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Abstract: Controllable Text Generation (CTG) aims to modify the output of a Language Model
(LM) to meet specific constraints. For example, in a customer service conversation, responses
from the agent should ideally be soothing and address the user’s dissatisfaction or complaints.
This imposes significant demands on controlling language model output. However, demerits exist
among traditional methods. Promoting and fine-tuning language models exhibit the “hallucination”
phenomenon and cannot guarantee complete adherence to constraints. Conditional language models
(CLM), which map control codes into LM representations or latent space, require training the modified
language models from scratch and a high amount of customized dataset is demanded. Decoding-
time methods employ Bayesian Rules to modify the output of the LM or model constraints as a
combination of energy functions and update the output along the low-energy direction. Both methods
are confronted with the efficiency sampling problem. Moreover, there are no methods that consider
the relation between constraints weights and the contexts, as is essential in actual applications such
as customer service scenarios. To alleviate the problems mentioned above, we propose Controllable
Text Generation with Generative Adversarial Networks (CTGGAN), which utilizes a language
model with logits bias as the Generator to produce constrained text and employs the Discriminator
with learnable constraint weight combinations to score and update the generation. We evaluate the
method in the text completion task and Chinese customer service dialogues scenario, and our method
shows superior performance in metrics such as PPL and Dist-3. In addition, CTGGAN also exhibits
efficient decoding compared to other methods.

Keywords: controllable text generation; generative adversarial network; language model; GPT

1. Introduction

The purpose of controllable text generation is to integrate constraints into the original
language models during the encoding process or the decoding process, so that the gener-
ated text can satisfy the pre-defined constraints [1–3]. For example, we aim to complete
texts with positive sentiment, or describe contents that relate to the “large language mod-
els”, etc., where “positive sentiment” and “related to...” are all constraints. Controllable
text generation can be achieved undemandingly by a fine-tuning strategy, which utilizes
“description of the constraint (e.g., ‘express with a positive sentiment’)” as the prompt, and
consumes samples that satisfy the constraints as the training data to fine-tune the language
model. However, this method can only modify the generated results to make them as close
as possible to the constraints, but cannot ensure an absolute accuracy [4,5]. At the same
time, during the fine-tuning process, it is susceptible to destroying the original output
probability of the language model, resulting in catastrophic forgetting [6].

Conditional Language Model (CLM) is also a solution for CTG [7–14]. Generally,
of the CLMs, “control codes” (e.g., types for topic or sentiment, or some preset special
notations) that describe constraints are supplemented ahead of the source texts to predict a

Appl. Sci. 2024, 14, 3106. https://doi.org/10.3390/app14073106 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14073106
https://doi.org/10.3390/app14073106
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app14073106
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14073106?type=check_update&version=1


Appl. Sci. 2024, 14, 3106 2 of 16

conditional generation probability. Representations of “control codes” can be attached to
texts both in a parallel and hierarchical manner. In addition, explicitly mapping constraints
into latent space for control is another type of CLM. After mapping, a joint distribution for
constraints and latent representation is built for CTG. Nevertheless, both types mentioned
above require a complex neural network design and training from scratch where a specially
tailored dataset is also demanded.

Decoding-time methods are training-free for CTG solutions. A common approach
is to modify the original generation probability of the next token to the product with the
probability from the constraint discriminator according to the Bayesian principle [15–18].
For example, the decoding probability of the next token “want” by the original language
model is 0.5 and that of “like” is 0.4. If only the language model is used for decoding,
then “want” should be selected as the next token. However, the discriminator’s probability
of identifying “want” is 0.2, while that of identifying “like” is 0.4. Therefore, under
comprehensive consideration, when the constraints are met, the probability of selecting
“want” for the next token is 0.1 (i.e., 0.5 × 0.2 = 0.1), while the probability of selecting
“like” is 0.16, then “like” is finally selected as the decoding token. However, this approach
requires to solve the normalized value of the probability. Considering the vocabulary size
of the decoding space, a large number of samples must be used to obtain an approximate
solution, making it time-consuming and labor-intensive. As a compromise method, if a
small proportion of samples (i.e., the top N samples) are chosen for calculation, it will not fully
guarantee that all outputs meet the constraints. Another family of methods [19–22] specifies an
energy function by plugging in constraints, allowing for heterogeneous constraint to be
combined with each other. Nevertheless, the sampling efficiency is still a challenge that
needs to be addressed.

Moreover, none of the methods above explicitly model the relationship between
the weights of constraints and the training samples (if the training process is necessary).
Intuitively speaking, the constrained weights vary under different contexts which can be
derived from training data, but all the methods attach static weights for the discriminators
when the constraint classifiers are employed in the models.

The method we propose in this paper adopts the tunable bias which is similar to
BOLT [22], but optimizes the bias using a GANs-based [23] approach instead where the
generation with bias is measured and updated by Discriminator score. The Discriminator
is composed of a learnable combination of constraints and provides a reward function to
gauge the generation. After biases are tuned, the knowledge of the Discriminator will be
integrated into the bias network (i.e., the Generator). In the end, when generating text, only
the Generator part is needed to directly generate texts that meet attributes (e.g., sentiment
control and fluency), and the decoding process is just similar to the original language
model, which is very convenient. Our contributions include the following three points:

1. We propose to use GANs to combine the language model with various discriminators.
Through the adversarial training process, the rewards derived from the discrimina-
tors can be integrated into the language model decoding process to correctly guide
generations under the constraints.

2. We are the first to propose the hypothesis that the weight of various constraints should
vary with the different contexts ahead, and design an algorithm to learn this dynamic
weight through training samples.

3. We perform text completion tasks on 15 kinds of English prefixes, and also make
evaluations on customer service dialogue scenarios with soothing words to verify our
algorithm. Both of them demonstrate the effectiveness of the proposed method.

