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Abstract: Multi-relational graph neural networks (GNNs) have found widespread application in tasks
involving enhancing knowledge representation and knowledge graph (KG) reasoning. However,
existing multi-relational GNNs still face limitations in modeling the exchange of information between
predicates. To address these challenges, we introduce Relgraph, a novel KG reasoning framework.
This framework introduces relation graphs to explicitly model the interactions between different
relations, enabling more comprehensive and accurate handling of representation learning and rea-
soning tasks on KGs. Furthermore, we design a machine learning algorithm based on the attention
mechanism to simultaneously optimize the original graph and its corresponding relation graph.
Benchmark and experimental results on large-scale KGs demonstrate that the Relgraph framework
improves KG reasoning performance. The framework exhibits a certain degree of versatility and can
be seamlessly integrated with various traditional translation models.

Keywords: knowledge graph; reasoning; multi-relational; predicate

1. Introduction

In the field of Artificial Intelligence, knowledge graph (KG) reasoning has become a
pivotal research topic. As a powerful representation, KG integrates billions of available
relational facts. Its importance lies in its potential to enhance the representation and
inference of knowledge, enabling more intelligent decision making and problem solving.

KG is now utilized in various downstream applications, including recommendation
systems [1], query answering [2], and drug discovery [3]. However, due to constraints in
human knowledge and text extraction technology, even the largest KGs remain incomplete.
Given that the construction of knowledge graphs involves extensive data and complex
semantic relationships, there are inevitable omissions and defects. To address these issues,
knowledge graph reasoning techniques fill in the gaps and optimize the knowledge graph,
with a typical task being knowledge graph completion (KGC). Currently, KG reasoning has
become an important research field, attracting the attention and exploration of numerous
researchers. With the continuous advancement of technology and increasing application
demands, KG reasoning will play a more significant role in future intelligent applications.

Multi-relational graph neural networks (GNNs) [4,5] extend traditional GNNs by
considering multiple relations in the graph as distinct node attributes. This extension
enables the model to capture a broader range of semantic information and better encode
the contextual relationships between entities. By incorporating multiple relations, multi-
relational GNNs are able to handle more complex reasoning tasks, such as transitive
reasoning, role reversal, and collective entity recognition. This increased expressivity
significantly improves the accuracy and scalability of knowledge graph reasoning.

Despite their advantages, current multi-relational GNNs face limitations. Firstly, most
existing models assume that different relations have independent impacts on entities,
ignoring potential interactions between different relations. This limitation can lead to
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incomplete or inaccurate reasoning results. Secondly, existing models often treat all relations
equally, disregarding their different levels of importance in different reasoning tasks. This
uniform treatment may result in information loss or overfitting in complex reasoning tasks.
Figure 1 offers an example of the interactions between predicates.

Figure 1. The interaction between predicates of a toy knowledge graph (KG) about kinship relation-
ships. The blue lines and blue squares represent the relations and entities in the KG, respectively.
Entity D can be used to analyze the information connections between the two predicates of father
and uncle, while entity A can help to analyze the interaction between grandson and father, which
are depicted in red lines in the figure.

In this paper, we aim to address the limitations of ignoring interactive effects between
relations in existing multi-relational GNNs. We introduce the Relgraph, a novel knowl-
edge graph reasoning framework that explores logical relationships between relations by
introducing a relation graph. This relation graph serves as a dual graph of the original KG,
treating relations of the original KG (or predicates) as entities and entities in the original
KG as relations. The Relgraph explicitly models the interaction between different relations
as relations on the relation graph (referred to as entity-links), enabling more comprehensive
and accurate reasoning (corresponding to it, the relations in the original KG are actually
relation-links). By assigning different weights to different entity links based on their im-
portance in specific reasoning tasks, Relgraph effectively handles complex reasoning tasks
while reducing information loss and overfitting. A typical original knowledge graph and
its corresponding relation graph are shown in Figure 2.

We extend the traditional graph attention network (GAT) to its dual neural network,
the relation graph attention network (RGAT), and design a machine learning algorithm
based on the attention mechanism to synchronously optimize the two networks. As a
result, we successfully apply the Relgraph framework to knowledge graph reasoning tasks.
The Relgraph framework can embed various algorithms for representation learning, such
as TransE and RotateE, to optimize the representation learning of entities and relations,
ultimately enhancing the reasoning performance on KGs.

Through benchmark testing and conducting a drug repurposing task based on bio-
chemical KGs, we experimentally demonstrate that Relgraph improves the performance of
reasoning models on KGs.

The primary contributions of this article are the following.

• We introduce the concept of the relation graph, which extends the capabilities of
multi-relational GNNs for knowledge graph reasoning tasks. From this foundation,
we present the Relgraph, a novel knowledge graph reasoning framework.

• We design and implement a machine learning mechanism based on GAT that simulta-
neously optimizes GAT and RGAT using an attention mechanism. This integration
allows the Relgraph framework to learn representations from KGs and apply them
to reasoning tasks, thereby enhancing the performance of multi-relational GNNs in
knowledge graph reasoning tasks.

