, the paper contributes to the sustainable energy and
waste management discourse, emphasizing the critical intersection of advanced technologies, policy
considerations, and environmental stewardship in addressing contemporary energy challenges.

Keywords: machine learning; waste-to-energy; energy recovery; neural networks

1. Introduction

Energy is a fundamental element for the functioning of contemporary society, and
the laws governing its use have both economic and strategic-political implications. The
objective of the European Union’s energy policy is to decrease reliance on imported energy
and energy products by encouraging the implementation of energy-saving measures and
the inclusion of renewable energy sources (RES) [1]. Acquiring energy relies on various
sources that vary by country. In 2021, renewable energy was the primary source of energy
production in the European Union, accounting for 41% of total production. Solid fuels
(18%), natural gas (6%), and oil (3%) also contributed to energy production [2]. Energy
production in EU countries is highly diverse. In Poland, Estonia, and the Czech Republic,
solid fuels are the primary source of energy production accounting for 70.7%, 50%, and
53.60% of total electricity production, respectively [3]. However, Norway and Sweden
have a significant share of renewable energy, with 73% and 55%, respectively. Norway
is renowned for its use of hydropower, which accounted for 81% of renewable energy
sources in 2018. In contrast, Sweden is known for its production of wind energy, which
accounted for 20%. Finland utilizes biomass for both heating and power generation, with
79% of its renewable energy coming from this source [4]. Global energy consumption has
been increasing annually by an average of 1% to 2% for over half a century. European
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Union (EU) countries are seeking innovative and sustainable solutions to improve waste
management and energy efficiency in response to the growing demand for energy and
the ongoing challenge of municipal waste. One promising direction is the conversion of
municipal waste to energy. This approach reduces the amount of waste reaching landfills
and produces energy. It objectively assesses the potential benefits of this approach [5].

The conversion of municipal waste to energy, known as Waste-to-Energy (WTE),
not only aids in waste management but also contributes to the production of renewable
energy and reduces greenhouse gas emissions by replacing solid fuels. WTE encompasses
combustion, pyrolysis, gasification, and methane fermentation. It enables the production
of energy from municipal waste that would otherwise be sent to landfills, thus diversifying
energy sources and increasing energy security [6]. The conversion of municipal waste to
energy has several advantages. However, this process also presents various challenges and
issues. Technological advancements are closely linked to the environmental and economic
policies of individual countries and global trends in sustainable development [7].

The variable composition and calorific value of municipal waste pose significant
challenges for converting waste into energy [8]. Installations must be designed in a way
that enables them to cope with the volatility of the composition and fuel value of waste.
This requires the use of advanced processing technologies, such as waste-free systems and
exhaust gas purification technology, to minimize pollution emissions [9]. To enhance energy
and economic efficiency, waste-to-energy plants can implement several strategies. These
include accurate waste segregation at the source stage, pre-processing (such as drying to
reduce waste moisture and increase calorific value), and mixing waste streams of varying
fuel value to achieve a more stable and optimal combustion mixture [10].

Constructing and maintaining energy processing plants, particularly waste-to-energy
facilities, presents a significant challenge due to the substantial investments required. Avail-
ability of these facilities can help reduce the complexity of technology and high maintenance
costs, particularly in regions with limited financial resources. Therefore, decision-making
regarding the implementation of such solutions requires careful assessment of profitability
as well as consideration of all arguments for and against. Mathematical models can improve
the process of estimating the energy potential of municipal waste, making environmental
decisions more effective and based on solid analytical foundations.

Machine learning models need to be created based on various sets of data, including
economic and environmental research, to ensure their generalization. Research on learning
techniques and model adaptation can provide ways to overcome restrictions in the use of
waste transformation methods. These models can optimize processes to achieve higher
efficiency, resulting in increased energy recovery indicators.

The application of machine learning methods like ElasticNet, Decision Trees, and
Neural Networks to model energy recovery from waste in European Union countries is
an approach that leverages diverse economic and environmental indicators to predict and
optimize energy recovery processes. The use of such comprehensive input data—including
electricity prices by type of user, energy productivity, final energy consumption, GDP at mar-
ket prices, recycling rates of municipal waste, domestic material consumption per capita,
environmental tax revenue, and the share of energy from renewable sources—ensures a
broad and nuanced understanding of the factors influencing energy recovery from waste.

Mathematical models can be used to identify efficient and sustainable methods of
transforming waste into energy, thereby reducing the amount of waste sent to landfills.
Machine learning models, with their adaptability, can forecast future trends and changes
in factors affecting energy recovery. This predictive ability is crucial for planning and
adapting sustainable development strategies.

1.1. Literature Review

Mathematical models can be used to forecast the amount of waste and the amount
of energy produced based on various, often non-linear, factors affecting the combustion
or fermentation process of municipal waste. Various machine learning models were used,
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including artificial neural networks (ANNs), regression trees, multi-dimensional adaptive
regression, random forest, the theory of roughing harvest, reinforced regression, and
combined methods for forecasting the amount of municipal waste.

