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Featured Application: Insects often inhabit environments that are difficult to observe and explore
due to their small size, strong camouflage abilities, and secretive lifestyle. This inherent difficulty
in visual inspection requires alternative approaches. In this study, we started with insect sounds
and drew on the way insect brains process sound signals to propose a classification module
called “dual-frequency and spectral fusion module (DFSM)”. Overall, our research shows that the
proposal of this module provides an important reference for the field of insect sound classification,
promoting research and application in the field of biological control.

Abstract: In the modern field of biological pest control, especially in the realm of insect population
monitoring, deep learning methods have made further advancements. However, due to the small
size and elusive nature of insects, visual detection is often impractical. In this context, the recognition
of insect sound features becomes crucial. In our study, we introduce a classification module called
the “dual-frequency and spectral fusion module (DFSM)”, which enhances the performance of
transfer learning models in audio classification tasks. Our approach combines the efficiency of
EfficientNet with the hierarchical design of the Dual Towers, drawing inspiration from the way the
insect neural system processes sound signals. This enables our model to effectively capture spectral
features in insect sounds and form multiscale perceptions through inter-tower skip connections.
Through detailed qualitative and quantitative evaluations, as well as comparisons with leading
traditional insect sound recognition methods, we demonstrate the advantages of our approach in
the field of insect sound classification. Our method achieves an accuracy of 80.26% on InsectSet32,
surpassing existing state-of-the-art models by 3 percentage points. Additionally, we conducted
generalization experiments using three classic audio datasets. The results indicate that DFSM exhibits
strong robustness and wide applicability, with minimal performance variations even when handling
different input features.

Keywords: deep learning; audio classification; spectral features; insect sound; biological pest control

1. Introduction

Biological control is a method that leverages one species of organism to regulate the
population of other species [1]. It is designed to mitigate the damage caused by crop
pests [2] and reduce reliance on chemical pesticides, thereby contributing to a decrease
in environmental pollution and the preservation of ecological balance in agricultural
production. Insects, due to their small size, adept camouflage abilities, and secretive
lifestyles [3], often inhabit environments [4] that are challenging to observe and explore.
This inherent difficulty in visual detection necessitates alternative methods, and one such
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method is the analysis of insect acoustic signals. Insect acoustic analysis [5], as a pivotal
tool in biological control, provides a non-invasive [6] and highly efficient [7] means of
monitoring and identifying various insect species.

The “insect-against-insect” strategy stands as a crucial element of biological pest con-
trol, employing native predatory insects from the ecosystem as biological control agents [8]
to curtail both the population and the damage inflicted by crop pests. In this approach,
sound assumes the role of a communication method within the realm of biological pest
control. On one hand, some predatory insects emit sound signals featuring specific frequen-
cies and amplitudes [9] to allure pest insects, enticing them into the predator’s territory
for an effective ambush, consequently reducing the pest population. On the other hand,
some predatory insects imitate the mating or egg-laying sounds of pest insects to divert
them away from their habitual reproductive and egg-laying locations [10], disrupting their
conventional reproductive behavior. This action diminishes the pests’ reproductive success
and, in turn, alleviates their adverse impact on crops.

Despite the substantial theoretical potential of the “insect-against-insect” strategy, its
practical application encounters a multitude of challenges. These challenges encompass
the comprehension of acoustic communication mechanisms [11] between pests and their
natural adversaries and integrating this understanding within the specific environmental
conditions of agricultural ecosystems. This involves factors such as sound frequency, am-
plitude, the significance of sounds, and the physiological and ecological contexts of sound
production. At the same time, it is also crucial to consider the distinctive characteristics of
diverse agricultural ecosystems.

In addition to these considerations, continuous enhancements in technical tools and
methods are of paramount importance for accurately monitoring and identifying sound
signals. Acoustic analysis requires highly sensitive sensors [12] and precise analytical
tools [13]. Recording equipment must be capable of capturing the subtle sound signals
exchanged between pests and their natural enemies. Moreover, deep learning techniques
offer increased accuracy and operability for sound analysis, helping researchers to improve
the implementation of the “insect-against-insect” strategy. By employing a probabilistic
neural network (PNN) trained on these features, a viable scheme to identify insect sounds
automatically is demonstrated by Zhu Le-Qing [14] using sound parameterization tech-
niques. Drawing inspiration from this work, we incorporate Mel-Scale transformations to
characterize insect sounds, enhancing our processing methods. Xue Dong [15] proposes a
novel insect sound recognition system using an enhanced spectrogram and convolutional
neural network. Leveraging these insights, we devised the dual-frequency and spectral
fusion module (DFSM) to bolster our insect species classification efforts. Ongoing improve-
ments in this technology hold the potential to advance the field of sound analysis, enabling
farmers and ecologists to gain a deeper understanding of the dynamic changes in insect
populations. This, in turn, facilitates the development of targeted pest management strate-
gies and propels research and applications in the field of biological pest control, with broad
potential for applications in agriculture, forestry, and ecology.