• The proposed Relgraph framework is versatile and can integrate various representa-
tion learning algorithms, such as TransE [6] and RotatE [7].
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Figure 2. The toy kinship knowledge graph (KG) (top) and its corresponding relation graph (bottom).
In the knowledge graph above, vertices represent entities, and links represent relations (or predicates)
in the knowledge graph. In the relation graph, vertices represent relations from the knowledge
graph, links represent entity links (red dashed line). The presence of an entity link between vertices is
determined by Equation (2).

2. Related Work

The primary objective of this article is to introduce an innovative approach to represen-
tation learning on KGs that leverages the attention mechanism of GNNs for KGC reasoning
tasks. To achieve this, we conducted a literature review encompassing KG embeddings
for KGC, advancements in GNN-based KGC, and models that incorporate multi-relational
GNNs. Unlike traditional embedding-based and GNN-based KGC models, the Relgraph
framework excels at capturing relational dependencies within GNNs, enabling more effec-
tive KG embedding learning and subsequently enhancing the performance of KGC models.

KGC via KG embeddings. The utilization of learnable embeddings for KGs has
spawned numerous works aimed at KGC tasks. For instance, references [6–10] describe
methods that learn to map KG relations into vector spaces and employ scoring functions
for KGC tasks. In contrast, NTN [11] parameterizes each relation using a neural network.
Paper [12] proposes a divide–search–combine algorithm, RelEns-DSC, to efficiently search
relation-aware ensemble weights for KG embedding. The common drawback of these
methods is that they cannot explicitly model the relationships between predicates.

KGC via GNNs. GNN is a framework introduced by [13] for learning deep models
or embeddings on graph-structured data. The theoretical foundation for GNNs’ ability
to capture common graph heuristics for KGC tasks in simple graphs was established
by [14]. Furthermore, ref. [15] employed a similar approach to achieve competitive results
on inductive matrix completion. Homogeneous GNN models are often unable to directly
apply to tasks involving multiple relations.

Multi-relational GNNs. Multi-relational GNNs have been widely studied in re-
cent years as a powerful tool for enhancing knowledge representation and reasoning on
KGs [4,5]. These networks aim to capture the complex relationships between entities and
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predicates in KGs. One line of research focuses on introducing more complex network archi-
tectures to capture the multi-relational interactions better [16]. These models often involve
the use of attention mechanisms or graph convolutional layers to capture the interactions
between different relations explicitly. Another line of research aims to effectively de-
velop learning algorithms that can optimize the representations learned by multi-relational
GNNs [4]. Paper [17] proposes an adaptive propagation path learning method for GNN-
based inductive KG reasoning, addressing the limitations of hand-designed paths and the
explosive growth of entities. Relphormer [18] leverages Triple2Seq to handle heterogeneity
and a structure-enhanced self-attention mechanism to encode relational information. These
algorithms often involve the use of contrastive learning or other optimization techniques to
improve the performance of representation learning and reasoning tasks on KGs. However,
they often cannot explicitly model the relationships between predicates, which limits their
accuracy and efficiency in conducting knowledge graph reasoning.

3. Materials and Methods
3.1. Preliminaries

KGs. The KG is a structured representation of facts in the form of triplet information.
It is defined as a set of triples K containing elements (h, r, t) where h and t belong to the set
of entities E , and r belongs to the set of predicates R. A triple (h, r, t) ∈ K represents a fact
in the KG, where h and t are entities and r is a relation, K ⊆ E ×R× E .

To avoid confusion, we use the terms “relation” and “predicate” interchangeably
throughout this discussion, as they carry the same meaning in our context.

When referring to the triple (h, r, t), h and t are called the “head entity” and “tail
entity”, respectively. The sets of all head entities and tail entities corresponding to a
particular predicate r are denoted as HDr and T Lr, respectively.

3.2. The Definition of Relgraph

Meta-nodes. In this paper, we introduce the concept of meta-nodes to represent the
relationship between entities and predicates in KGs. These meta-nodes are divided into
two categories: entity meta-nodes and predicate meta-nodes. Entity meta-nodes, denoted
as emni,a, represent the component of entity ei corresponding to predicate ra. Entity meta-
nodes express the influence of entities on predicates. The set EMN represents all such
meta-nodes in the KG, formally defined as {emni,a|ei ∈ E , ra ∈ R}, and belongs to the
cross product E ×R. Similarly, EMN a represents all entity meta-nodes associated with a
specific predicate ra.