Yang et al. (2021) conducted a comparison of six machine learning models for mu-
nicipal solid waste prediction (MSW) in China [11]. The models included Multiple Linear
Regression (MLR), Support Vector Regression (SVR), Random Forest (RF), Extreme Gra-
dient Boosting (XGBOOST), K-Nearest Neighbor (KNN), and Artificial Neural Network.
The study also examined the correlation between variables based on past entries. The
results confirm high prediction accuracy for all machine learning models, with the ANN
model performing the best. The data include Total Regional Gross Domestic Product (GDP),
Value Added by Transportation, Warehouse, and Postal Services, Wholesale and Retail
Value Added, Value Added by the Accommodation and Catering Industry, City Area,
Urban Population Density, the Number of Urban Populations, Urban Per Capita Disposable
Income, and Total Retail Sales of Consumer Goods. The regional GDP indicator is widely
acknowledged as the most significant variable in predicting waste production [11]. In the
authors’ previous study, a Neural Network was employed for predicting the volume of
municipal solid waste in Poland. Kulisz and Kujawska utilized neural network modeling
to estimate the quantities of MSW in Poland, categorizing the waste into five types: glass,
biodegradable materials, paper and cardboard, plastics and metals, and other assorted
waste [12]. The proposed models integrated various explanatory variables to assess the
impact of economic, demographic, and social factors on waste generation volumes. The
neural network models varied by adjusting the number of hidden neurons between 2 and
10. The performance of these models was evaluated based on the Pearson correlation
coefficient (R) and the mean squared error (MSE). The ANN model featuring six hidden
neurons demonstrated high predictive accuracy, evidenced by a significant R-value (0.914)
for the categorized waste types. When analyzing statistical data from 2013 to 2019, it
was found that, the model predicted a 2% increase in waste production by 2024. These
results confirm the efficiency of the ANN model as a cost-effective approach for designing
integrated waste management systems [12].

A significant parameter for waste energy assessment is the chemical properties of
waste, particularly the Higher Heating Value (HHV). Waste used to obtain energy must
be characterized by a high HHV [13]. Determining the higher heating value of waste can
be challenging due to the heterogeneity of the material and the precision of measuring
methods. This can make it difficult to obtain accurate and representative results. Advanced
analytical methods are required due to differences in humidity, chemical composition,
and waste pollution. Prior to designing installations for efficient and optimized waste
processing, it is advisable to create mathematical models to forecast the higher fuel value
of waste. Accurate HHV forecasting enables minimization of waste directed to landfills
by facilitating effective energy utilization. Models also aid in identifying waste with the
highest energy value, thereby enabling better selection and segregation of materials prior
to processing. Accurate forecasting of the higher heating value enables adjustment of
combustion process parameters, including temperature, air flow, or combustion time. This
enhances energy efficiency and reduces harmful substance emissions [14]. Several studies
have developed models to estimate HHV accurately for various types of MSW. Jose and
Sasipraba (2023) compared various models for HHV forecasting, including multiple linear
regression (MLR), genetic programming (GP), elastic reverse propagation (RP), Levenberg
Marquardt (LM), and Deep Support Vector Machine (DSVM), as well as Optimal Deep
Learning-Based HHV Prediction (ODL-HHVP), to identify the most accurate method [15].
The input data consisted of the content of oxygen, water, hydrogen, carbon, nitrogen, sulfur,
and ash in waste. The study found that ODL-HHVP was the most accurate method for HHV
forecasting [15]. Bagheri et al. (2019) conducted a study to compare the accuracy of three
models—programming of gene expression (GEP), support vector machine (SVM), and the
Feed-Forward neural network (FFNN)—in predicting HHV. The input data used were the
content of C, H, N, and S in municipal waste. The statistical performance of the developed
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GEP, SVM, and FFNN models for R2 were 0.966, 0.973, and 0.978, respectively, and for
RMSE were 1.57, 1.44, and 1.25, respectively [6]. In the authors’ previous studies, a machine
learning model for HHV prediction of different types of biomass was developed [16]. The
input data used were the results of elemental biomass analysis, carbon, nitrogen, and
hydrogen analysis. The best results were obtained for a neural network with three input
neurons and nine hidden layer neurons. The model was characterized by r = 0.988 and
MSE = 0.3. The research has shown that the ANN model can estimate the HHV value based
on the elemental composition of the biomass. The models that use waste chemical analyses
as input data are presented above. These models are employed to develop and optimize
specific waste processing technologies [16].

In addition to the models based on physical and chemical analysis, it is possible to
create models based on energy statistics. Statistical models enable large-scale analysis and
forecasting, covering entire energy systems, economic sectors, or regions. The models
based on statistics enable easy integration with other types of data, such as economic
growth, changes in energy policy, or trends in waste production [17]. This provides a
broader understanding of the impact of these factors on the energy potential of waste.
Statistical models are also more adaptable to changing trends, new processing technologies,
or environmental policy changes, which is particularly important in the rapidly evolving
waste management and energy sectors. Statistical models are frequently used to support
political and strategic decisions. They provide the information necessary for infrastructure
planning, investments in energy recovery technologies, and sustainable development
policies. Decision-makers and energy planners can use them to develop long-term strategies
for waste and energy management, identifying potential growth and investment areas.