This study will start with Orthoptera and Cicadae and address fundamental research
questions concerning the effective application of deep learning techniques to the classi-
fication of insect sounds, the identification of key features indicative of insect species or
behaviors in audio data, and the integration of spectral and temporal features to enhance
classification accuracy using deep learning techniques, providing valuable insights for
applications in agricultural pest control and biological pest management. The overarching
goal is to develop a robust and accurate insect sound classification algorithm capable
of providing researchers in agriculture and ecology with a practical tool for accurately
identifying insect species based on their acoustic signatures.

2. Materials and Methods

The study introduces an insect sound classification algorithm based on the Mel spec-
trum [16] and the dual-tower network. The dual-tower network architecture is similar to
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the concept of parallel processing, where two distinct “towers” are employed to extract
complementary sets of features from the input data. One tower focuses on capturing
temporal features, such as changes in sound intensity over time, while the other tower
specializes in extracting spectral features, such as frequency patterns present in the sound
signal, resulting in high accuracy in insect classification. The following presents the primary
contributions of this research:

1. The study employs the Mel-scale spectrogram method to convert raw audio data into
an image format, enhancing the visual representation of sound signals. This enables
deep learning models to more accurately comprehend the spectral characteristics
of sound;

2. This article introduces a classifier known as “DFSM”. This innovative design con-
tributes to a more comprehensive understanding of the complexity of sound signals,
improving the accuracy and performance of sound feature extraction;

3. The model demonstrates good classification results and exhibits strong generalization
across different datasets, including natural environmental sounds (ESC-50 [17]), urban
sounds (UrbanSound8K [18]), and speech commands (Speech Commands [19]).

2.1. Dataset Characteristics

The dataset used in this study, referred to as “InsectSet32” [20], was compiled from
privately collected recordings of Orthoptera and Cicadidae. The Orthoptera data were gath-
ered by Baudewijn Odé, while the Cicadidae data were collected by Ed Baker. This dataset
has been crafted to train neural networks to autonomously identify insect species and
encompasses recordings from 32 distinct insect species known for their sound-producing
capabilities. Approximately half of the total recordings (147) pertain to nine species within
Orthoptera. The remaining 188 recordings cover 23 species within Cicadidae. In total,
the dataset comprises 335 audio files with a cumulative duration of 57 min, as presented in
Table 1. All the original audio files exhibited varying sampling rates, but they have been uni-
formly resampled to 44.1 kHz mono WAV files to ensure data consistency. This resampling
process plays an important role in acoustic recognition tasks. Furthermore, the recordings
within the dataset have been collected from real-world environments, and each audio file is
accompanied by detailed annotations. These annotations encompass the file name, species
name, and a unique identifier. Additionally, they provide information about data subsets
earmarked for training, testing, and validation. These subsets are made available for further
research and exploration.

Table 1. InsectSet32—Selection of 335 files from two distinct open source datasets (Baudwijn Odé’s
Orthoptera dataset and Ed Baker’s Cicadidae dataset) covering 32 species, with a total duration of
57 min. Species, number of files (n), and total recorded duration (min: s).

Ed Baker—Cicadidae Baudewijn Ode‘—Orthoptera
Species n min: s Species n min: s Species n min: s
Azanicada zuluensis 4 0:40 Platypleura divisa 6 1:00 Chorthippus biguttulus 20 3:43
Brevisiana brevis 5 0:50 Platypleura haglundi 5 0:50 Chorthippus brunneus 13 2:15
Kikihia muta 6 1:00 Platypleura hirtipennis 6 0:54 Gryllus campestris 22 3:38
Myopsalta leona 7 1:10 Platypleura intercapedinis 5 0:50 Nemobius sylvestris 18 8:54
Myopsalta longicauda 4 0:40 Platypleura plumosa 19 3:09 Oecanthus pellucens 14 4:27
Myopsalta mackinlayi 7 1:08 Platypleura sp04 8 1:20 Pholidoptera griseoaptera 15 1:54
Myopsalta melanobasis 5 0:43 Platypleura sp10 16 2:24 Pseudochorthippus parallelus 17 2:01
Myopsalta xerograsidia 6 1:00 Platypleura sp11 cfhirtipennis 4 0:40 Roeseliana roeselii 12 1:03
Platypleura capensis 6 1:00 Platypleura sp12 cfhirtipennis 10 1:40 Tettigonia viridissima 16 1:34
Platypleura cfcatenata 22 3:34 Platypleura sp13 12 2:00
Platypleura chalybaea 7 1:10 Pycna semiclara 9 1:30
Platypleura deusta 9 1:23

The improved model was created to classify insect sounds for presentation in public
datasets. To assess the performance of the classifier, the team employed data from the
InsectSet32 dataset, as well as sound datasets from various other domains, including natural
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environmental sounds (ESC-50 [17]), urban sounds (UrbanSound8K [18]), and speech
commands (Speech Commands [19]). The utilization of public datasets enhances the
reproducibility and comparability of the experimental results, facilitating transparency and
validation within the research community.