2. Related Work

There are two categories of algorithms to solve the CTG problem: conditional language
models and decoding-time methods.

• Conditional Language Models: The conditional language models (CLMs) can be
achieved with different implementations. For instance:
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CTLR model [7] splices control codes with the text, and expects to learn the association
between the generated text and the control codes through the language model. The control
codes usually indicate a particular domain of the training sample, e.g., “Books”, “Reviews”,
etc., or more complex, such as “Reviews Rating:5.0”. The model used in CTLR is exactly a
language model without any improvement.

GSUM [8] encodes the control codes (i.e., the guidance signals mentioned in the paper)
and the texts separately with a shared transformer encoder. During decoding, both features
of the control codes and the texts are used for attention calculations. Concretely, they are
successively introduced into two consecutive cross-attention structures to complete the
guided abstractive summarization.

GeDi [9] trains a conditional language model to guide another language model, e.g.,
GPT-2, to generate controlled texts. It uses a pair of opposite control codes, such as
“positive” and “negative”, to obtain the discriminative probabilities on both sentiments.
When decoding, the Bayes rule is employed to get the true probabilities of tokens under
the specific constraint.

Attribute alignment [10] holds the idea that adding control codes ahead of texts
may break the originally learned sequential dependencies; therefore, it learns a projection
function for both the key and value features of the control codes (which are derived from
a language model) and fuses them into the key/value representations of the text in the
corresponding layer for a modified attention calculation.

Contrastive Prefixes [11] uses a categorical distribution to map the text to attribute
category Z, and further learns a projection network to represent it as H(Z) as attribute
prefix representation. For decoding, the prefix representation is attached ahead of the text
feature so as to generate controlled results.

LantentOPs [12] and MacLaSa [13] employs samples with attribute labels to train a
VAE model which maps the attributes to latent space Z. When generating, it first obtains
the appropriate z through the ODE diffusion process, and finally uses the language model,
i.e., the VAE decoder, to generate texts that satisfy the constraints.

Gu et al. [14] trains an auto-encoder framework where the encoder projects a sentence
into latent space and the decoder, i.e., a fixed language model, reconstructs the same
sentence with the latent values. For controllable generation, it establishes links between the
latent space and a prior space (which obeys the Gaussian distribution) using normalizing
flow and samples from the prior space to derive the final CTG results.

• Decoding-time Methods: Different from CLMs, decoding-time methods require no
pre-trained language model training.

PPLM [15] uses an attribute model p(a|x) which is learned from an autoregressive
LM’s top-level hidden layer to measure current context and modify the LM’s gradient via
gradient ascent with increasing the probability of the desired attribute at each step. In case
of problems of repetitive and low-quality texts, the authors compute the mean over the
Dist-N (N ∈ {1, 2, 3}) scores and discard samples with a mean score that is less than the
preset threshold.

Based on Bayesian factorization, Fudge [16] multiplies the output probability of the
original language model with that of the attribute discriminator (i.e., a constraint classifier)
to re-rank the possibility of the next token. At each step, Fudge first samples 200 top tokens
according to the language model’s output, and for each token calculates its probability (the
current context) with a discriminator. After that, the Bayesian rule mentioned above is
employed to rewrite the probabilities of the next tokens (the top 200) and provides a new
order to them.

DExperts [17] uses desired attributes (such as positive sentiment) and undesired
attributes (such as negative sentiment) as a controller pair for CTG. By increasing the
discrimination probability of desired attributes and reducing the probability of undesired
attributes, the final generated results would satisfy the constraints. Concretely, the model
calculates logits from both desired and undesired attributes and attaches the differences
between them to the logits of the original language model. With the modification, a con-
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straint generation with a high probability under the desired attribute and a low probability
under the undesired will be derived.

In the paper [18], the authors use a contrastive generator to generate a positive sample
that satisfies the constraints and several negative samples that do not meet the constraints,
and use them to calculate the posterior probability of the constraints. By maximizing the
product of language model generation probability and the above posterior probability, the
algorithm makes the final generated result controllable. In order to increase the convergence
of generated texts, an external discriminator is introduced to provide measurement of the
current context.

Mireshghallah et al. [19] view the product of constraint experts (i.e., attribute discrimi-
nators, Hamming distance expert, BertScore expert, etc.) as a probabilistic energy model
and then sample using a gradient-free Gibbs sampler to produce the sequences that mini-
mize the energy function, with lower energy indicating more constraints being satisfied.

Kumar et al. [20] represent the energy functions as a Lagrangian and perform updates
on a much smaller embedding space which allows longer sequence generation.

The iterative sampling of these methods is typically slow in practice. In order to
improve sampling efficiency, Qin et al. [21] introduce a gradient-based MCMC method
Langevin Dynamics and perform sampling by iteratively updating a continuous relaxation
of text using gradients of the energy function to solve the problem of defining gradient with
discrete sampling. Liu et al. [22] propose the BOLT method which adds a set of biases to the
predicted logits of the pre-trained language model at each decoding step where the biases
are tuned to steer the decoding process towards low-energy direction. The straight-through
gradient estimator (STE) is employed to bypass the discrete token in the backward pass.

The above methods set a reasonable and feasible optimization direction for CTG,
making the next step of sampling more directional, which can avoid the dilemma of solving
the normalized probability value through a large number of samples required when model-
ing conditional language models. However, these methods modify the language model
output during the decoding stage, making the decoding process relatively time-consuming.
Especially in real-time application scenarios such as customer service conversations, the
algorithms that rely on the correction of the decoding process are obviously unacceptable.
At the same time, the methods above are based on the assumption that the weights of
different constraints are fixed. Every time we generate text, we need to use empirical
knowledge to set the proportions. It is obviously inconsistent with the real scenarios that
the weights vary with the contexts ahead.