Machine learning models are also used to forecast energy efficiency and waste drilling
efficiency. In a comparative study conducted by Meerasri and Sothornvit (2022), mathe-
matical models, multiple linear regression, and artificial neural networks (ANNs) were
used to predict humidity ratio and drying speed of pineapple cubes. The ANN model
was found to be suitable for predicting MR of the drying rate of pineapple cubes [18].
Nanvakenari et al. (2021) investigated the impact of drying on rice quality in a fluidized
bed dryer under different fluidization regimes and temperatures [19]. They developed
a multi-layered artificial feed-forward type perceptron neural network to predict drying
time, head rice yield, white index, water absorption index, and elongation index based
on fluidization speed and temperature [19]. Ðaković et al. (2024) reviewed the potential
of machine learning algorithms in improving energy and operational efficiency in drying
processes [20]. Their findings suggest that these algorithms hold promise for more balanced
and economic drying practices. The use of machine learning models enables precise control
of drying processes and identification of areas for energy savings, resulting in reduced
energy consumption and operating costs [20].

1.2. Objective

The objective of this paper is to determine an effective machine learning method for pre-
dicting energy recovery from waste using a constrained dataset. The novelty of the research
lies in the comparative analysis of three different machine learning approaches—ElasticNet,
Decision Trees, and Neural Networks—in the specific context of energy recovery, providing
insights that could be crucial for improving the efficiency and accuracy of such predictions in
the waste management field. The utilitarian goal is to create an effective mathematical model
that can be used in European countries with a low level of waste-to-energy conversion.

2. Materials and Methods

Three machine learning methods, namely ElasticNet, Decision Trees, and Neural
Network, were used to model energy recovery from waste. The data on energy recovery
from waste for 22 EU countries available in Eurostat (the EU statistical office) database
(Eurostat, 2022) are presented in Table 1. Economic and environmental indicators were
used as input data for the models. The data were obtained from the Eurostat database [21]
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and are presented in Table 2. The data for 2013–2020 for 25 European countries were used.
The criteria for country selection were based on the availability of comprehensive and
reliable data on waste management and energy recovery, as well as the desire to represent
a diverse range of waste management practices and energy recovery capabilities across the
European Union.

Table 1. Energy recovery (in kg per capita) for selected European Union countries in the years
2013–2021 [22].

Recovery—Energy Recovery
[kg/capita] Mean St Min Max Share of WtE in Global Waste

Production [%]

Belgium 207.78 62.79 173.00 356.00 5.81

Bulgaria 15.11 6.97 7.00 30.00 0.56

Czechia 68.72 12.19 55.00 85.00 3.59

Denmark 421.11 15.58 397.00 447.00 17.51

Germany 172.94 22.28 142.00 193.00 11.26

Estonia 169.94 8.44 163.00 185.00 2.05

Greece 5.06 2.60 2.00 8.00 1.39

Spain 53.44 4.36 46.00 60.00 3.26

France 174.44 3.84 170.00 180.00 7.24

Croatia 0.28 0.44 0.00 1.00 3.49

Italy 85.78 17.28 49.00 99.00 4.62

Cyprus 4.06 3.23 0.00 9.00 8.35

Latvia 10.00 3.54 5.00 15.00 6.29

Lithuania 70.17 29.61 31.00 125.00 6.92

Luxembourg 327.22 58.89 237.00 379.00 3.25

Hungary 49.50 8.67 34.00 62.00 7.64

Malta 0.78 0.97 0.00 2.00 0

Netherlands 225.89 15.89 206.00 250.00 7.53

Austria 229.11 31.29 202.00 298.00 7.21

Poland 55.11 22.35 15.00 74.00 2.15

Portugal 97.72 6.63 91.00 110.00 7.15

Romania 10.56 3.64 5.00 15.00 1.38

Slovenia 46.94 29.28 1.00 82.00 2.54

Slovakia 32.11 4.37 23.00 36.00 4.91

Finland 285.83 47.49 209.00 349.00 5.37

Table 2. Selected key indicators in various environmental and energy sectors in selected countries of
the European Union for the period 2013–2022 [21].

Unit Mean St. Dev Min Max Source

Electricity prices by type of user (EPTU) kWh 0.177 0.055 0.083 0.319 [23]
Energy productivity (EP) Eur/kgOE 6.728 2.883 2.178 17.020 [24]
Final energy consumption (FEC) Mtoe 36.940 51.050 0.500 221.000 [25]
Gross domestic product at market prices
(GDPMP) Eur/capita 27,259.556 19,048.670 5790.000 113,050.000 [26]

Recycling rate of municipal waste (RRMW) % 36.636 15.395 9.100 70.300 [27]
Domestic material consumption per capita
(DMC) t/capita 16.698 7.632 7.722 48.605 [28]

Environmental tax revenues (ETR) % 7.193 1.761 3.610 11.750 [29]
Share of energy from renewable sources (SERS) % 20.618 9.908 3.494 43.939 [30]



Appl. Sci. 2024, 14, 2997 6 of 18

The following input data were used: electricity prices by type of user, energy produc-
tivity, final energy consumption, gross domestic product at market prices, recycling rate of
municipal waste, domestic material consumption per capita, environmental tax revenue,
and share of energy from renewable sources.

The following input data were used:

- Electricity prices by type of user refer to different electricity prices for different cate-
gories of users.