2.2. The Proposed Model

The generation of insect sounds represents a complex and multifaceted research field,
with the characteristics of these signals closely associated with the morphology [3], types of
sound-producing organs [21], and habits [3] of insects. Each insect’s sound signals exhibit
monotony and regularity, displaying species-specific traits. Moreover, early monitoring
of insect sounds has enhanced the capabilities of researchers who frequently encounter
resource constraints when monitoring the distribution of insect populations. Orthoptera
insects [22] produce sound by rubbing their forewings, a mechanism characteristic of the
suborder Ensifera. They possess a row of rigid microstructures on the inner surface of the
forewings, acting as a file, and a hardened portion on the wing edge, acting as a scraper.
Sound is generated through the relative motion of these two structures. The number and
arrangement of protrusions on the file, as well as the thickness of the wings and the speed
of vibration, vary between species, leading to differences in the rhythms and pitches of their
calls. Cicada insects (Hemiptera: Cicadidae) [23] create sounds using sound-producing
organs located on the sides of the first abdominal segment. These organs include the tymbal,
the tymbal membrane, the tymbal muscle, and an air chamber. In the field of deep learning,
the general principles for processing insect sound classification are shown in Figure 1.

Figure 1. General principle of deep learning classification of insect species from their sounds.

The proposed approach comprises three main components. The initial phase involves
preprocessing insect sound data. The second phase employs the Mel-scale spectrogram
method to convert raw audio data into an image format. The final phase encompasses
feature extraction and classification using the dual-tower network. Insects’ sound clarity
may offer vital insights into their species. Hence, this paper employs a series of signal
processing techniques and feature extraction methods to acquire sound data that is more
distinct and recognizable.

Figure 2 presents the process of the proposed deep-learning model for insect sound
classification. Preprocessing, data augmentation, feature extraction, and classification all
constitute integral elements of the proposed deep-learning model for insect sound classi-
fication. The proposed model consists of two primary steps: the first step entails feature
extraction using EfficientNet [24], while the second step further enhances classification
performance through the use of DFSM.
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Figure 2. Overall flow of the proposed deep learning model for insect sound classification.

2.2.1. Data Preprocessing

Because insect sounds can vary significantly depending on factors [25] such as species,
environment, behavior, and recording conditions, the limited number of available samples,
and the fact that recordings are often affected by environmental noise, changes in recording
equipment, and other sources of variation, data augmentation is necessary. Data augmen-
tation of training models on the current dataset involves not only in-modeling but also
generating carefully modified copies of new samples. These copies retain similar properties
to the original data but are altered to make them appear to come from a different source or
subject. This process is critical to ensuring that deep learning models can better handle the
diversity of training data.

For audio data, all preprocessing is performed dynamically at runtime. We establish a
transformation pipeline to read audio files through the respective library [26]. Within the
dataset, monaural files are duplicated to the second channel, converting them to stereo,
and standardizing the channel count for all audio files. Simultaneously, all audio is nor-
malized and sampled at a rate of 44,100 Hz, ensuring uniform dimensions for all arrays.
Audio duration is adjusted, either extended or shortened, through methods such as silent
padding [27] or truncation [28] to match the length of other samples. This guarantees the
elimination of feature differences between different audio files, providing uniform data for
subsequent data augmentation and model training.

After data standardization, this paper augments insect sound data using noise ad-
dition [29], pitch shifting [30], time stretching [31], and time shifting [32], as shown in
Figure 3. Noise addition entails introducing noise into the original audio signal to enhance
the model’s adaptability to noise interference. Pitch shifting alters the signal’s pitch to
improve the model’s recognition capabilities. Time stretching, achieved through temporal
expansion, broadens the range of temporal variations in the training data, making the
model more robust. Time shifting randomly displaces the audio signal to the left or right to
augment the original audio data, increasing the diversity of the training data and enabling
the model to better accommodate audio inputs at different speeds.

2.2.2. Mel-Scale Spectrogram

The perception of sound by the human ear is highly complex and nonlinear, particu-
larly across different frequency ranges where distinct perceptual differences arise. However,
insect sound signals often span a wide frequency range. In addition, human ear perception
differs from a linear frequency scale. As frequency increases, human auditory sensitivity
decreases, resulting in much smaller perceptual differences for high-frequency sounds com-
pared to low-frequency sounds. To better simulate the auditory behavior of the human ear,
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we propose using the Mel scale [33], a nonlinear frequency scale. It converts the ordinary
frequency (Hertz) f into the Mel frequency (Mel) m using Equation (1):

M( f ) = 2595 · lg(1 +
f

700
) (1)

Figure 3. Data Augmentation Diagram ((a): Original Image, (b): Noise Addition, (c): Pitch Shifting,
(d): Time Stretching, (e): Time Shifting).