For the relation ra ∈ R, we define the graph Ga = ⟨Va, ra,Da⟩, where the set of edges
Da contains triples (h, ra, t), h, t ∈ Va represent source and target vertices, respectively,
and ra is the unique relation of the graph Ga. For each fact (em, ra, en) ∈ K, let h, t represent
the entity meta-nodes emnm,a, emnn,a ∈ EMN a, respectively. Then, the triple (h, ra, t) corre-
sponds to the fact (em, ra, en) in the knowledge graph. For a triple (emnm,a, ra, emnn,a) ∈ Da
associated with entities em, en ∈ E related to the predicate ra ∈ R, we define the logi-
cal function:

TF(emnm,a, ra, emnn,a) =

{
True (em, ra, en) ∈ K,
False (em, ra, en) /∈ K.

(1)

Equation (1) is referred as the truth function of graph Ga.
Dually, for ei ∈ E and ra ∈ R, we set pmni,a as the predicate meta-node representing the

influence of predicate ra on entity ei. The set PMN = {pmni,a|ei ∈ E , ra ∈ R} ⊆ R×E repre-
sents all predicate meta-nodes in the knowledge graph. Similarly, PMN i = {pmni,a|ra ∈ R}
represents all predicate meta-nodes associated with entity ei.

Entity Links. Let ei ∈ E be an entity. We define a graph RG i = ⟨RV i, eli,RDi⟩ such
that each edge rd ∈ RDi is a triple (h, eli, t) where h, t ∈ RV i are source and destination
vertices. The only relation in RG i is eli. For predicates r f , rg ∈ R, let h, t be predicate
meta-nodes pmni, f , pmni,g ∈ PMN i, define eli as an entity link. The graph RG i is called a
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relation graph about entity link eli. To distinguish it from entity graphs, we refer to Ga as an
entity graph.

It follows from the definition that for each entity ei ∈ E , there exists a corresponding
collection of predicate meta-nodes PMN i and an entity link eli. The collection of all entity
links is denoted by EL, and |EL| = |E |. To reflect the influence of entities on predicate
pairs, we extend the truth function Equation (1) to relation graphs. The truth function for
relation graph RG i is defined as follows:

TF(pmni, f , eli, pmni,g) =



True ∃ex, ey ∈ E ,
(ex, r f , ei) ∈ K
and
(ei, rg, ey),∈ K,

False else.

(2)

The visual representation of the Truth function for relation graphs can be found in
Figure 2. It shows that if an entity ei is the tail entity of a fact (ex, r f , ei) and the head entity
of a fact (ei, rg, ey), and the predicate meta-nodes pmni, f , pmni,g represent the influence
of predicate r f , rg on ei, respectively, then P(pmni, f , eli, pmni,g) = True. In analogy to
the definition of facts in knowledge graphs, for any pmni, f , pmni,g ∈ PMN i, eli ∈ EL,
if P(pmni, f , eli, pmni,g) = True, we define (r f , eli, rg) as a relation-fact. The collection of all
relation-facts is denoted by RK = {(h, el, t)|h, t ∈ R, el ∈ EL} ⊆ R× E ×R.

3.3. Relgraph Attention Network

Knowledge graph embedding (KGE) represents entities and relations in a continuous
space called embeddings. A scoring function based on these embeddings can be defined to
score triplets (h, r, t), h, t ∈ E , r ∈ R. The embeddings are trained to ensure that observed
facts in the KG have higher scores than unobserved ones. Well-trained embeddings are
typically used for tasks like KGC and rule mining.

According to the definition provided in Section 4, we have transformed the knowledge
graph into |R| entity graphs {Ga|ra ∈ R}, each containing |E | vertices representing entity
meta-nodes. Additionally, we have |E | relation graphs {RG i|ei ∈ E}, each containing |R|
vertices representing predicate meta-nodes. In the entity graph, the relations are defined by
the predicates present in the KG, while in the relation graph, the relations are defined by
entity-links. To perform tasks, such as KGC, Relgraph utilizes two interconnected graph
attention networks to train embeddings for entities, predicates, and entity links. These
networks are referred to as the Entity GAT (graph attention network) and the Relation GAT
(relation graph attention network). The two GATs share the same embedding of predicates.

Entity GAT. The Entity GAT corresponding to entity graph Gk is responsible for ana-
lyzing the message passing process of Relgraph and the attention between vertices emni,k
and emnj,k (entity meta-nodes representing the influence of entity ei, ej on the predicate rk,
respectively). We denote eijk as the component of emni,k corresponding to the vertex emnj,k.
Matrix F ∈ R|E |×d represents the input features, where d is the dimension of the feature.
Each row fi = Fi: represents the embedding of entity ei. Similarly, matrix P ∈ R|R|×d

represents features of the predicates, and each row pk = Pk: represents the embedding of
predicate rk. We denote fijk as the embedding of eijk.