- Energy productivity measures the efficiency with which the economy or system
converts energy into productive activity, i.e., how much economic value is generated
per unit of energy used.

- Final energy consumption refers to the amount of energy consumed by final users.
- Gross domestic product at market prices measures the value of all goods and services

produced in a country at a given time, usually during the year, at market prices. High
GDP can indicate a higher demand for energy due to increased economic activity,
which in turn can stimulate investment in energy production, especially in new
technologies and energy sources.

- Recycling rate of municipal waste refers to the percentage of municipal waste that is
recycled out of the total amount of municipal waste generated. A higher recycling
indicator can help reduce the demand for primary raw materials, which in turn can
reduce the energy required to extract and process these raw materials. In addition,
recycling of some materials, such as metals, may use less energy than the production
of primary raw materials, which also has an impact on the overall demand for energy.

- Domestic material consumption per capita is an indicator that measures the amount of
materials (expressed in tons or kilos per person) consumed in the country’s economy
per capita. Higher DMC may indicate greater consumption of natural resources and
the associated higher energy demand for extracting, processing and transporting
these materials.

- Environmental tax revenue is the revenue received by government from taxes levied
on business activities and products that have a negative impact on the environment.
Introducing and increasing these taxes can encourage investment in cleaner technolo-
gies and more efficient use of energy, thereby reducing demand for traditional, more
polluting energy sources. This revenue can also be used to finance renewable energy
and energy efficiency projects, thus supporting the transition to more sustainable
energy systems.

- Share of energy from renewable sources is the percentage of energy produced from
renewable sources (such as solar, wind, geothermal, hydropower, biomass, and ocean
energy) in the total energy consumption of a given region, country or the world [21].

The output data were energy recovery from waste. Energy recovery is a waste man-
agement method that converts the energy contained in waste into useful energy in the form
of heat, electricity or fuel through various processes such as combustion, pyrolysis, gassing
or methane fermentation [15].

The selection of ElasticNet, Decision Trees, and Neural Network models was based
on the need to evaluate the most effective method for energy recovery prediction from
municipal solid waste (MSW) using a limited dataset of 225 entries. These methods were
chosen for their unique strengths and ability to handle small datasets, which are critical
in accurately predicting outcomes where data are scarce. The models were performed
using the Matlab (Version R2023a) software with the Neural Network App. ElasticNet
is advantageous for the datasets where predictors are many or highly correlated, as it
combines L1 and L2 regularization to enhance model performance and prevent overfitting.
Decision Trees were selected for their simplicity and interpretability, which is particularly
useful for stakeholders to understand the decision paths. Neural Networks are adept at
capturing complex, non-linear patterns in data, making them suitable for modeling the
intricate processes involved in energy recovery. The juxtaposition of these methodologies
serves a comparative purpose to identify which algorithm is best suited for predicting with
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precision and reliability, given the data constraints and the intricate nature of the energy
recovery processes from MSW. The evaluation of the performance of these models can
provide insights into their robustness, accuracy, and utility in the application of waste-to-
energy conversion.

2.1. ElasticNet

ElasticNet is a sophisticated regularization technique in regression analysis that mit-
igates the limitations of ridge and lasso regression by combining their strengths. It is
particularly effective in the situations where there are multiple correlated features, where
lasso might arbitrarily select one feature among the correlated ones, and ridge might in-
clude all but not distinguish the importance. ElasticNet overcomes this by shrinking some
coefficients and setting others to zero, thus performing variable selection and complexity
regularization. This duality enables it to perform well even under conditions of high dimen-
sionality and multicollinearity among variables, where traditional methods may falter. By
incorporating both penalties, it ensures that the model remains sparse yet stable, which is
particularly useful when dealing with datasets that exhibit both features of large-scale and
high dimensionality. It is also computationally efficient and has been proven to outperform
its constituent methods, especially when dealing with data that include numerous features
that may influence the response variable [31].

This method is initiated with a linear system characterized by the state Equation (1)

Y = Xβ + ϵ (1)

where Y ∈ Rn represents the matrix of output variables, X ∈ Rn·(k+1) is the matrix of
input variables, β ∈ Rk+1 is a vector of unknown parameters, and ϵ ∈ Rn signifies the
series of disturbances.

Elastic Net is a regularization approach that merges L1 and L2 regularization strategies.
This technique unifies the L1 norm of LASSO, which can zero out coefficients (thereby
performing feature selection), with the L2 norm of ridge regression, which is optimal for
multicollinearity. Introduced by Tibshirani, the L1 aspect of LASSO offers sparsity, while
the L2 component from ridge regression distributes the penalty among all coefficients,
which helps when predictors are interdependent [32].

Elastic Net regularization, as a sophisticated technique, leverages the merits of both
L1 and L2 regularization to enhance predictive models. It extends beyond the capacity
of LASSO for feature selection by incorporating the ability of ridge regression to han-
dle collinear predictors, a situation where LASSO might falter. The dual regularization
approach of Elastic Net allows it to shrink coefficients like LASSO, which can set some
coefficients to zero for feature selection, and to distribute penalties across coefficients like
ridge regression, which is beneficial when there are multiple highly correlated variables.
This duality enables the Elastic Net to perform well in scenarios with numerous features,
particularly when there is a mix of relevant and irrelevant features, or when several features
are correlated. By adjusting the balance between the L1 and L2 penalties through its param-
eters, Elastic Net can be fine-tuned to fit the complexity and particularities of the dataset at
hand, making it highly adaptable for both prediction accuracy and interpretability.