To map spectral information to the Mel-scale frequency domain, we utilize a set of
Mel filters [34]. These filters are evenly distributed on the Mel scale. The center frequencies
of these Mel filters are configured according to the Mel scale to mimic the way the human
ear perceives sound.

Creating the Mel spectrum entails convolving the spectral data obtained through the
short-time fourier transform (STFT) [35] with the response of each Mel filter and computing
the energy Ei within each frequency band of the Mel filter. This step generates an energy
value for each frequency band using Equation (2), resulting in the formation of the Mel
spectrum. The STFT, on the other hand, transforms audio data from the time domain
to the frequency domain. It decomposes the signal into frequency components within
a series of time windows and conducts the transformation of audio data and spectral
information as per Equation (3). Here, X(t, f ) represents the complex representation at
time t and frequency f , x(τ) stands for the input audio signal, ω(τ − t) corresponds to the
window function, and e−j2π f t denotes the complex exponential term. Spectrograms, or Mel
spectrograms, portray the signal’s strength over time at different frequencies by using a
variety of colors for visual representation.

Ei = ∑
f
|X(t, f )|2 (2)

X(t, f ) =
∫ ∞

−∞
x(τ) · ω(τ − t) · e−j2π f tdτ (3)

By applying a logarithmic transformation to the Mel spectrogram, we enhance the
features and map them to a range more suitable for deep learning models, resulting in
the logarithmic Mel spectrogram. This captures the fundamental characteristics of the
audio. Building upon this, we apply the SpecAugment technique [36] to the logarithmic
Mel spectrogram, as shown in Figure 4. Introducing horizontal bars via frequency masking
and randomly masking time ranges by blocking vertical lines in the spectrogram. This
is used to increase data diversity, simulate noise in different environments, or adjust the
spectral characteristics of the signal, further enhancing data augmentation.
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Figure 4. Effect of SpecAugment: Frequency masking and time masking with horizontal bars and
vertical lines.

2.2.3. Deep Learning Framework

In the field of insect sound classification, a long-standing challenge has been how
to accurately extract useful features from complex insect sound recordings for classifica-
tion. To address this challenge, we conducted a study and introduced the dual-tower
network, which comprises two main components: the EfficientNet-b7 module and the
“dual-frequency and spectral fusion module (DFSM)”. In our research, we adopted the
EfficientNet-b7 model as the foundational network. Its distinctive network architecture
and parameter optimization techniques equip the EfficientNet model with superior feature
learning capabilities, enabling it to capture intricate data features efficiently. The design con-
cept of DFSM comes from how the insect brain processes sound signals and the mechanism
of the insect auditory system. This module amalgamates some technical elements to achieve
efficient audio feature classification. By employing depthwise separable convolutions [37],
the model becomes proficient at learning diverse frequency and temporal features. Ad-
ditionally, the utilization of pooling operations aids in reducing data dimensions while
preserving critical information. The incorporation of skip connections fosters interaction
and integration among features at different levels, enabling the model to attain a thorough
understanding of the complexity of audio signals. Through experimental comparisons with
conventional methods, we have demonstrated that the DFSM can improve the accuracy of
insect sound classification. The architectural layout of the dual-tower network is illustrated
in Figure 5. This research not only introduces an innovative approach to insect sound clas-
sification but also imparts valuable insights into the principles of audio feature extraction,
offering robust support for future studies in audio classification.

Unlike traditional image data processing, for audio transformation using Mel spec-
trograms, we consider the size in terms of the number of Mel frequency bands multiplied
by the number of time steps as the input dimensions (as presented in Table 2). To better
adapt to the input of Mel spectrograms, in ‘Stage 1’, we modify the number of channels
to 2, and the output channel count is set to 64, while the remaining parts follow the orig-
inal framework of EfficientNet-b7. We position the head module at the output layer of
EfficientNet-b7, connecting it to the DFSM. In the first convolution layer of both tower1
and tower2, we set the output channel count to 2 and establish a skip connection, leaving
the final FC layer with an “in_ f eatures”value of 6. Furthermore, since the ‘tower1_pool’
and ‘tower2_pool’ methods employ ‘AdaptiveAvgPool2d’ for adaptive average pooling,
the dimensions of the feature maps are reduced to 1 in length and width.
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Figure 5. Architecture of the Dual-Tower Network: The blue part in Figure 5 is the EfficientNet-b7
architecture, k represents the convolution kernel size, s represents the step size, MBConv1,6 represents
the expansion factor of the output channels, Depthwise represents deep separable convolution, the or-
ange part refers to DFSM, FC stands for fully connected layer, Conv2d represents two-dimensional
convolution, Bn2 represents normalization, Sigmoid and Relu are activation functions, and the
gray-white part represents the Head module.