3. Materials and Methods

In this section, we first introduce two typical neural networks of language models
(Section 3.1) and generative adversarial networks (Section 3.2) which are the bedrock of
our work. After that, we introduce the details of the proposed method (Section 3.3) and
explain how to improve the groundworks (Sections 3.1 and 3.2) for CTG adaption.

3.1. Introduction to Language Models

Represented by GPT-2 [24], a language model is typically constructed as a distribution
over a text composed of n tokens: t(t1, t2, ..., tn), aiming to reflect the probability of the
entire text as a whole.

For the text mentioned above, the probability calculation formula can be expressed as:

p(t(t1, t2, ..., tn)) = p(t1) ∗ p(t2|t1) ∗ ... ∗ p(ti|t1:i−1) ∗ ... ∗ p(tn|t1:n−1), (1)

In this formula, p(ti|t1:i−1) represents the probability of generating the i-th token,
which is jointly determined by the previously generated tokens from 1 to i − 1. In other
words, the probability of the i-th token appearing in the sentence should be equal to the
conditional probability given the occurrence of the previous tokens from 1 to i − 1.
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According to the Maximum Likelihood Estimation method, when the true sample is
known as ttrue, the goal of training a language model is to maximize the log-likelihood estimation,
i.e., log(p(ttrue)). When transformed into a loss function, the objective is to minimize:

loss = −log(p(ttrue)) (2)

And the loss is typically computed using cross-entropy:

loss = CE(p(ttrue), ttrue) (3)

Language model decoding is usually implemented token by token, where each decod-
ing token is added to the end of the generated text, and then the next token is decoded.
Greedy search or beam search is commonly employed for this process. Greedy search
involves selecting the token with the maximum probability at each step, and thus decoding
sequentially. Beam search is an improved algorithm that strikes a balance between greedy
search and an exhaustive approach. It has a hyper-parameter called beam size, denoted
as k. In the first decoding step, it selects the tokens corresponding to the top k probability
values as the candidate tokens. In every subsequent step, it will decode k2 possible tokens
based on the previous k tokens (i.e., k current tokens for a previous token), and still choose
k candidate tokens with top probability values. This process continues until the final token
for the text reaches, and the combination of tokens with the maximum probability value is
chosen as the generated text.

3.2. Introduction to GANs

Generative Adversarial Networks (GANs) [23] were initially introduced by Ian Good-
fellow in 2014 for the image generation task. GANs comprise a Generator and a Discrim-
inator. The Generator aims to produce samples that deceive the Discriminator into the
status of being unable to distinguish between generated and real samples. In addition, the
Discriminator tries to capture differences between generated and real samples. Through a
zero-sum game (the adversarial training process), GANs reach a Nash Equilibrium where
the optimal strategies for the Generator and Discriminator result in a balance, and the
abilities for them are enhanced. As a sequence, the Discriminator makes a distinction
between Generated and real data with a probability of 1/2.

The GANs loss function is expressed as:

Ex∼xGen log(1 − Dis(x)) + Ex∼xtrue log(Dis(x)). (4)

Specifically, Generator loss is expressed as min(Ex∼xGen log(1 − Dis(x))) and Discrimi-
nator loss is expressed as max(Ex∼xGen log(1 − Dis(x)) + Ex∼xtrue log(Dis(x))).

3.3. Proposed Method

CTG is generally modeled as p(Y|X, A), where X represents the preceding text (in-
cluding prompts like “Please use soothing language to address the user’s problem” or
incomplete texts like “the potato...”). A refers to constraints, such as the requirement to
reply with a soothing tone in the customer service scenario or attach a positive sentiment
to sentences for the text completion task. Y represents the generated text under these
constraints. In the case of a single constraint or a combination of fixed-weight constraints,
the equation can be further expressed as：

p(Y|X, W1 A1 + ...Wi Ai + ...Wn An), (5)

where Wi represents the weight of constraint Ai in the overall constraint combination.
These weights are fixed based on prior knowledge, satisfying the condition ∑n

i=1(Wi) = 1.
In practical scenarios, constraint weights are often alterable and closely related to

the context. For example, in a task like “complete the text with positive sentiment”, the
subsequent strength of positive sentiment depends on the preceding text. If the previous
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text is “it is...”, then the continuation tokens should have a strong positive sentiment, e.g.,
“happy”. However, if the previous text is “it is great...”, then a little strength of positive
sentiment is sufficient, as “great” already provides a significant positive sentiment meaning.
In customer service dialogues, the text constraints dynamically change as the conversation
moves forward. For instance, if the user asks, “I topped up 50 yuan this morning, but I
received a reminder about outstanding fees tonight, what’s going on?”, the staff’s response
should primarily focus on using a soothing reply style to address the user’s dissatisfaction
or concerns. If the user follows up with “Can you check my detailed expenses?”, at this
point, the staff only needs to perform a normal business query, as the user’s negative
emotions have almost been alleviated. The example illustrates that constraint weights in
Equation (5) are continuously changing with the progress of the conversation and cannot
be simply represented as a static value, i.e., Wi. Therefore, we propose a modification to the
constraint conditions, where real-world CTG can be expressed as:

p(Y|X,
n

∑
i=1

W(X, Ai) ∗ Ai), (6)

with W(X, Ai) (a function of the context and current constraint) representing the current
weight of constraint Ai.