The approach to modeling involved the presumption of a “normal” distribution within
the response variables, adhering to the conventional choice. For model validation and to
protect against overfitting, a technique of 3-fold cross-validation was applied to evaluate
deviance. The tuning of the model encompassed experimenting with an assortment of
alpha values, spanning from 0.1 to 1, in addition to a sequence of lambda values set at
predetermined intervals starting from 0.0001 to 1 (0.0001, 0.001, 0.01, 0.1, 1). This iterative
process aimed to pinpoint the optimal parameter mix that would lead to the lowest possible
Mean Squared Error (MSE).
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2.2. Decision Trees

Decision trees are a type of predictive modeling algorithm used in statistics, data min-
ing, and machine learning. Decision trees serve as a versatile tool in data analysis, capable
of tackling both classification and regression challenges. They operate by constructing a
hierarchy of “if, then” statements that logically lead to a decisive classification or value
estimation. In the realm of data mining, they are recognized for their predictive capabilities
and ease of interpretability. They segment the dataset into branches to form a tree structure,
where classification trees assign categorical labels, and regression trees predict continuous
outcomes. The iterative process of building a decision tree involves examining each variable
and its possible splits to optimize the selection at every branch [33,34].

Creators of the method suggest using the Gini coefficient, often referred to as a metric
of dispersion or heterogeneity within nodes. They advocate for dividing the entire space
spanned by k dimensions, Rk, into q separate and distinct sectors, ensuring that R1 joined
with R2 and so on through Rq completely encompasses Rk. For a specific node m, where m
ranges between 1 and q, aligning with the sector Rm, the Gini coefficient is computed as
follows (3):

QG(m) =
s

∑
j=1

pmi(1 − pmi) = 1 −
s

∑
j=1

p2
mi (2)

where pmi denotes the conditional probability of the j-th class within a node, and s rep-
resents the total number of classes. For node m, which contains nm observations, the
conditional probability for the j-th class is given by (3):

pmi =
#{y = ci : x ∈ Rm}

nm
(3)

The development process of Decision Tree (DT) models was meticulously structured,
centering on the mean-squared error as the optimization criterion. This specific criterion
was chosen to refine node splits, aiming to minimize MSE for enhanced predictions in
relation to the training data. Key parameters, such as the tree’s maximum depth, the
minimum number of samples required for a node split, and the minimum number of
samples for a leaf node, were systematically fine-tuned. This fine-tuning was pivotal to
balance the model’s complexity against overfitting risks. Additionally, the model’s structure
underwent evaluation by varying the count of trees from 50 to 200, in increments of five,
which was instrumental in identifying the most precise model configuration.

2.3. Neural Network

Neural networks are a core class within machine learning, widely applied to both
classification and regression tasks. The structure of ANN is complex, containing layers
that start with inputs and progressing through hidden layers with interconnected neurons.
These neurons process inputs using weights and biases, employing activation functions to
enable non-linearity, crucial for capturing complex patterns within data [35].

In a neural network, each neuron within a particular layer calculates an input sum-
mation. This is mathematically expressed by combining each input multiplied by its
corresponding weight, adding a bias specific to that neuron [36,37]. The formula for this
summation for any neuron is indexed as j in a given layer l as (4):

z(l)j = ∑
i

w(l)
ij xi + b(l)j (4)

where z(l)j is the aggregated input to neuron j in layer l, w(l)
ij represents the weight from

neuron i in the previous layer to neuron j in the current layer, xi is the input from neuron i
or the input feature if l is the input layer, and b(l)j is the bias term for neuron j in layer l.

Activation functions enable neurons in a neural network to capture and represent
complex data patterns by introducing non-linear dynamics into the system. When an
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activation function f is applied to the aggregated sum z(l)j for neuron j in layer l, the

resulting output a(l)j is given by (5):

a(l)j = f
(

z(l)j

)
(5)

This transformation is pivotal for the ability of the network to perform tasks beyond
linear separation, which is essential for tackling intricate problems in machine learning.

Neural networks are renowned for their proficient handling of intricate and non-linear
data patterns, which is vital for numerous complex tasks such as visual and auditory
recognition, as well as predictive analysis. They adapt through a method of iterative
optimization, where connection weights are tuned in response to discrepancies between
actual and estimated outputs, with the goal of reducing error within the training dataset.
This flexibility and profound learning capacity are pivotal for the progression of machine
learning and artificial intelligence.

A neural network with a single hidden layer was constructed, varying the neurons
from 2 to 20. The selection of this particular neuron count was the result of an iterative
testing process. Various neuron configurations were evaluated to pinpoint the most effective
number that strikes an optimal balance between the complexity of the model and its
predictive performance. It evaluated three learning algorithms: Levenberg-Marquardt
(L-M), Bayesian Regularization (BR), and Scaled Conjugate Gradient (SCG), chosen for their
effectiveness. The L-M algorithm, though swift, is memory-intensive. Training ceases when
validation errors stop decreasing, signaling overfitting. BR, albeit slower, tends to generalize
better, particularly for complex datasets, halting training as it adjusts for overfitting. SCG,
a more memory-efficient method, also stops when validation error reduction stalls. The
dataset consisted of 225 observations. The dataset split was comprised of 75% for training,
with the remaining 30% equally divided between validation and testing.