In accordance with [16], the entity GAT uses the following aggregation function to
update the embedding of entities and predicates:

fijk = W f [ fi| f j|pk], (3)

bijk = ReLu(Wb fijk), (4)

aijk =
exp(bijk)

∑n∈Ni ∑r∈Rin
exp(binr)

, (5)
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f̂i = σ( ∑
j∈Ni

∑
k∈Rij

aijk fijk), (6)

F′ = WFF + F̂, (7)

P′ = WPP, (8)

where pk is the embedding of predicate rk determined by
(
ej, rk, ei

)
∈ K, neighbor degree

Ni =
{

j|ej ∈ E , rk ∈ R,
(
ej, rk, ei

)
∈ K

}
is the number set of ei’s one-hop neighboring ver-

tices, and Ni also includes i (i.e., there is a self-loop); Rij =
{

k|ei ∈ E , ej ∈ E ,
(
ej, rk, ei

)
∈ K

}
is

the number set of predicates that have appeared in all facts with ei as the head entity and ej
as the tail entity; aijk is the attention weight between the target vertex emni,k and the neigh-
boring vertex emnj,k, which is generated by applying softmax to the values computed by
bijk. The parameters W f , Wb, WF, and WP are trainable parameters of the attention function.

Relation GAT. Dually, for each relation graph RGs in the Relgraph, to comprehend the
message-passing process and the attention between vertices pmnus and pmnvs (predicate
meta-nodes that symbolize the impact of predicates ru, rv on entity es, respectively), we
utilize ruvs as the component of pmnus at vertex pmnvs. Matrix Q ∈ R|E |×d represents the
features of entity links, with each row qe = Qe: denoting the embedding of entity link ele.
We also denote puvs as the embedding of ruvs.

After updating the embedding of entities and predicates using Equations (7) and (8)
via entity GAT, Relation GAT employs the aggregation function below to update the
embedding of entity links and predicates once again.

puvs = Wp[pu|pv|qs], (9)

duvs = ReLu(Wd puvs), (10)

buvs =
exp(duvs)

∑n∈QNu ∑x∈ELun exp(dunx)
, (11)

p̂u = σ( ∑
v∈QNu

∑
s∈ELuv

buvsduvs), (12)

P′ = WPQP + P̂, (13)

Q′ = WQQ, (14)

where qs represents the embedding of entity link els according to the relation-fact (rv, els, ru)
∈ RK, QNu = {v|rv ∈ R, els ∈ EL, (rv, els, ru) ∈ RK} is the number set of ru’s one-hop
neighboring vertices, and QNu also includes u (i.e., there is a self-loop on each vertex);
ELuv = {s|ru ∈ R, rv ∈ R, (rv, els, ru) ∈ RK} is the number set of entity-links that have
appeared in all relation-facts with rv as the head entity and ru as the tail entity; buvs is
the attention weight between the target vertex pmnu,s and the neighboring vertex pmnv,s,
which is computed by applying softmax to the values determined by duvs. Wp, Wd, WPQ,
and WQ are the trainable parameters of the attention function.

3.4. Training Algorithm

We train Relgraph through KGC tasks on KGs for embedding learning. For entity
GAT, we utilize the training dataset Ktrain ⊂ K, as well as the negative sample training set
K′

train that is generated from Ktrain in a 3:1 ratio, where

K′
train = {(h′, r, t′)|(h, r, t) ∈ Ktrain,

(h′, r, t′) /∈ Ktrain, h′ ̸= h ∨ t′ ̸= t}.
(15)

For Relation GAT, the model generates the relation facts as training set RKtrain ⊂ RK
based on Ktrain, using Equation (2). Similarly, the negative sample training set RK′

train is
generated following the same method.
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The scoring function SC(ei, ra, ej) predicts the probability of (ei, ra, ej) ∈ K being
true. For relation facts (ra, elj, rb) ∈ RK, the model employs the same scoring function
SC(ra, elj, rb). In each iteration, the model minimizes the following loss:

LK = ∑(h,r,t)∈Ktrain ∑(h′ ,r,t′)/∈K′
train

[max(0, SC(h′, r, t′)− SC(h, r, t) + γ)],
(16)

LRK = ∑(h,r,t)∈RKtrain ∑(h′ ,r,t′)/∈RK′
train

[max(0, SC(h′, r, t′)− SC(h, r, t) + γ)],
(17)

LRK = LK + ηLRK, (18)

where γ denotes the margin hyperparameter and η denotes the RGAT weight hyperparam-
eter used to control the penalty for incorrect predictions in the relation graph.

3.5. Variants of Relgraph

The Relgraph framework can be seamlessly integrated with TransE, RotatE, and other
transitive representation learning methods by utilizing distinct scoring functions. Based
on the scoring function utilized, Relgraph can be classified into distinct variants. We have
developed the Relgraph-RotatE and Relgraph-TransE versions of the model, along with the
GAT-RotatE version for comparative experiments that do not involve entity links.

• Relgraph-TransE. In the Relgraph-TransE version, we use the following formula as the
scoring function:

SC(h, r, t) = | fh + pr − ft|,
∀(h, r, t) ∈ K ∪RK.

(19)

Here, fh, ft represent the embeddings of h, t, respectively, and pr represents the em-
bedding of r.