For the neural network’s design, as is shown in Figure 1, inspired by BOLT [22], we
add logits bias to the original language model’s outputs for correction. The corrected
output is expressed as:

logits = logitsLM + logitsb, (7)

where logitsLM represents the original language model output, and logitsb represents the
correction to the language model. Training logitsb directly with the corpus, similar to
fine-tuning a language model, can alleviate the “hallucination” phenomenon but does not
guarantee that generated text will always meet the constraints. Therefore, according to
the modified CTG expression in Equation (6), we need to evaluate the logit results for
constraint satisfaction.

Figure 1. The overall framework of our model. We use the original LM encoder (such as GPT-2)
to encode the text, leaving the original logits part unchanged (the dusty blue part in top-left of
the picture), and adding the logits bias network (the orange part in top-left of the picture) as a
modification to the original LM. The above network forms a complete Generator, which is used
to generate text that satisfies the constraints. The right part is the Discriminator network, which
is composed of multiple discriminators responsible for evaluating the text. The weight of each
discriminator is represented by the text encoding and the discriminator embedding, determined by
the similarity.
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If continuing with the BOLT [22] method to satisfy constraints, which utilizes an energy
function during inference to gradually adjust energy values to be as small as possible, we
cannot learn W(X, Ai) in Equation (6). Moreover, if using the CLM methods which model
the true probability as p = pLM ∗ pW(X,A1)

A1
∗ ... ∗ pW(X,An)

An
/Z, large-scale negative sampling

will be required to approximate the normalization value Z. Therefore, we apply GANs to
separate the logitsb network from the constraint combination network W(X, Ai) ∗ Ai. This
not only avoids the issue of extensive negative sampling but also, after the model has been
trained, allows expeditious CTG by combining the logitsb network with the original output
of the language model; namely, the efficiency of the decoding process would align perfectly
with that of the original language model, without the need for additional operations such
as negative sampling, making it more convenient.

Specifically, we use a language model, e.g., GPT-2, with biased logitsb (modeled as
Equation (7)) as the Generator part to generate text that satisfies the constraints combination.
Additionally, the parameters of the original language model are frozen, and only those
of the logitsb network participate in back-propagation updates. The Discriminator part is
designed based on the contrast learning approach where the positive samples come from
the training corpus itself, while the negative samples are obtained by sampling text from
the Generator network. We employ W(X, Ai) for samples’ scores calculation.

• Generator and Optimization: For the Generator part, i.e., logits = logitsLM + logitsb,
the probability of output text can be expressed as:

p(Y|X, A) = so f tmax(logitsLM1 + logitsb1) ∗ ...

so f tmax(logitsLMi + logitsbi
) ∗ ... ∗ so f tmax(logitsLMn + logitsbn).

(8)

The goal of the Generator part is to make the distribution of generated text as close as
possible to that of real corpora to deceive the Discriminator. In this context, greedy search
is used to obtain the Generator’s sampled result of current state, i.e.,

Gen(psample) = max(so f tmax(logitsLM1 + logitsb1)) ∗ ...

max(so f tmax(logitsLMi + logitsbi
)) ∗ ... ∗ max(so f tmax(logitsLMn + logitsbn)).

(9)

The text generated by argmax is denoted as Ygen. As argmax operator is not differen-
tiable, the corresponding parameters cannot be updated according to the original GANs
loss function. Therefore, we use the reinforcement learning approach (REINFORCE) [25] to
redefine the loss function:

∇Gen =
1
n ∑(logp(Ygen|X, A)) ∗ Reward(Ygen). (10)

Here, the reward function is calculated using sigmoid(scoregen − scoretrue), where
scoregen is the score of the generated sample Ygen, and scoretrue is the score of the real corpus
data Ytrue. The scores are determined through the Discriminator’s constraint combination,
i.e., ∑ W(X, Ai) ∗ Ai. Nevertheless, using this loss function alone may lead to instability
in GANs training, failing to achieve the expected generation effect or even disrupting
the distribution quality of the original language model. Therefore, without affecting the
GANs loss function, we add the language model’s inherent loss function (Equation (3)) as
a supplement to the Generator loss function:

lossLM = CE(p(Y|X, A), label) (11)

where p(Y|X, A) is the language model with logits bias (Equation (7)) from the previous
text, and label is the real corpus tokens.

• Discriminator and Optimization: The Discriminator is responsible for scoring the
qualities of texts, achieved through the combination of various constraint conditions.
In this paper, for simplicity, two constraint conditions are set: positive sentiment
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and fluency. The former can be implemented using a discriminative model such as
BERT [26], where the input is a piece of text, and the output is the probability of
being positive, i.e., scorepos = BERT(Y). The latter can be calculated using perplex-
ity (PPL), evaluating the fluency of the generated text with a language model, i.e.,
score f lu = PPL(Y). The choice of the language model can be either the original
language model (without logits bias in Equation (7)) of the Generator or another
well-trained language model. In this paper, for convenience, we choose the original
language model of the Generator for PPL calculation:

PPL(Y) = n

√
1

P(y1) ∗ P(y2|y1) ∗ ... ∗ P(yn|y1...yn−1)
= eaver(CELoss), (12)

where aver(CELoss) means the average value of cross-entropy results which are ob-
tained from predicted probabilities of the next tokens and their corresponding labels.