Table 2. Dual-Tower Network—Each row describes a stage ‘i’ with ‘Li’ layers, input Mel frequency
bands, time steps <Si, Ti>, stride, and output channel count ‘Ci’.

Stage Operator Resolution Channels Layers Stridei Fi Si × Ti Ci Li

1 Conv3 × 3 64 × 344 64 1 2

2 MBConv1,k3
× 3 48 × 172 32 4 1

3 MBConv6,k3
× 3 48 × 172 48 7 1

4 MBConv6,k5
× 5 48 × 172 80 1 2

5 MBConv6,k5
× 5 24 × 86 80 6 1

6 MBConv6,k3
× 3 24 × 86 160 1 2

7 MBConv6,k3
× 3 12 × 43 160 9 1

8 MBConv6,k5
× 5 12 × 43 224 10 1

9 MBConv6,k5
× 5 12 × 43 384 1 2

10 MBConv6,k5
× 5 6 × 21.5 384 12 1

11 MBConv6,k3
× 3 6 × 21.5 640 4 1

12 Conv_head,k1
× 1 6 × 21.5 2560 1 1

13 Tower1,k3 ×
3 1 × 1 2 1 1

14 Tower2,k1 ×
1 1 × 1 2 1 1

15 Skip,k1 × 1 1 × 1 2 1 1
16 FC 1 × 1 32 1

EfficientNet [24] represents a series of convolutional neural network models that
rely on automated network scaling techniques. The distinctive feature of it is its network
structure, which is determined through an automated search for the optimal configura-
tion. This process involves a delicate balance between complexity and computational
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resources, as well as the scaling of different network layers. EfficientNet-b7, a deep and
high-performance convolutional neural network, was chosen primarily to strike a balance
between model depth, computational efficiency, and accuracy. While EfficientNet-b7 in-
deed delivers improved accuracy, it comes at the cost of an increased number of parameters
compared to smaller variants in the EfficientNet series. This often necessitates a trade-off
between performance, computational complexity, and model size.

In the case of Mel spectrograms converted from insect sounds, we adapt the input
channels of the model’s initial convolutional layer from 3 to 2 to accommodate audio Mel
spectrogram input. The backbone network of EfficientNet-b7 is built by stacking MBConv
structures, which comprise multiple recurrent convolutional blocks. Each convolutional
block includes multiple convolution layers, batch normalization layers, and activation
functions, as illustrated in Figure 6. MBConv1,6 represents the expansion factor of the
output channels. Utilizing this deep architecture for extracting rich, high-level features
proves instrumental in capturing complex information from insect sounds. These extracted
features are subsequently fed into the DFSM for further processing and classification,
enabling the network to comprehend more intricate image patterns.

Figure 6. MBConv Model Structure: BN stands for BatchNormalization, which is used for normaliza-
tion processing. Swish is used as the activation function, 1 × 1 represents the convolution kernel size,
s1s2 represents the step size, and dropout represents random discarding, which is used to solve the
problem of model overfitting.

The squeeze-and-excitation (SE) module is an attention mechanism that comprises
a global average pooling layer and two fully connected layers (as depicted in Figure 7).
This module enhances the network’s focus on essential features, offering channel-wise
adaptive weighting to feature maps, consequently improving the model’s expressiveness
and performance. In the case of EfficientNet-B7, the SE module is applied to the output
of each residual block [38] to heighten the network’s attention to critical features, thereby
further enhancing the model’s accuracy.

Figure 7. Squeeze-and-Excitation (SE) Module Illustration.

In nature, insect sounds serve various purposes, from mating and warning to nav-
igation. These sounds, produced by these diminutive organisms, serve as a medium of
communication, yet they are also influenced by environmental noise and intricate acoustic
characteristics. It’s in this context that the research team began contemplating whether in-
spiration could be derived from insect biology to improve the classification of insect sounds.

A comprehensive exploration of the auditory organs and systems of insects [39]
revealed that they predominantly consist of auditory hairs, Johnston’s organs, and tympanic
organs. These systems employ a hierarchical approach when processing sound. Insect
brains [? ] contain distinct groups of neurons, each responsible for processing different
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aspects of sound, such as frequency, temporal, and spectral characteristics. This allows
insects to efficiently recognize sounds from companions or potential threats while filtering
out noisy background sounds.