• Relgraph-RotatE. In the original RotatE model, entity embeddings consist of both
the real and imaginary parts, which are operated separately with the predicate em-
beddings representing the rotation angle in the complex space. Consequently, the di-
mensionality of entity embeddings needs to be twice that of the predicates. However,
in Relgraph, there exists a duality between entities and predicates, requiring the di-
mensions of entities and predicates to be consistent. This contradiction necessitates a
special design for Relgraph-RotatE.
Let pr be the embedding of a predicate or entity link r with a dimensionality of
D. We can represent pr as the concatenation of two parts: pu

r and pd
r . Here, pu

r
represents the first D

2 dimensions of pr, and pd
r represents the last D

2 dimensions of
pr. Mathematically, we can express it as pr = Cat(pu

r , pd
r ), where Cat represents the

concatenation operation of vectors. In Relgraph-RotatE, the rotation angle from the
head vertex to the tail vertex in a triplet is calculated using the following equation:

pθ
r = min(pu

r + pd
r , pu

r − pd
r ), (20)

where pθ
r represents the measurement of the rotation angle from the head entity to the

tail entity in RotatE. The scoring function used in Relgraph-RotatE is as follows:

SC(h, r, t) = | fh ◦ pθ
r − ft|,

∀(h, r, t) ∈ K ∪RK,
(21)
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where fh, ft denotes the embeddings of h, t. The reason for this design is due to the
discontinuous nature of the following equation (Equation (23)):

pθ
r =

{
pu

r + pd
r pu

r < 0 ∧ pd
r < 0,

pu
r − pd

r else.
(22)

This discontinuous nature allows the representation learning model to better distin-
guish between entities and predicates that result in true or false triple assignments.
It also helps to maintain a relatively clear and stable geometric interpretation of the
dimensions in the embeddings.

• GAT-RotatE and GAT-TransE. We employ GAT-RotatE and GAT-TransE as bench-
mark models to assess the impact of introducing entity links on model performance.
By setting η in Equation (18) to 0, we obtain GAT-RotatE/GAT-TransE from Relgraph-
RotatE/Relgraph-TransE.

4. Results

We have conducted rigorous experiments to demonstrate the efficacy of Relgraph in
enhancing the performance of reasoning models on KGs. These experiments include KGC
experiments on the benchmark dataset as well as an experiment about drug repurposing.

4.1. Experimental Setup

Benchmark datasets. The evaluation of open-world knowledge KGC tasks often
relies on subsets of Word-Net and Freebase, such as WN18RR [10] and FB15K-237 [19]. To
verify the effectiveness of Relgraph, we need to choose datasets with numerous predicates
and high difficulty levels to validate our method’s efficacy. Therefore, we have selected
FB15K-237, WN18RR, and UMLS [20] as our experimental datasets. UMLS is a domain-
specific knowledge graph in the medical domain, containing biomedical concepts and
their relationships.

Drug repurposing datasets. To verify the efficacy of this method for knowledge
extraction and logical reasoning on large-scale datasets, we conducted drug repurposing
experiments on the open-source biochemical knowledge graph RTX-KG2c [21]. RTX-KG2c
integrates data from 70 public knowledge sources into a comprehensive graph where all
biological entities (e.g., “ibuprofen”) are represented as nodes and all concept–predicate–
concept relationships (e.g., “ibuprofen–increased activity–GP1BA gene”) are encoded as
edges. This dataset comprises approximately 6.4 M entities across 56 distinct categories,
with 39.3 M relationship edges described by 77 distinct relations.

Drug repurposing, also known as drug rediscovery or drug repositioning, refers to
discovering a new indication for an existing medication. The objective of this experiment is
to employ the KGC model to learn the interactions between diseases and drugs from RTX-
KG2c, aiming to predict potential therapeutic relationships between drugs and diseases.
To identify “new” applications for existing drugs, therapeutic relationships were retrieved
from external databases, including MyChem [22] and SemMedDB datasets [23].

To prevent information leakage during training, we excluded all existing edges con-
necting potential drug nodes (nodes labeled “Drug” or “SmallMolecule”) with potential
disease nodes (nodes labeled “Disease”, “PhenotypicFeature”, “BehavioralFeature,” or
“DiseaseOrPhenotypicFeature”) in RTX-KG2c. We then added drug–disease pairs that were
confirmed true positives (pairs with the relation “indication” from MyChem Datasets or
the predicate “treats” from SemMedDB Datasets). A new predicate treat was introduced
to represent this therapeutic relationship in the experimental KG.

We generated new triples based on these drug–disease pairs and added them to the
KG, dividing them into training, validation, and testing sets in a 7:2:1 ratio.

Baselines. To test the effectiveness and versatility of Relgraph, we conducted an
extensive selection of well-established knowledge graph reasoning models. We used
these models on the benchmarks as the baseline. For each baseline, we used them in
conjunction with Relgraph to conduct performance testing and record their performance
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improvement. The chosen baseline models include: TransE, DistMult [9], RotatE and
ConvE [10], CompGCN [4], etc.