As mentioned earlier, the weights of constraints are different under context conditions,
and these weights should be closely related to the context. Therefore, we model W(X, Ai)
as the similarity between the context and constraint Ai. Specifically, for the context X, we
obtain its representation Rep(X) through a language model and map it to the space of
constraint Ai, i.e.:

RepX = Rep(X → Ai) = Wi(LM(X)), (13)

where Wi means a feed-forward network. The representation of constraint Ai is imple-
mented through an embedding layer, i.e., Emb(Ai). Consequently, the corresponding
weight W(X, Ai) for this constraint Ai can be expressed as:

W(X, Ai) = Sigmoid(Wi(LM(X)) ∗ Emb(Ai)). (14)

The scoring function can then be expressed as:

score(Y) = W(X, Asentiment) ∗ BERT(Y) + W(X, A f luency) ∗ PPL(Y). (15)

Taking into account that the result of positive sentiment (BERT(Y)) is a probability
value between 0 and 1, while fluency calculation results (PPL(Y)) are usually large, we
attach a smaller coefficient, e.g., α, to the latter item. This ensures that positive sentiment
and PPL(Y) values are in a similar order of magnitude, preventing the possible neglect of
positive sentiment’s effect during training. Thus, the final scoring function is:

score(Y) = W(X, Asentiment) ∗ BERT(Y) + α ∗ W(X, A f luency) ∗ PPL(Y), (16)

For the Discriminator’s loss function, we draw inspiration from the contrast learn-
ing approach where a piece of text from the training corpus is considered as a positive
sample, denoted as Ytrue, and the text obtained by the Generator through greedy search
(Equation (9)), i.e., Ygen, is considered as a negative sample. Accordingly, the Discrimina-
tor’s loss function can be expressed as:

loss(dis) = Sigmoid(score(Ytrue)− score(Ygen)). (17)

4. Experiments and Results

This section shows our experiments and results on two different types of datasets.
The first one (Section 4.1) follows BOLT [22] with sentiment control for the text completion
task where we select the same 15 prefixes to evaluate the positive sentiment and fluency
scores of generated texts. The second one (Section 4.2) is from the Chinese customer service
dialogue dataset which is set to respond to users with a soothing reply style so that can
address their dissatisfaction and complaints.
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4.1. Experiments on the Text-Completion Task

In the paper of PPLM [15], the authors propose 15 prefixes for the text completion
task, where the generation style should correspond to the preset sentiment, such as positive,
negative, or uncontrolled. Similar to BOLT [22], we follow those prefixes as the text prompts
us to complete sentences for positive sentiment control. Different from baseline methods
which design decoding algorithms for CTG and has no training necessary, the proposed
method will need training samples to learn the parameters in Equations (8) and (14).

• Training data: We obtain 3000 samples from ChatGPT [27] as the positive sentiment
controlled corpus, and select 1000 samples with high positive probabilities as the
final dataset for the model’s training, as is shown in Table 1. The prompt we use is,
taking the prefix “The year is 1910” as an example, “Continue to write after ‘The year
is 1910’ to express a positive sentiment”. The generated corpus has a high quality
to express positive sentiment to a certain extent; however, for the sake of positive
probability measurement with quantity, we filter the low probability samples with a
positive sentiment discriminator which is provided by the BOLT [22]. This operation is
crucial as the only sentiment controller in our method setting is the positive sentiment
discriminator, while the low positive probability samples will lead to a misgauge of
the discriminator.

Table 1. Examples of training corpus generated with ChatGPT. High positive sentiment probability
samples are kept for model training.

Prefix ChatGPT Generation Positive Probability

The year is 1910
The year is 1910, and a collective passion for learning
and knowledge fuels a relentless pursuit of truth and
enlightenment.

0.9767 (keep)

Once upon a time
Once upon a time, a genuine smile from a stranger
brightened someone’s day, spreading positivity far
and wide.

0.9961 (keep)

The country
The country had a strong emphasis on education and
intellectual growth, fostering a culture of learning
and knowledge.

0.9466 (keep)

The movie
The movie we attended the premiere of left us star-
struck, walking the red carpet and witnessing the
magic of cinema unfold before our eyes.

0.2231 (deleted)

• Model’s setting: Similar to BOLT [22], we utilize GPT2-large (https://huggingface.
co/gpt2-large, accessed on 5 December 2023) as the basis of the Generator part and
also the fluency measurement model where the latter is calculated by Perplexity (PPL).
As for positive sentiment judgment, we employ a BERT classifier model which is
trained after “yelp polarity” dataset (https://www.yelp.com/dataset, accessed on 5
December 2023). During GANs training, parameters of both the models above (i.e.,
GPT2-large and BERT classifier) are frozen with no parameters updated. We only
train parameters like bias network (i.e., logtisb in Equation (8)), embedding layers,
and other linked parts (i.e., W(X, A) in Equation (14)).

• Evaluation metrics: As the Table 2 shows, we evaluate the generated texts from four as-
pects: internal positive classifier evaluation (Int.Clsf) measures the positive sentiment
score as the form of the positive probability derived from the BERT classifier (BERT(Y)
mentioned in Equation (15)); external positive classifier evaluation (Ext.Clsf) also calcu-
lates the positive probability but using an external classifier obtained from huggingface
(https://huggingface.co/VictorSanh/roberta-base-finetuned-yelp-polarity, accessed
on 5 December 2023); perplexity (PPL) evaluates the fluency of the generated text
which is calculated by the GPT2-XL (https://huggingface.co/gpt2-xl, accessed on 5
December 2023) model according to Equation (12); the average occurrences of distinct

https://huggingface.co/gpt2-large
https://huggingface.co/gpt2-large
https://www.yelp.com/dataset
https://huggingface.co/VictorSanh/roberta-base-finetuned-yelp-polarity
https://huggingface.co/gpt2-xl
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trigrams (Dist-3) measures the degree of diversity of the generation which is reckoned
up by NLTK (https://www.nltk.org/, accessed on 5 December 2023) package.