2.4. Modeling Methodology and Quality Indicators

The set of variables used included several energy metrics: Electricity prices by type of
user, Energy productivity, Final energy consumption, Gross domestic product at market
prices, Recycling rate of municipal waste, Domestic material consumption per capita,
Environmental tax revenues, and Share of energy from renewable sources.

The initial phase of the study was dedicated to examining the interrelationships
between variables through correlation analysis. This step is crucial as interdependencies
among input variables can introduce ambiguity in the model’s learning phase. Typically,
Pearson’s correlation analysis is employed to detect and mitigate multicollinearity by
discarding one or more interdependent variables [38].

After analyzing the correlation and determining the input data for modeling energy
recovery from MSW, the modeling phase began using three machine learning methods such
as ElasticNet, Decision Trees, and Neural Networks. The methodology for the development
of this research is shown in the flowchart below (Figure 1).
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The quality of the models was evaluated based on specific metrics listed in Table 3.
The selection of quality indicators such as Regression Value (R), Mean Squared Error
(MSE), Root Mean Squared Error (RMSE), Relative Importance of Errors (RIE), and Mean
Absolute Error (MAE) is grounded in their robustness for evaluating predictive models.
The Regression Value (R) assesses the strength and direction of the linear relationship
between observed and predicted values. MSE and RMSE are crucial for determining the
average power of prediction errors, with RMSE giving more weight to larger errors due to
the squaring process. RIE offers a normalized comparison of errors, providing insight into
the relative magnitude of predictive inaccuracies. Lastly, MAE provides an average of the
absolute errors, which is especially useful for understanding the practical significance of
the prediction errors in the context of energy recovery. Together, these indicators deliver a
comprehensive understanding of model performance, balancing both the magnitude of
errors and the consistency of the model’s predictive ability.

Table 3. Quality indicators used to evaluate the received models.

Quality Indicator Formula Meaning of Symbols

Regression value (R) R
(
y′, y*) = cov(y′ ,y*)

σy′σy*
, Rϵ < 0, 1 > σy′—standard deviation of reference values of

the energy recovery,
σy*—standard deviation of predicted values

the energy recovery,
yi is the actual value of the energy recovery,

and ŷi denotes the value of the energy recovery
for the i-th observation obtained from

the model

Mean Squared Error (MSE) MSE = 1
n

n
∑

n=1
(ŷi − yi)

2

Root Mean Square Error (RMSE) RMSE =

√
∑n

i=1(yi−ŷi)
2

n
Relative Importance of Errors (RIE) RIE = ∥y′−y∥

∥y∥

Mean Absolute Error (MAE) MAE = 1
N

N
∑

i=1
(|yi − ŷi|)

3. Results

Pearson’s correlation analysis was conducted to discern interdependencies among the
input energy variables, with findings detailed in Table 4. No variable was highly correlated,
so all parameters were included in further analyses.

Table 4. Correlation analysis results.

Variable EPTU EP FEC GDPMP RRMW DMC ETR SERS

EPTU 1.000000 0.749484 0.490864 0.443991 0.502364 −0.101240 0.064623 0.005785
EP 0.749484 1.000000 0.312311 0.716978 0.505365 −0.025537 −0.152443 0.048732
FEC 0.490864 0.312311 1.000000 0.132517 0.453852 −0.241893 0.161477 −0.209181
GDPMP 0.443991 0.716978 0.132517 1.000000 0.546917 0.248230 −0.155644 −0.157976
RRMW 0.502364 0.505365 0.453852 0.546917 1.000000 −0.003523 −0.196494 0.044154
DMC −0.101240 −0.025537 −0.241893 0.248230 −0.003523 1.000000 −0.256747 0.478000
ETR 0.064623 −0.152443 0.161477 −0.155644 −0.196494 −0.256747 1.000000 −0.314553
SERS 0.005785 0.048732 −0.209181 −0.157976 0.044154 0.478000 −0.314553 1.000000

The first modeling method analyzed was ElasticNet, for which the best model was
obtained with alpha set to 1 and lambda set to a very low value of 0.0001. Table 5 provides
an exhaustive breakdown of all the key metrics. By setting alpha to 1, the strategy shifted
toward the use of a lasso regression, emphasizing the importance of selecting significant
features. The choice of a low lambda value, 0.0001, indicated a slight regularization effect to
preserve the flexibility of the model. The performance of the model was remarkable, with
a Mean Squared Error of 2372.8, demonstrating its ability to fit the data set. The model’s
prediction error spread was captured by a Root Mean Squared Error of 48.7114. In addition,
the model’s prediction accuracy was highlighted by a Relative Importance of Errors of
0.3012. The Mean Absolute Error of 36.97 underscored the model’s consistent predictive
ability. The regression analysis of the entire data set with the ElasticNet model is shown in
Figure 2.
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Table 5. Results of ElasticNet model quality indicators.