Taking inspiration from this hierarchical processing approach, we designed the DFSM.
This module comprises two independent “towers”. Tower 1 consists of three convolutional
layers, activation functions, and pooling layers, which function similarly to an insect’s
temporal neuron group, focusing on capturing time features. It exhibits multiple dark
features, enabling it to keenly discern various sounds. On the other hand, Tower 2 consists
of one convolutional layer, an activation function, and a pooling layer; it emulates an
insect’s spectral-perceiving neuron group, featuring only one or two dark areas in the CAM
(class activation mapping) image [41]. It concentrates on capturing subtle differences in
sound spectra (as shown in Figure 8), and spectral processing in insects effectively captures
the hierarchical nature of insect sound perception. These two towers, along with their skip
connections, enable the model to extract audio information from different perspectives,
similar to insect neuron groups [39]. Furthermore, we designed a head module to connect
EfficientNet and DFSM. The DFSM not only offers efficient feature extraction (hidden in the
DNN(deep neural networks) layers and not accessible to the user) but also helps distinguish
the time-frequency locations where subtle differences in insect sounds were extracted by the
model. The design of this module draws inspiration from insect auditory systems, aiming
to blend biology and deep learning to tackle the challenges of insect sound classification.

Figure 8. Visualization of the DFSM: Tower 1 exhibits multiple dark features, discerning various
sound frequencies, and Tower 2 has only one or two dark areas, capturing subtle differences in the
sound spectrum.

The dual-tower network, as proposed in this paper, standardizes insect sounds during
the data preprocessing stage using a dual-channel configuration and a 44,100 Hz sam-
pling rate. Furthermore, we introduce Gaussian noise with a standard deviation of 0.004
to enhance data diversity, ensuring experiment reproducibility with a specific random
seed. To fine-tune the dual-tower network, we employ the Adam optimizer and conduct
400 epochs of training. During the training process, the batch size is set to 10, while the
learning rate remains at 0.001. All experiments are carried out utilizing an NVIDIA RTX
3070 GPU (NVIDIA, Santa Clara, CA, USA) and an Intel server, thereby fully harnessing
computational resources to ensure the stability and reliability of the experiments. These
settings and configurations contribute to the good performance of our sound classification
tasks. Specific experimental parameters are outlined in Table 3:

Table 3. Specific Model Configuration Parameters.

Batch_Size Lr Channel Noise Pitch_Shift Time_Shift Sr Mel

10 0.001 2 0.004 0.15 0.4 44,100 64

3. Results

We utilized an open-source dataset and employed Equation (1) to transform sampled
insect sounds into Mel spectrograms for data processing. With the parameter settings
described above, the model achieved an accuracy of 80.26%, showcasing its proficiency in
distinguishing between sounds produced by different insect species.
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When assessing the model’s performance, we partitioned the dataset into training,
and test sets, aligning them with the official CSV files where each class corresponds to a
unique class_id (as detailed in Table 4). The confusion matrix showing the performance of
the dual-tower network reflects the overall performance as it shows a clearer diagonal for
accurate classification. During our analysis, we identified specific trends and patterns of
misclassification. Notably, a large portion of misclassifications occurred within the genera
Myopsalta and Platypleura from the InsectSet32 dataset, encompassing 5 and 14 distinct
species, respectively (illustrated in Figure 9). It is worth mentioning that species within
these genera were frequently mislabeled as other members of the same genera. Within its
genus, we observed that one insect species called M. melanobasis(9) caused a significant
number of misclassifications, and the model has a lot of confusion in this category. Similarly,
14 species within the Platypleura genus, including P. capensis(14) and P. divisa(18), were often
incorrectly categorized as other members within the same genus. Brevisiana brevis(1) and
Pholidoptera griseoaptera(13) were never correctly classified. Compared with other network
models, the model performance of the dual-tower network is significantly better for insect
sound recognition.

Figure 9. Classification results of 32 insect species in the test set using the best run of the dual-tower
network, achieving a classification accuracy of 80.26%. The horizontal axis represents the predicted
labels, while the vertical axis represents the true labels, with 0–31 corresponding to the insect species
listed in Table 4 above. The classification highlights two genera: Myopsalta (6–10) and Platypleura
(14–27).
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Table 4. Mapping of Species to Class_id(Cid).

Species Cid Species Cid Species Cid Species Cid

Azanicada zuluensis 0 Myopsalta mackinlayi 8 Platypleura chalybaea 16 Platypleura sp10 24
Brevisiana brevis 1 Myopsalta melanobasis 9 Platypleura deusta 17 Platypleura sp11cfhirtipennis 25

Chorthippus biguttulus 2 Myopsalta xerograsidia 10 Platypleura divisa 18 Platypleura sp12cfhirtipennis 26
Chorthippus brunneus 3 Nemobius sylvestris 11 Platypleura haglundi 19 Platypleura sp13 27

Gryllus campestris 4 Oecanthus pellucens 12 Platypleura hirtipennis 20 Pseudochorthippus parallelus 28
Kikihia muta 5 Pholidoptera griseoaptera 13 Platypleura intercapedinis 21 Pycna semiclara 29

Myopsalta leona 6 Platypleura capensis 14 Platypleura plumosa 22 Roeseliana roeselii 30
Myopsalta longicauda 7 Platypleura cfcatenata 15 Platypleura sp04 23 Tettigonia viridissima 31

4. Discussion

The learning rate is a hyperparameter used to update weights during the gradient
descent process. In this regard, we conducted a comparative experiment to determine the
optimal initial learning rate, as presented in Table 5.