• Results: As can be seen from the Table 2, our method surpasses the traditional
methods (each of them obtains the generated results from the corresponding decoding
strategy straightforwardly on the 15 prefixes mentioned above) in the two metrics
of PPL and Dist − 3. Specifically, The PPL value is better than other methods by an
average of 14.58, and Dist − 3 is better than other methods by an average of 0.35. In
addition, the probability value of the external classifier (Ext.Clsf) can also reach a
comparable level to traditional methods. Our method is weaker than methods such as
“MuCola | Mix&Match | BOLT” in terms of internal classifier probability (Int.Clsf). It
is because our method considers not only positive sentiment, but also the fluency of
the sentence, so it needs to learn the weights of those two stuffs from training positive
samples which is different from the traditional methods that only pursue high positive
sentiment probability. Moreover, there exist gaps between the training samples we
employ and the so-called “perfect” samples (whose positive probabilities can reach 1);
thus, from the training perspective, the positive score ceiling of our method will be
lower than that of other baseline methods.

Compared with those energy-based methods listed in Table 2, our method also has
a significant advantage of small time consumption in the decoding stage. To be detailed,
our method is based on training, and the time is mainly spent in the training phase. By
designing a learnable network, training samples are consumed in the process of optimizing,
so that the network can learn reasonable parameters that meet the constraint conditions.
In this way, when decoding, only the Generator part of the network is needed, and the
text that satisfies the constraints can be decoded as easily as the original language model,
without the need to constantly modify the output of the language model along the direction
of minimum energy value.

Table 2. Results on positive sentiment control. Int.Clsf means the positive sentiment score measured
by BERT(Y) in Equation (15), higher (↑) is better. Ext.Clsf is the positive sentiment score measured
by an external sentiment classifier, higher is better. PPL measures the fluency of the generated texts
calculated by Equation (12), lower (↓) is better. Dist-3 evaluates the average occurrences of distinct
trigrams, higher is better.

Model Int.Clsf (↑) Ext.Clsf (↑) PPL (↓) Dist-3 (↑)

COLD [21] 61.46 55.10 9.09 0.30

MuCola [20] 93.22 86.55 11.36 0.55

Mix&Match [19] 96.09 84.98 66.75 0.82

BOLT [22] 95.78 80.12 8.12 0.65

Our Model 81.56 80.73 9.25 0.93

• Ablation study: We only use the Generator part to train the above positive samples
through the loss function of the language model (i.e., Equation (11)). The results are
shown in Figure 2. It can be seen that without Discriminator to provide rewards to
optimize the Generator network and guarantee the generated results, the evaluation
metrics will decline to varying degrees, to be detailed, there are 4.6%, 6.8%, and 8.5%
deterioration on metrics of Int.Clsf, Ext.Clsf, and Dist-3, and PPL value increases by
0.61 which means a worse fluency. Hence, the Discriminator plays an important role
in guiding the Generator to produce high-quality constrained texts. In addition, it
validates that CTG cannot be ensured by using only language model fine-tuning.

https://www.nltk.org/
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Figure 2. Ablation results in 15 prefixes evaluation. W/O.DIS means generating texts with only
Generator training.

4.2. Experiments on Chinese Customer Service Dialogue

Chinese customer service dialogue data comes from materials collected by online
companies. In the daily operation process, users will encounter various usage problems,
such as broadband failures, fee doubts, package inquiries, etc., which will result in a certain
degree of dissatisfaction or complaints. In this case, customer service executives need to
use soothing words to first calm the users’ dissatisfaction, and then provide reasonable
explanations or propose feasible solutions to the users’ problems. A customer service
that satisfies users can always calm users’ negative emotions in the first place; provide
positive guidance to users’ psychology; patiently analyze and inform the causes of failures
step by step; proactively propose certain compensatory measures for users, and repair
the fault problems at the end. The above-mentioned soothing words are often industry-
specific responses that customer service staff have accumulated through long-term work
experiences and detailed analysis of users’ emotions. Soothing words often contain strong
honorifics, which can send a signal of goodwill to users and give them an attitude of “eager
to solve the problem” in the first place. At the same time, soothing words have obvious
“empathy” skills. For example, when a user encounters a problem, the customer service
staff will say “I’m sorry for your experience. No matter who encounters such a problem,
they will be very angry. We express our deep understanding and sorry”. Such words can
often overcome the estrangement with users, and gain their understanding.

We have collected 500 complete customer service dialogue materials with soothing
words. Each dialogue consists of several rounds of conversations in the format of “User:
[User Question]; Customer Service: [Customer Service Reply]”. User problems often
involve some complaints, and customer service replies can usually solve these problems
better. Soothing words are often different from the common positive emotional responses,
and cannot be judged using a simple discriminative model trained on the positive and
negative emotional dataset, for example, the English Yelp dataset, the Chinese Weibo
emotional dataset (https://smp2020ewect.github.io/, accessed on 5 December 2023), etc.
, thus we first need to customize a discriminative model that satisfies the judgment of
soothing words.

• Soothing reply discriminator: We harness the Chinese BERT model (https://github.
com/ymcui/Chinese-BERT-wwm, accessed on 5 December 2023) as the basic model
for the soothing word discriminator. The positive samples, a total of 5000 sentences
with higher quality, are selected from the customer service staff’s responses in the
customer service dialogue materials. We modify some of the sentences, for example,
replacing the Chinese word “你 (you)” (non-honorable word) with “您 (you)” (honor-
able word). In order to get negative samples, that is, replies without soothing words,
we use the ChatGLM-3 [28] large language model to rewrite the positive samples. The
rewriting prompt we use is “将下列文本换成简短精炼的说法，意思保持不变，不要
出现谦辞敬辞。(Change the following text into a short and concise statement, the
meaning remains the same, and do not appear to be polite or respectful.)”. Table 3
displays some case comparisons before and after ChatGLM-3’s modifications which
indicate that after modifications with the ChatGLM-3 model, the corresponding ex-

https://smp2020ewect.github.io/
https://github.com/ymcui/Chinese-BERT-wwm
https://github.com/ymcui/Chinese-BERT-wwm
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pressions are more frigid in terms of the emotion and do not have a soothing style. If
a similar reply manner is used, it will aggravate the user’s dissatisfaction.