Quality Indicators ElasticNet Model

R (all data) 0.90716
MSE 2372.8

RMSE 48.7114
RIE 0.3012

MAE 36.97
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Figure 2. Regression statistics for the total set for ElasticNet model.

The second analyzed method for modeling the energy recovery is decision trees. The
process involved varying the number of trees within a range from 50 to 200 trees, with a
step of five trees. The best DT modeling results were obtained for 115 trees. The graph
in Figure 3 shows the MSE for different numbers of trees in a DT model. The model’s
consistent predictive ability was underscored by a MAE of 12.0148. Additionally, its
performance was remarkable, with a MSE of 253.57, demonstrating its ability to fit the
dataset. The prediction error spread was captured by a RMSE of 15.9239. Furthermore,
the model’s prediction accuracy was highlighted by a RIE of 0.0984. These indicators are
presented in Table 6. The regression analysis of the entire dataset with the DT model is
shown in Figure 4.
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Table 6. Results of Decision Trees model quality indicators.

Quality Indicators Decision Trees Model

R (all data) 0.9905
MSE 253.57

RMSE 15.9239
RIE 0.0984

MAE 12.0148
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The previous method of analysis was neural networks. Optimal outcomes in neural
network modelling were achieved using a hidden layer consisting of 15 neurons. The
architecture of the neural network is illustrated in Figure 5. During the training phase, peak
model efficiency was achieved at the 10th epoch, with a metric of 580.0972, as shown in
Figure 6a. Table 7 summarizes the training progress metrics for the best neural network
model, including the algorithm used, number of epochs, performance, best validation
performance, and gradient values.
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Table 7. Summary of neural network training metrics.

Training Progress The Best Neural Network Model

Training algorithm Levenberg-Marquardt
Epoch 16

Performance 61
Best validation performance 5,800,972 at epoch 10

Gradient 302

To prevent the model from overfitting, a scenario where it performs well on training
data but poorly on new data, the training process was meticulously observed. A halt in
training was initiated upon observing six successive rises in the error during validation,
or if there was no improvement in error rates. This method, often referred to as “early
stopping”, serves to preempt overfitting by ceasing training once there is a decline in the
model’s validation performance. Figure 6b illustrates the progression of the network’s
training process. Figure 7 shows an error histogram representing the distribution of errors
between predicted results and actual targets in the process of training the best neural
network model. The errors were divided into 20 ranges, indicating the frequency of errors
in specific ranges. Most of the errors cluster around the zero-error line, indicative of a high
number of predictions being close to the actual values. The shape of the distribution bears
resemblance to a Gaussian curve, characterized by its symmetry around the mean error.
This resemblance generally suggests that the errors are predominantly random and the
model is not systematically overestimating or underestimating the targets.
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Figure 8 shows four scatter plots, each representing a different data set in the context of
training a neural network model: training, validation, testing, and all data. Each scatterplot
shows the relationship between predicted results (y-axis) and actual target values (x-axis),
with a best-fit line indicating the model’s predictive performance. The dotted line Y = T
represents the ideal scenario where the predicted output equals the target value. The closer
the data points and the fit line are to this dotted line, the better the model’s predictions.
The fact that the fit lines in each plot are close to the Y = T line indicates good model
performance across all datasets.
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Figure 8. Regression statistics for individual sets and the total set for neural network model.

The results of the comparison of the analyzed models are presented in Table 8. The
quality of each model was compared using indicators such as R, MSE, RMSE, RIE and MAE.
The ElasticNet model shows a lower R-squared value of 0.90716, suggesting it explains
less variance in the data compared to the other two models, which both exhibit R-squared
values closer to 1, indicating a very high degree of variance explanation. The MSE and
RMSE for the ElasticNet model are substantially higher than those for the Decision Trees
and Neural Networks, implying larger average and root-mean-squared prediction errors. In
terms of the RIE, ElasticNet has the highest value, and Decision Trees the lowest, indicating
that Decision Trees have the least relative error. Finally, the MAE is significantly higher
for ElasticNet, somewhat lower for Decision Trees, and the lowest for Neural Networks,
suggesting that the Neural Network model has the best average prediction accuracy among
the three. In conclusion, while all models show competency in predictions, the Neural
Network model outperforms the other two in terms of these quality indicators, with
Decision Trees following and ElasticNet lagging behind, particularly in the error metrics.

Table 8. Comparison of the analyzed models.

Quality Indicators ElasticNet Model Decision Trees Model Neural Network Model

R (all data) 0.90716 0.9905 0.9911
MSE 2372.8 253.57 242.09

RMSE 48.7114 15.9239 15.5593
RIE 0.3012 0.0984 0.0962

MAE 36.97 12.0148 11.1631
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4. Discussion

Three machine learning methods were used in the research presented: Elastic Net,
Decision Trees, and Neural Network to model energy recovery from waste. The input
data used were indicators related to different aspects of energy management, economics,
and environmental protection: Electricity Prices by Type of User, Energy Productivity,
Final Energy Consumption, Gross Domestic Product at Market Prices, Recycling Rate
of Municipal Waste, Household Material Consumption per Capita, Environmental Tax
Revenues, and Share of Energy from Renewable Sources. These data are used to forecast
energy recovery because, taken together, they provide a comprehensive picture of both
energy demand and supply, the effectiveness of its use, and the impact of environmental
and economic policies on the energy sector. Analyzing these indicators provides a better
understanding of how different factors affect the opportunities for energy recovery and
identifies the trends that may affect future energy recovery needs and opportunities. Such
a comprehensive approach is necessary to produce accurate and useful forecasts in a
dynamically changing energy environment.