In the drug repurposing experiments, all models were trained using the modified
RTX-KG2c training dataset. However, when tested on the test set, only the predicted results
of triples associated with the predicate treat were considered.

Experiment setting details. We set the entity and relation embedding dimensions
to 200 for our experiments. To optimize the model, we utilized the Adam optimization
algorithm [24]. We experimented with different learning rates within the range of 0.002
to 0.006, as well as mini-batch sizes from 64 to 256. Additionally, we applied dropout
regularization to both the entity and relation embeddings, as well as all feed-forward layers.
We searched for an optimal dropout rate within the range of 0.55.

In line with the common practices mentioned in [25,26], we utilize standard evaluation
metrics for the link prediction task: Hit@1, which represents the number of correctly
predicted head terms among the top 1 predictions, and mean reciprocal ranking (MRR),
calculated as the mean of the reciprocal rank of the correct answer in the list of predictions.

To generate predictions, we feed the predicate and entity representations learned from
each model version into a ConvKB model [27]. We then train this ConvKB model to act as
a decoder, assigning scores to candidate head and tail entities based on the scores given
by the ConvKB decoder for each triplet in the test set. Finally, we sort these entities based
on these scores, calculate the corresponding metrics (Hit@K and MRR), and evaluate the
performance of each model.

All experiments were conducted on a machine equipped with 6 Nvidia Tesla V100
GPUs and 32 GB RAM (Beijing, China). We used the PyTorch library in Python for imple-
mentation.

Analysis of computational complexity in experiments. Let d be the dimension of
embeddedings in the model, it can be analyzed that the spatial complexity of Relgraph
is O(2|E |d + |R|d) and the temporal complexity is O(|K|d2 + |K|d + |RK|d2 + |RK|d).
In contrast, the TransE model has a spatial complexity of O(|E |d + |R|d) and a temporal
complexity of O(d), while the single relation GAT model has a spatial complexity of
O(|E |d + |R|d) and a temporal complexity of O(|E |d2 + |K|d). Without considering the
relation graph, the spatial complexity of Entity GAT (multi-relational GAT) is O(|E |d +
|R|d) and the temporal complexity is O(|K|d2 + |K|d). It can be seen that compared to
GAT and multi-relational GAT models, the complexity of Relgraph only increases linearly.
In the KGC experiment on the FB15K-237 dataset, when d = 200, Relgraph can complete
training in about 1 h.

4.2. Experiment Results

KGC tasks on benchmarks. As shown in Table 1, in the KGC tasks, the performance
of Relgraph is optimal on most metrics. Relgraph-TransE and Relgraph-RotatE have better
performance than other representation-based methods such as TransE, RotatE, and ConvE.
For MRR on FB15K-237 and UMLS database, Relgraph-RotatE is 56.5% and 22.0% higher
than the best algorithm before Relgraph and the improvement of Relgraph-TransE is 52.9%
and 21.6%, respectively.

Table 1. Results of knowledge graph completion (KGC) tasks on benchmarks. * denotes results from
publications. - denotes the unpublished results. The experimental results indicate that the KGC
performance of Relgraph-RotatE and Relgraph-TransE exceeds traditional methods.

Algorithm WN18RR FB15K-237 UMLS
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE * 0.222 1.3 40 53 0.3 23 36.9 52.7 - - - -
DistMult 0.444 41.2 47 50.4 0.281 19.9 30.1 44.6 0.391 25.6 44.5 66.9
ConvE * 0.456 41.9 47 53.1 0.312 22.5 34.1 49.7 - - - -

CompGCN 0.473 42.6 47.8 55.1 0.337 23.8 35.1 49.9 0.721 58.6 81.1 90.1
RotatE 0.476 42.8 49.2 57.1 0.338 24.1 37.5 53.3 0.744 63.6 82.2 93.9

Ours:Relgraph-TransE 0.478 41.3 51.9 59.9 0.517 45.7 54.4 63.6 0.905 84.4 95.8 98.3
Ours:Relgraph-RotatE 0.485 43.2 52.5 61.5 0.529 46.7 55.6 64.9 0.908 86.6 94.1 97.2
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The impact of relation graph on enhancing the performance of reasoning. Table 2
shows the improvement brought by relation graph in embedding learning and KG rea-
soning. It can be found that the model version using relation graph (Relgraph-RotatE or
Relgraph-TransE) has certain advantages in performance compared to the version not used
(GAT-RotatE or GAT-TransE).

Table 2. The impact of relation graph on enhancing the performance of embedding learning and
knowledge graph (KG) reasoning. * denotes results from publications. The experimental results
indicate that the introduction of relation graph can improve the accuracy of KG reasoning.