Table 3. Examples of negative samples (none-soothing-expression) generated with ChatGLM-3 model.

Scenario Soothing-Expression ChatGLM-3 Gennerated

Change the mobile
data

直接给您改不了，因为您套餐一百
零八送的带宽是多少兆，它就是
多少兆的. (I am sorry that I can’t
change it for you directly, because it
is equal to the number of megabytes
of bandwidth which is given by your
package of one hundred and eight.)

直接改不了，因为套餐一百零八送
的带宽就是多少兆. (I can’t change
it directly, because the bandwidth
of the package of one hundred and
eight is so many megabytes.)

Reset the password

那没有关系，我把重置密码的方法
给您发过来，您可以发送短信重置
密码. (That’s okay. I will send you
the method to reset your password,
and you can send a text message to
reset it.)

没问题，我将重置密码的方法告诉
你，你发短信即可重新设置密码.
(No problem. I’ll show you how to
reset your password, and you can
reset it by texting it.)

Cancel the account

销户的话，您需要到营业厅办理，
首先要看看这个号码上有没有活
动，如果没有活动，现场销户，如
果有活动，您需要和营业厅协商中
断违约金，才可以中断. (If you want
to cancel your account, you need to
go to the business office to handle it.
First, it is advisable for you to check
if there is any activity on this number.
If there is no activity, you can cancel
the account on the spot. If there is ac-
tivity, you need to negotiate with the
business office for liquidated dam-
ages before you can cancel.)

如果你要销户，你需要到营业厅办
理。首先查看号码是否有活动，无
活动则现场销户，有活动则需与营
业厅协商中断违约金. (Cancelling
the account, you need to go to the
business hall to do it. First check
whether there is any activity on the
number. If there is no activity, the
account will be canceled on the spot.
If there is activity, you need to ne-
gotiate with the business office for
a penalty for interruption.)

• Customer service dialogue training: We utilize the Chinese GPT-2 (https://github.
com/Morizeyao/GPT2-Chinese, accessed on 5 December 2023) model as the basic
part of the Generator. Similarly, this model is also used as the fluency discriminator,
that is, to calculate the PPL value of the generated text. During the training process
of the Generator, it should be noted that tokens irrelevant to the customer service
replies will be marked with a special MASK notation. In this way, when calculating
the language model loss in Equation (11), the cross-entropy function of these tokens
will be ignored and only tokens associated with customer service reply contents will
be calculated.

• Results: Table 4 lists several cases generated under constraints, where W/. DIS refers
to the results generated using our method, and W/O.DIS refers to those derived by
training only the Generator (similar to the ablation study in Section 4.1). It can be
seen that our method can generate replies that satisfy the custom service scenario by
and large. Specifically, the response logic is basically correct (for example, the reply
of “canceled your subscription” corresponds to the context of “I have canceled this
package” in case 5), and it is generally guaranteed to generate replies with soothing
words (for example, “Thank you” in case 4, and “anything I can do for you” in case
5). Nevertheless, the text generated by W/O. DIS will obviously retell the words
from context ahead, e.g., “spend one yuan to get a 50-min call package” in case 3.
Therefore, when using a lightweight language model like GPT-2 for dialogue training,
our method can generate relatively controllable responses.

https://github.com/Morizeyao/GPT2-Chinese
https://github.com/Morizeyao/GPT2-Chinese
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Table 4. Examples of generated texts in Chinese customer service scenario.

Prompt W/O.DIS W/.DIS

用户:喂你好，帮我查下我流量呢?
(hello, please check the mobile data
for me.)

号码是您的吗？(Is the phone
number yours?)

号码已经给您办理了，请
稍后联系我们查询。(The
number has been processed
for you, you can contact us
later.)

用户:我宽带用不了了，电视也不
能看。(I can’t use my broadband,
and I can’t watch TV)

号码是您的吗？(Is the phone
number yours?)

局部网络故障，无法使
用（Localized network fail-
ure and unavailability）

用户：你好，我的通话用超了，
是不是可以花一块钱办一个五十分
钟的通话包？(I have overused my
calls, can I get a 50-min call pack-
age with one yuan?)

先生，您的通话包是五十分
钟，是不是可以花一块钱办
一个五十分钟的通话包. (Sir,
your call package is 50 min, is
it possible to spend one yuan
to get a 50-min call package?)

先生，请问还有其他可以
帮助您的吗？您可以通过
以下方式进行咨询 (Sir, is
there anything else that can
help you? You can make
an inquiry in the following
ways)

用户：喂我问一下我现在这
个WIFI宽带是没用了哇？(Hey, I’m
here to ask if the WIFI broadband
is useless.)

您的wifi是有用的吗？(Is
your wifi still in use?)

话 务 员 给 您 开 通 一
下WIFI， 然 后 您 点 开
一下WIFI就可以使用了。
感谢您。(The operator will
turn on the WIFI for you,
and then you can use it by
clicking on the WIFI. Thank
you.)

用户：把我这个套餐都取消了，
怎么又变成九十多了呢？(I have
canceled this package, why did
it become more than 90 again?)
客服：这个是扣月租，但是我们
这边显示您并没用更改过套餐，
您这个是六月十二号办的，这个
八十九块钱套餐，七月一号生效
的。(This is a deduction of monthly
rent, but it shows that you haven’t
changed your plan. You applied 89
yuan package on June 12th, and it
took effect on July 1st.)用户：你给我
取消。(Cancel the plan for me.)

来电，您这个套餐是六月十
二号办的。 (Caller ID shows
your package is applied on
June 12th.)