The research conducted indicates that the ANN model is more effective and accurate
in predicting energy recovery from waste compared to the Elastic Net and Decision Trees
methods. The calculation and analysis of the quality indicators of the machine learning
models, such as R, MSE, RMSE, RIE, and MAE, allowed them to be evaluated in terms of
accuracy, stability, and ability to generalize. High R values indicate a strong correlation
between predictions and actual values, while high MSE and MAE values indicate less
accurate predictions. The neural network model obtained the lowest MSE (242.09) and
MAE (11.1631) and the highest R value (0.9911); it managed better with the input data.
Decision trees, despite being a simpler model, also showed high efficiency: R = 0.9905, MSE
= 253.57, and MAE = 12.0148, suggesting that the data structure fits well with regression-
based models. ElasticNet, being a linear method, does not cope with the dependencies
of the input data, which is manifested by higher errors (MSE = 2372.8; MAE = 36.97).
When building ANN models, the choice of the number of layers, neurons, and activation
functions offers much greater flexibility in adapting the model, making it a preferred choice
for building models. The disadvantage of ANN models is the difficulty in interpreting the
results obtained compared to ElasticNet and Decision Trees.

There are few models for forecasting energy recovery from waste based on economic,
environmental or social indicators. Adamovic et al. (2018) developed a General Regression
Neural Network model to forecast the annual production of primary energy from fixed
municipal waste in European countries [39]. As input data they used the following: Hu-
man development index, Gross domestic product, Domestic material consumption, Urban
population share, MSW recycling rate, MSW generated, Energy taxes, Share of renewable
energy in gross final energy consumption, Energy productivity, Number of main electric re-
tailers per million inhabitants, Final energy consumption, Electricity prices by medium-size
industry, and Electricity prices by medium-size households. The model was characterized
by the determination factor R2 = 0.995 and the mean absolute percentage error MAPE =
7.757% [39]. Elshabour et al. (2021) developed an artificial neural network model to predict
the amount of waste in Poland [40]. As input data, the following were used: Population,
Income per capita, Employment to population ratio, Number of enterprises registered in
the region per 10,000 inhabitants, and Number of enterprises by type of business activity.
The model yielded R = 0.98 [40].

Comparative experiments are an important element in assessing the effectiveness
of machine learning models. Much of the current research is based on a single machine
learning model without considering other machine learning models [8,41]. It is important
to conduct tests on different machine learning models, as each of them is characterized by
unique advantages and disadvantages. Different models analyze data in their own way,
which can lead to different results in terms of accuracy, efficiency, and usability for certain
types of data. In the future, it will be crucial to create solid reference points and detailed
descriptions of machine learning models, which will allow continuing research based
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on previous achievements as well as accelerate progress in the development of machine
learning models and their application.

The studies presented show that machine learning models can predict energy recovery
from waste. The modeling and prediction of energy recovery from waste using machine
learning techniques and economic and environmental indicators can help to make invest-
ment decisions on potential sources and recovery technologies, optimize processes, and
assess the economic and environmental impact of energy recovery projects. The use of
these indicators allows for a more integrated and holistic approach to energy and waste
management, which is crucial for promoting sustainable development.

5. Conclusions

This goal of this paper was to evaluate the most effective machine learning technique
for predicting energy recovery from waste. It uniquely compares three methods: ElasticNet,
Decision Trees, and Neural Networks, considering quality indicators such as R, MSE, RMSE,
RIE, and MAE. ElasticNet had an R-value of 0.90716, but it also showed higher error metrics,
such as an MSE of 2372.8, compared to Decision Trees and Neural Networks. Decision Trees
had a lower MSE of 253.57 and an R-value of 0.9905, indicating better performance than
ElasticNet. Neural Networks, with an R-value of 0.9911 and the lowest MSE of 242.09 along
with the lowest MAE of 11.1631, slightly outperformed Decision Trees, suggesting it was
the most accurate model among the three. The use of ‘early stopping’ to avoid overfitting
and the Gaussian-like distribution of errors in the neural network error histogram suggest
robust training methodologies were employed.

The comparison between ElasticNet, Decision Trees, and Neural Networks demon-
strates that while all three methodologies offer valuable insights into energy recovery
processes, Neural Networks exhibit a superior ability to handle the complex, non-linear
relationships inherent in waste-to-energy data. This finding underscores the importance
of adopting advanced computational techniques to enhance the predictive modeling of
energy recovery systems.

This research opens the way for further studies to explore other machine learning
algorithms, incorporate more diverse datasets, and extend the analysis to other regions and
waste types. Investigating the economic and environmental impacts of implementing waste-
to-energy solutions at scale can also provide valuable insights for sustainable development.
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