Methods WN18RR FB15K-237 UMLS
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE * 0.222 1.3 40 53 0.3 23 36.9 52.7 – – – –
RotatE 0.476 42.8 49.2 57.1 0.338 24.1 37.5 53.3 0.744 63.6 82.2 93.9

GAT-RotatE 0.472 39.1 51.8 60.7 0.501 44.5 52.6 62.7 0.862 76.5 91.3 96.7
GAT-TransE 0.468 38.5 50.0 56.9 0.488 43.2 51.1 60.7 0.829 73.7 88.3 95.0

Relgraph-RotatE 0.485 43.2 52.5 61.5 0.529 46.7 55.6 64.9 0.908 86.6 94.1 97.2
Relgraph-TransE 0.478 41.3 51.9 59.9 0.517 45.7 54.4 63.6 0.905 84.4 95.8 98.3

We use a bar chart to visually demonstrate the improvement of KG reasoning ability
through relation graph in Relgraph, as shown in Figure 3.

Figure 3. MRR improvement brought by relation graph in Relgraph on benchmarks.

Drug repurposing. As shown in Table 3, in the drug repurposing experiment, Rel-
graph performed best in most metrics. Relgraph-TransE and Relgraph-RotatE had better
performances than baseline methods, such as TransE, RotatE, and ConvE. Relgraph-RotatE
was 4.4% higher than the best algorithm before Relgraph, and Relgraph-TransE was 1.3%
higher than the original TransE. The model version using relation graph (Relgraph-RotatE
or Relgraph-TransE) also has advantages in performance compared to the version not used
(GAT-RotatE or GAT-TransE).

Table 3. Results of drug repurposing experiment.

Algorithm MRR Hits@1 Hits@3 Hits@10

TransE 0.232 17.3 45.0 58.1
DistMult 0.164 16.0 30.3 34.8
ConvE 0.289 19.9 47.6 57.5

CompGCN 0.291 22.3 48.6 58.1
RotatE 0.296 22.8 49.1 57.9

GAT-TransE 0.234 17.5 45.1 58.6
GAT-RotatE 0.299 22.9 49.4 57.8

Ours:Relgraph-TransE 0.235 21.2 46.9 59.2
Ours:Relgraph-RotatE 0.309 23.5 50.3 59.5
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4.3. Analytical Experiments

To gain a deeper understanding of the impact of various parameters in the model
and delve into the inner workings of the model, we meticulously designed and executed a
series of analytical experiments.

The impact of embedding dimension size. As Figure 4 demonstrates, we conducted
an experimental analysis to investigate the impact of the embedding dimension of entities,
predicates, and entity-links within Relgraph on its performance. The embedding dimen-
sions of the model were set to 50, 100, 150, and 200, respectively. The results indicate that
the performance improvement plateaus at a dimension of 200.

Figure 4. MRR of Relgraph under different embedding dimensions on FB15K-237 dataset.

The impact of training epoch. To analyze the learning efficiency of the Relgraph
model, the MRR performance of each training epoch model was sampled during exper-
iments on the FB15k-237 dataset, as displayed in Figure 5. It is evident that the model
achieved satisfactory performance at approximately 500 epochs and reached optimal fitness
at 3000 epochs.

Figure 5. The learning curve of Relgraph under different epochs on FB15K-237 dataset.

Comparison of schemes for calculating the rotation angles in the Relgraph-RotatE.
To verify the effectiveness of the scheme to calculate rotation angles in the Relgraph-RotatE
model as per Equation (23), we conducted a comparative experiment. We established two
modified versions of the model, Relgraph-RotatE-min and Relgraph-RotatE-max, based on
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their distinct approaches to processing relation embeddings. The corresponding calculation
formulas for rotation angles in RotatE are as follows:

pθ,min
r = min(pu

r , pd
r )

pθ,max
r = max(pu

r , pd
r )

(23)

The performance comparison between the Relgraph-RotatE-min, Relgraph-RotatE-
max, and Relgraph-RotatE models on the FB15k-237 dataset is displayed in Figure 6.
It is evident that the rotation angle calculation scheme proposed in this paper offers
several advantages.

Figure 6. Comparison of model performance under different rotation angle calculation schemes on
the FB15k-237 dataset.

Comparison of different similarity algorithms in the Relgraph model. We also
conducted an analysis and verification of the performance impact of different similarity
algorithms in scoring functions (Equations (16) and (17)) on the Relgraph model. For this
experiment, we utilized cosine similarity, F1 norm, and F2 norm in scoring functions to
calculate the similarity between embeddings. The comparison of their performance on the
FB15K-237 dataset is presented in Figure 7.

Figure 7. Comparison of model performance under different similarity algorithms on the FB15k-
237 dataset.
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5. Discussion
5.1. Performance Analysis of Relgraph

From the benchmark results presented in Table 1 and the drug repurposing experiment
outcomes in Table 3, it is evident that the Relgraph outperforms the baseline model in terms
of performance across various KGC tasks. This underscores the advantage of Relgraph in
leveraging the relation graph for extracting information exchange between predicates.

