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Abstract: Surface electromyography (sEMG) signals are the sum of action potentials emitted by many
motor units; they contain the information of muscle contraction patterns and intensity, so they can
be used as a simple and reliable source for grasping mode recognition. This paper introduces the
InRes-ACNet (inception–attention–ACmix-ResNet50) model, a novel deep-learning approach based
on ResNet50, incorporating multi-scale modules and self-attention mechanisms. The proposed model
aims to improve gesture recognition performance by enhancing its ability to extract channel feature
information within sparse sEMG signals. The InRes-ACNet model is evaluated on the NinaPro
DB1 and NinaPro DB5 datasets; the recognition accuracy for these datasets can reach 87.94% and
87.04%, respectively, and recognition accuracy can reach 88.37% in the grasping mode prediction
of an electromyography manipulator. The results show that the fusion of multi-scale modules and
self-attention mechanisms endows a strong ability for the task of gesture recognition based on sparse
sEMG signals.

Keywords: multi-scale attention mechanisms; deep learning model; sEMG signals; gesture recognition;
electromyography manipulator

1. Introduction

sEMG signals constitute bioelectric signals that record sequential muscle contraction
processes within skeletal muscles, encompassing crucial information regarding muscle
contraction modes and intensities; they can serve as a straightforward, reliable information
source for the purpose of gesture recognition. In recent years, sEMG signals have found
widespread applications in diverse fields, notably in human–computer interaction [1,2] and
prosthetic limb control [3–5]. Gesture recognition based on sEMG signals presents itself as
a multi-classification problem within the domain of pattern recognition; currently, two pri-
mary methodologies are employed to address this challenge: traditional machine-learning
methods and deep-learning methods. Traditional machine-learning approaches typically
involve the extraction of features from sEMG signals in the time domain, frequency domain,
or time–frequency domain. Following dimensionality reduction in these features [6,7], con-
ventional classification methods, such as support vector machines (SVMs) [8–11], random
forest (RF) [12,13], linear discriminant analysis (LDA) [14–16], and others, are subsequently
applied for effective gesture recognition.

Deep-learning methods have a strong ability to learn features from data and images;
they have been confirmed to perform well in pattern recognition, so in recent years, various
deep-learning structures and methods have been gradually applied for gesture recognition
based on sEMG signals. For instance, in Ref. [17], a convolutional neural network (CNN)
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was employed for electromyography gesture recognition, yielding superior accuracy com-
pared to the traditional SVM. Atzori et al. [18] utilized the LeNet model for recognition,
achieving a recognition accuracy equivalent to traditional classification methods in 53
gesture recognition tasks. Geng et al. [19] introduced an eight-layer CNN for gesture recog-
nition. Soroushmojdehi et al. [20] proposed a topic transfer learning method for gesture
recognition on the NinaPro DB2 dataset, elevating the recognition accuracy from 81.43%
to 82.87%. Zhai et al. [21] utilized a CNN for gesture recognition on the NinaPro DB2
dataset, achieving a correct recognition rate of 78.7%. Cheng et al. [22] proposed a deep
CNN model for gesture recognition, with the highest recognition accuracy reaching 82.54%
on the NinaPro DB1 dataset. Wei et al. [23] employed a multi-stream CNN fusion network
for gesture recognition, achieving a recognition accuracy of 85%.

Attention mechanisms in deep learning have proven instrumental in enhancing system
focus on key information within signals, thereby improving classification accuracy and
decoding. They have been used in gesture recognition problems based on sEMG signals.
For instance, Hao et al. [24] integrated attention mechanism modules into a neural net-
work’s input layer for electromyography gesture recognition based on the CapgMyo and
CSLHDEMG datasets, resulting in accuracy improvements of 4.44% and 2.71%, respectively.
Wang et al. [25] enhanced the LSTM-CNN network by introducing the attention mechanism
CBAM, leading to a notable 5.3% increase in recognition accuracy. Fan et al. [26] proposed
the CSAC-Net network model, leveraging attention mechanisms to focus on crucial infor-
mation in the channel space, achieving a gesture recognition accuracy of 82.50%. Rahimian
et al. [27] employed the attention mechanism and temporal convolution in the TC-HGR
architecture, achieving a gesture recognition accuracy of 81.65%. Hu et al. [28] proposed
a hybrid CNN-RNN network structure based on the attention mechanism, achieving an
average gesture recognition accuracy of 84.80% based on the NinaPro DB1 dataset.

Additionally, multi-scale modules in deep learning use convolution kernels and pool-
ing operations of various sizes concurrently to facilitate feature extraction across different
scales. This multi-scale design allows for the capture of information from diverse-sized
areas in the image, thereby enhancing the model’s perceptual capabilities. This approach
has found application in electromyography gesture recognition as well. For example, Han
et al. [29] introduced a novel CNN incorporating multi-scale kernels and feature fusion
(MKFF-CNN), and it was applied to gesture recognition based on sEMG signals, resulting
in a significant 6.54% increase in recognition accuracy compared to a single-scale convolu-
tional subnetwork. Shen et al. [30] proposed an sEMG signal gesture classification model
based on a multi-scale module, achieving a recognition accuracy of 79.43% on NinaPro DB5.
Jiang et al. [31] introduced an RIE model based on inception multi-scale fusion convolution
and the ECA mechanism, which achieved an average accuracy of 88.27% on NinaPro DB1,
surpassing the traditional CNN by 7.89%.

There is multi-dimensional information in sEMG signals, such as the time domain,
frequency domain, or time–frequency domain, so deep-learning methods for gesture
recognition based on sEMG signals include two predominant approaches. The first involves
feature extraction from the original sEMG signals, the subsequent conversion of features
into maps, and finally the inputting of these maps into the deep-learning model. In
this approach, manual feature extraction is required. The second involves the direct
conversion of the original sEMG signals into an electromyography image, enabling the deep-
learning model to autonomously learn sophisticated features in the gesture recognition
process. This approach can avoid the step of manually extracting features and simplify the
recognition process.