Table 5. Performance Comparison of Different Learning Rates.

Learning-Rate Batch_Size Accuracy F1 Recall Precision
(10−3) (%) (%) (%) (%)

0.3 10 75.00 65.46 66.04 71.46
0.6 10 75.00 59.81 62.55 62.24
0.9 10 78.95 56.04 58.49 60.56
1 10 80.26 62.02 65.68 65.66
3 10 72.37 60.73 63.85 64.69
6 10 68.42 47.52 52.81 46.93
9 10 68.42 44.80 47.97 48.01

The feature extraction module is employed to reduce the dimensionality of certain
raw input data or restructure the original features for subsequent use. Its primary function
is to decrease data dimensionality and arrange existing data features. We compared
the feature extraction module we utilized with several other classical feature extraction
modules, and the results of different feature extraction modules are presented in Table 6.
The recall is only 0.38% away from the best performance, surpassing the second-best
performance on this dataset by 0.36%. However, our model did not perform well in terms
of precision, with a 2.5% difference from the best precision. The main reason is the potential
similarity between categories of insects, rendering their sound features more challenging to
distinguish. Additionally, as a feature extractor, EfficientNet has fewer parameters than
other feature networks, and b7 outperforms b0-b6, making it better suited for capturing
local features in insect sound data.

Table 6. Results (% for Accuracy, F1, and Recall) for Different Feature Extraction Modules. The best,
second-best, and third-best results are highlighted in red, blue, and green, respectively.

Model Accuracy F1 Recall Precision Param FLOPS
(%) (%) (%) (%) (million) (GigaFLOPs)

Resnet [42]+DFSM 67.11 47.63 49.74 52.12 23.54 1.82
Vgg16 [43]+DFSM 60.53 44.98 50.78 46.12 138.42 6.83

Vit [44]+DFSM 60.53 43.37 45.62 45.33 85.82 16.86
Efficientnet-b0 [24]+DFSM 76.32 56.64 59.48 60.46 5.31 0.02
Efficientnet-b1 [24]+DFSM 77.63 58.24 60.57 64.31 7.81 0.02
Efficientnet-b2 [24]+DFSM 75.00 55.66 58.65 56.82 9.13 0.02
Efficientnet-b3 [24]+DFSM 76.32 63.73 66.04 68.12 12.26 0.03
Efficientnet-b4 [24]+DFSM 73.68 60.89 66.06 64.07 19.37 0.03
Efficientnet-b5 [24]+DFSM 78.95 60.90 63.70 61.23 30.42 0.05
Efficientnet-b6 [24]+DFSM 77.63 57.42 60.21 59.93 43.08 0.06
Efficientnet-b7 [24]+DFSM 80.26 62.02 65.68 65.66 66.39 0.08
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In this study, we conducted a performance comparison of various models, includ-
ing ResNet50 [42], RegNet [45], ConvNext [46], MnasNet [47], ShuffleNetV2 [48], MLP-
Mixer [49], DenseNet201 [50], MobileNetV2 [51], Swin transformer [52], and our dual-tower
network (as presented in Table 7) and visualized the results using bar charts (as illustrated
in Figure 10). During the training of the MLP-Mixer [49] and Swin transformer [52] models,
the Mel spectrogram input for insect sound conversion was [10, 2, 64, 344], while the model
expected input in the shape of [10, 2, 224, 224]. To address this, we applied array sampling
operations using a bilinear sampling algorithm with the “aligncorners” set to false. This
ensured that input and output tensors were aligned at their corner pixels (as demonstrated
in Figure 11). For out-of-bounds values, interpolation using edge values was employed,
allowing for a scientific adjustment of the array dimensions while preserving data integrity.
The remaining comparative experiments involved deep learning transfer models.

Table 7. Performance Comparison of Different Models.

Model Accuracy F1 Recall Precision Param FLOPS
(%) (%) (%) (%) (Million) (GigaFLOPs)

ResNet50 [42] 63.16 43.73 47.19 43.97 25.58 1.82
RegNet [45] 73.68 52.30 58.80 52.27 107.84 14.15

ConvNext [46] 59.21 46.44 51.51 45.89 4.65 0.79
MnasNet [47] 52.63 40.27 44.06 44.30 5.28 0.15

ShuffleNetv2 [48] 73.68 52.36 55.78 54.08 2.31 0.07
MLP-Mixer [49] 61.84 42.63 46.72 46.51 17.90 3.76

DenseNet201 [50] 61.84 44.49 48.28 47.60 21.23 0.11
MobileNetv2 [51] 78.95 57.20 59.01 59.05 3.54 0.14

Swin Transformer [52] 63.16 50.34 51.87 54.36 27.54 4.37
Dual-Tower Network 80.26 62.02 65.68 65.66 66.39 0.08

Figure 10. A bar chart depicting the model results. This figure provides an intuitive representation of
the testing performance of the ten models on InsectSet32.
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Figure 11. Array Sampling Operations (a): [10, 2, 64, 344], (b): [10, 2, 224, 224].