Notably, the Relgraph exhibits the most significant performance improvement com-
pared to baseline methods on the FB15K-237 dataset, as evident from Table 1. Improvements
achieved by Relgraph-RotatE and Relgraph-TransE over suboptimal baseline methods
amount to approximately 56.5% and 52.9%, respectively.

On the WN18RR dataset, the Relgraph exhibits a relatively smaller improvement over
the baseline method. Among them, the Relgraph-RotatE approach exhibits the most notable
improvement, reaching approximately 1.9%, followed by the Relgraph-TransE approach
with approximately 0.4%.

Relgraph exhibits a significant performance improvement over the baseline method
on the UMLS dataset. When compared to the suboptimal baseline, Relgraph-RotatE and
Relgraph-TransE achieve improvements of 22.0% and 21.6%, respectively.

The Relgraph model exhibits an advantage compared to the baseline in its ability to
identify new indications for existing drugs, achieving a performance improvement of 4.4%
for Relgraph-RotatE relative to RotatE and 1.3% for Relgraph-TransE relative to TransE.
This suggests that in large-scale knowledge bases, Relgraph remains effective.

Upon comparing different experimental tasks, it is observed that the Relgraph model
exhibits its greatest advantage on FB15K-237, which has the highest number of predicates,
and relatively least advantage on WN18RR with the lowest number of predicates. This
underscores the unique advantage of the relation graph in handling complex KGs with
numerous predicates.

5.2. The Performance Improvement Brought by the Relation Graph and the Universality of Relgraph

The results in Table 2 demonstrate that Relgraph outperforms ordinary GAT, regardless
of the representation learning method used. Specifically, Relgraph-Rotate offers a 5.6%
improvement over GAT-Rotate, while Relgraph-TransE offers a 5.9% improvement over
GAT-TransE on the FB15K-237 dataset. This highlights the value of introducing relation
graphs to capture predicate interactions.

The results in Table 2 also indicate that the Relgraph framework is versatile and can
be seamlessly integrated with other transitive representation learning methods on KGs,
enhancing their performance. Notably, the performance improvement of Relgraph-RotatE
over the original RotatE is 56.5%, and the improvement of Relgraph-TransE over the
original TransE is 72.3%. As Figure 3 shows, this improvement is consistent across datasets,
highlighting the generalizability of the Relgraph framework for enhancing knowledge
graph reasoning.

5.3. Analysis of Hyperparameters and Related Settings

In Figure 4, it can be observed that as the embedding dimensions in the Relgraph
increase from 50 to 200, the model’s performance improves accordingly. However, further
increasing the dimensions does not significantly enhance the model’s performance. Our
experimental conclusion is that the optimal embedding dimension is dependent on factors
such as the size of the dataset, the number of predicates, and the representation learning
method used (TransE, RotatE, etc.).

As shown in Figure 5, the Relgraph typically achieves rapid convergence, approaching
approximate optimal performance at around 1000 epochs, highlighting its relative efficiency.
As the number of training epochs increases, the performance of the Relgraph continues to
improve slightly.
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The comparative experiment in Figure 6 demonstrates the effectiveness of the rotation
angle calculation method (Equation (23)) utilized in RotatE. Compared to using max or
min functions, Equation (23) exhibits a performance advantage of approximately 3%.

Based on the experimental results depicted in Figure 7, it can be concluded that in the
Relgraph model, scoring triplets using cosine similarity yields the best performance. Con-
ventionally, representation learning models for KGs utilize the F1 norm to measure vector
similarity. The utilization of cosine similarity as the scoring function in Relgraph leads to
optimal performance, possibly due to the influence of the relation graph. The predicate
representation learned by the model is insensitive to vector magnitude but focuses more
on vector angles.

6. Conclusions

This article proposes a new KG reasoning framework, Relgraph, which explicitly mod-
els the interaction between different relations by introducing a relation graph. An attention
mechanism-based machine learning algorithm is designed to synchronously optimize GAT
for original graph and relation GAT for relation graph, thereby improving the performance
of transitive representation learning methods and multi-relational graph neural network
models in reasoning tasks. The experimental results demonstrate the effectiveness of Rel-
graph in knowledge graph reasoning tasks. The universality of this framework and its
ability to embed various representation learning algorithms make it widely applicable. We
found that Relgraph is particularly suitable for reasoning on datasets with rich predicates,
and can still perform KGC on large-scale datasets. The computational complexity of the
model is on the same level as traditional GAT.

Limitations. The primary limitations of this article are twofold. Firstly, the graph
attention learning mechanism upon which it relies is relatively conventional and lacks
integration with the latest advancements in the field. Secondly, the proposed new frame-
work lacks comprehensive exploration of its application potential, being confined primarily
to the realm of transductive KGC, while neglecting other promising scenarios, such as
inductive KGC, rule mining, and knowledge discovery.

Next, we will further explore the unique advantages of Relgraph in predicate in-
formation mining and rule mining. We will also attempt to integrate some new GAT
mechanisms into our framework, striving to make new breakthroughs in interpretable and
highly generalized reasoning.
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