来电显示您已经取消订购
了，请问还有其他需要帮
助的吗？(Caller ID shows
that you have canceled your
subscription. Is there any-
thing I can do for you?)

5. Discussion and Limitations

The controllable text generation algorithm we propose employs ideas of GANs to
separate the constrained text generation process from that of constraints measurement. The
Generator, which is a parameter-frozen language model (i.e., GPT-2) with a logits bias, uses
positive samples (i.e., the training data) and rewards from the Discriminator (i.e., scores on
both positive samples and those generated by the Generator) to optimize the bias network.
In addition, the Discriminator provides learnable weights for different discriminators
(i.e., the sentiment and the fluency discriminators in the paper) and a reward function to
gauge the difference between positive/negative pairs. The design of the learnable weights
comprises of similarities (i.e., the sigmoid function after the feedforward network) between
context representation and discriminators’ embedding, and affords a dynamic constraints
combination strategy; hence, the generated texts will be various and consistent with the
contexts ahead. Therefore, when controlling text generation under a specific context, our
algorithm will take into account the different degrees of contribution for each Discriminator,
which makes the control of text generation more refined, making up for the shortcomings
of the single constraint condition or fixed weight combination constraint condition of the
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traditional algorithm, so the text generated by the proposed method matches the higher
degree of its context ahead. Moreover, during the decoding stage, only the Generator part
is necessary for CTG which brings forth the efficiency for text generation.

We conduct experiments on the text completion task and evaluate several decoding-
time baselines. Concretely, we make prompts for ChatGPT to generate and filter 1000 sam-
ples with high positive sentiment probabilities for CTGGAN’s training. After that, we
employ the Generator to complete the 15 prefixes and evaluate the results on four metrics
(i.e., Int.Clsf, Ext.Clsf, PPL, and Dist-3). Compared with the baselines, our method shows
superiority on PPL and Dist-3 (i.e., 14.58 and 35% improvements), and displays analo-
gous performance on other metrics. We make an ablation study as well which discards
the Discriminator and only trains the Generator through the typical loss function of the
language model. The result indicates that without judgments from the discriminators, all
the metrics will degrade to a certain extent (i.e., 4.6%, 6.8%, 0.61, and 8.5% deterioration on
the corresponding metrics). In addition, we evaluate the method in the Chinese customer
service dialogue scenario, and make the conclusion that without the Discriminator, the
generated responses will have repetitions more often.

Unfortunately, our algorithm needs to secure negative samples through a greedy
search on the Generator’s outputs, which means an entire inference process of the language
model must be implemented at every training step. It inevitably leads to the problem of
low training efficiency especially when the parameters’ size of the Generator gets larger.
Therefore, in future work, we will explore better sampling strategies to make model training
more efficient.

6. Conclusions

We propose CTGGAN, a controllable text generation algorithm that combines the
advantage of language model decoding with various discriminators in a learnable and
skillful way. Specifically, CTGGAN utilizes the language model with a bias network as
the Generator to generate text that meets the constraints, and compounds the sentiment
discriminator and fluency discriminator as the Discriminator part to score the quality of the
generated text and guide the optimization of the Generator part. We use the adversarial
learning idea of GANs to iteratively learn and optimize the entire model. After the model’s
training, it only needs the Generator part to generate texts that meet constraints, which
does not require continuously correcting the text during decoding along the direction of
maximizing the constraint possibilities and is as efficient as the original language model.
We selected 15 English prefixes for the text completion task and compared them with the
baseline methods, which reflects the superiority of our algorithm. At the same time, we
conduct algorithm evaluation on the Chinese customer service conversation dataset. The
results also show that our algorithm has certain feasibility in soothing words scenarios of
customer service dialogues.

Author Contributions: Methodology, Z.Y., Y.H., Y.C., and X.W.; Validation, Y.H., J.F., and C.D.; Formal
analysis, Z.Y. and Y.C.; Investigation, Z.Y. and Y.C.; Data curation, Z.Y. and Y.C.; Writing—original
draft preparation, Z.Y., Y.C., and X.W.; Writing—review and editing, Y.H.; Visualization, Z.Y. and
X.W.; Supervision, J.F. and C.D.; Project administration, Y.H. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by China Mobile Holistic Artificial Intelligence Major Project
Funding (R22105ZS, R22105ZSC01), the National Key R&D Program of China (2021ZD0140408), and
the Beijing Natural Science Foundation (L222006).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Training data are derived from ChatGPT or ChatGLM-3 generation
which can be replicable according to our prompts mentioned in Section 4, further inquiries can be
directed to the corresponding author.



Appl. Sci. 2024, 14, 3106 15 of 16

Conflicts of Interest: Authors Zhe Yang, Yi Huang, Yaqin Chen, Xiaoting Wu, Junlan Feng and Chao
Deng were employees of China Mobile Research. The authors declare that they have no known
competing financial interests or personal relationships that could have appeared to influence the
work reported in this paper.

References
1. Prabhumoye, S.; Black, A.W.; Salakhutdinov, R. Exploring Controllable Text Generation Techniques. In Proceedings of the 28th

International Conference on Computational Linguistics, Barcelona, Spain, 8–13 December 2020; pp. 1–14. [CrossRef]
2. Zhang, H.; Song, H.; Li, S.; Zhou, M.; Song, D. A Survey of Controllable Text Generation Using Transformer-based Pre-trained

Language Models. ACM Comput. Surv. 2022, 56, 64. [CrossRef]
3. Zhu, L.; Xu, Y.; Zhu, Z.; Bao, Y.; Kong, X. Fine-Grained Sentiment-Controlled Text Generation Approach Based on Pre-Trained

Language Model. Appl. Sci. 2023, 13, 264. [CrossRef]
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