To gain a deeper understanding of the performance of the dual-tower network and the
contributions of its components, we conducted a series of ablation experiments. In these
experiments, we progressively removed different parts of the DFSM, including the DFSM
itself and the two separate tower structures. Based on the experimental data presented in
Table 8, we observed that removing the DFSM decreased the model’s performance, resulting
in a 5.26% decrease in accuracy (as shown in Table 2). All other metrics (F1, Recall, and
Precision) also showed declines. This strongly indicates the substantial contribution of the
DFSM to the task. Building on this discovery, we removed Tower 1 and Tower 2 to validate
the importance of each tower further, both of which led to decreased model performance.

Table 8. Comparative Results of Ablation Experiments.

Model Accuracy F1 Recall Precision Param FLOPS
(%) (%) (%) (%) (Million) (GigaFLOPs)

EfficientNet-b7 75.00 60.05 62.45 60.94 25.58 1.82
EfficientNet-b7+T1 76.32 57.45 62.34 63.12 55.26 0.98
EfficientNet-b7+T2 76.32 61.82 64.48 64.69 36.71 0.79

EfficientNet-b7+T1+T2 80.26 62.02 65.68 65.66 66.39 0.08

When conducting generalization experiments, our focus is on verifying the perfor-
mance of the dual-tower network on different datasets and its ability to generalize in
practical applications. This paper selected three diverse datasets, including environmental
sounds from ESC-50 [17], urban sounds from UrbanSound8K [18], and speech commands
from Speech Commands [19]. Each dataset represents distinct sound backgrounds and
classification tasks. This experimental design enables a comprehensive evaluation of the
model’s adaptability and generalizability, providing insights into its performance across
various sound environments.

Through a series of steps involving data preparation, model application, and per-
formance evaluation, we achieved good results, as presented in Table 9. The dual-tower
network attained an accuracy of 85.75% on the ESC-50 dataset, showcasing its capacity
to recognize diverse sound categories in a natural environment and underscoring its po-
tential to adapt to natural sound backgrounds. It demonstrated good performance on
the UrbanSound8K dataset, achieving an accuracy of 97.89%, which is particularly true
given the complex conditions of urban environments, including urban noise and various
sound events. Furthermore, the model exhibited success on the Speech Commands dataset,
with an accuracy of 93.94%, further confirming its practicality in speech command recogni-
tion and speech-to-text tasks. The outcomes of this series of experiments underscore the
superior performance. Its effectiveness extends beyond insect sound classification tasks
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to behave well in various soundscapes and tasks, making it a valuable asset for practical
applications across multiple domains.

Table 9. Model Comparison on Different Datasets.

Dataset
Methods Dual-Tower Network

Model Acc (%) Model Acc (%) Acc (%) F1 (%) Rec (%) Pre (%)

ESC-50 [17] ACDNet [53] 87.10 AVID [54] 89.20 85.75 80.07 80.25 82.16
UrbanSound8K [18] FACE [55] 98.05 PIPMN [56] 96.00 97.89 97.04 97.10 97.00

Speech Commands [19] Q-CNN [57] 95.12 TDNN [58] 94.30 93.94 93.87 93.87 93.99

5. Conclusions

The dual-tower network proposed in this paper demonstrates great performance
and wide applicability in insect sound classification tasks. Using the method we propose,
an accuracy of up to 80.26% can be achieved. Furthermore, we validated the proposed
method on other datasets and compared it with alternative approaches. Experimental
results confirm that the dual-tower network exhibits great performance across diverse
datasets with minimal data-specific impact, showcasing strong generalization capabilities.
This indicates that utilizing deep learning networks to emulate biological communication
can effectively enhance feature extraction and predictive accuracy. Our research provides
valuable insights for pest monitoring and biological control technologies, offering an
empirical foundation for future research endeavors.

Considering future research directions, we fully appreciate the opportunities to con-
tribute to the field, building upon the work of previous scholars. We firmly believe that
there is ample room for exploration in the current research. The future work will focus on
expanding multimodal research, with a deeper emphasis on integrating multimodal data
with biological theories and ecological concepts. We aim to explore how to extract more
ecological and behavioral information from audio and visual signals, facilitating a better
understanding of animal behaviors and ecosystem interactions.
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