Hence, this study integrates both the attention mechanism and a multi-scale structure
into the ResNet50 model in order to enhance the model’s proficiency in capturing various
receptive field image features and critical area information within sEMG signals. Simulta-
neously, features in sEMG signals can be autonomously learned, with no manually feature
extracting required.
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This study integrates the attention mechanism with a multi-scale structure into a
deep-learning model, proposing the InRes-ACNet model based on ResNet50. Initially, to
tackle challenges associated with the potential loss of channel information during feature
extraction from sEMG signals, we introduce a multi-scale inception–attention module. This
module aims to enhance the model’s ability to extract features related to channel informa-
tion. Furthermore, we incorporate the ACmix module into the ResNet50 model, providing
a synergistic blend of the self-attention mechanism and convolution operations. This inte-
gration seeks to enhance the model’s feature extraction capabilities. The simultaneous use
of both the inception–attention and ACmix modules is intended to improve the model’s
proficiency in gesture recognition based on sEMG images. Additionally, the model’s inputs
are the original grayscale images of the sEMG signal. This approach eliminates the need
for manual feature extraction during sEMG signal preprocessing, thereby streamlining the
gesture recognition process.

The rest of this paper is organized as follows: Section 2 describes the preprocessing
of original sEMG signals and the generation of sEMG grayscale image datasets. Section 3
introduces the proposed InRes-ACNet model. Section 4 verifies the effectiveness of the
InRes-ACNet model through experiments and conducts grasping mode prediction for the
electromyography manipulator. Section 5 summarizes the results of this paper’s work.

2. Methods

The flow of grasping mode recognition for the manipulator based on sEMG sig-
nals is illustrated in Figure 1. Arm sEMG signals are collected by a wireless 8-channel
sEMG armband, and the sEMG data are transmitted to the computer in real-time via
Bluetooth. The computer, through software, communicates with the Bluetooth serial port
and obtains the current sEMG data according to the serial communication protocol. Subse-
quently, a deep-learning model for predicting the manipulator’s grasping mode is trained
using sEMG data. The trained model is then integrated with the manipulator environ-
ment to achieve control of the manipulator’s grasping mode, which has multiple degrees
of freedom.
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Figure 1. Basic flow chart of grasping mode recognition of manipulator.

2.1. sEMG Signals Acquisition of Wireless 8-Channel Armband

sEMG signals are collected using an 8-channel wireless sEMG armband developed
by researchers at Shanghai Jiao Tong University. This armband, capable of recognizing
8 hand gestures, is illustrated in Figure 2. The armband consists of 8 dry electrodes, a DC
power supply, and a microcontroller. Circuit-wise, the 8 dry electrodes are interconnected
via flexible flat cables (FPC), which individually transmit the collected signals to the
microcontroller for further processing. Structurally, the electrodes are paired and connected
by elastic cords, allowing the armband to accommodate arms of various thicknesses,
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as shown in Figure 2a,b. Each dry electrode incorporates a differential amplification
circuit for filtering and amplifying sEMG signals. The signal processing unit, centered
around the microcontroller, refilters, amplifies, and converts analog signals to digital before
transmitting them to a computer or other devices via Bluetooth. The receiving device reads
the 8-channel EMG signals in real-time following the serial communication protocol. The
sEMG armband has a sampling frequency of 1000 Hz, an amplification factor of 500, and a
baud rate of 57,600 bits/s.
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Figure 2. sEMG signals acquisition: (a) Wearable 8-channel wireless sEMG armband. (b) Grasp mode
with sEMG armband. (c) sEMG signals acquisition.

Subjects participating in the data acquisition using an 8-channel wireless sEMG arm-
band performed eight hand gestures in each cycle, with each gesture lasting 5 s. Upon
hearing an announcement through headphones, subjects changed their grasp gestures.
After each data acquisition cycle, subjects rested for 1 min before proceeding to the next
cycle. From each subject, sEMG data totaling 100 s were collected, accumulating to 1000 s
of sEMG data. Figure 2c shows the first round of sEMG signals collected from a subject.
The eight hand gestures are natural grasp, spherical grasp, cylindrical grasp, tripod pinch,
tip pinch, lateral pinch, hook grasp, and thumb extension grasp, as depicted in Figure 3.
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Figure 3. Eight hand gesture actions: 1, natural grasp; 2, spherical grasp; 3, cylindrical grasp; 4, tripod
pinch; 5, tip pinch; 6, lateral pinch; 7, hook grasp; 8, thumb extension grasp.

2.2. sEMG Processing

The original sEMG signals include electrical activities from muscle contractions and re-
laxations, potentially carrying noise from power-line interference, motion artifacts, baseline
drifts, and recording equipment [32]. Such noise significantly impacts the accuracy of hand
gesture recognition. Butterworth filters, which can uniformly transfer all frequency compo-
nents while maintaining the time responses of signals without a sharp transition between
the passband and stopband, effectively preserve the original signal form. Therefore, we
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used a full-wave rectifier and a Butterworth filter for noise filtering of the original signals.
Initially, a full-wave rectifier processed signals collected by the 8-channel wireless sEMG
armband. Subsequently, a 1 Hz Butterworth filter was employed for low-pass filtering
to remove high-frequency noise. As shown in Figure 4, the sEMG signal curves become
smoother after noise filtering, demonstrating the Butterworth filter’s effective denoising.
This ensures the quality of subsequent training for the hand gesture recognition model.
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2.3. Construction of Grayscale Image Dataset of sEMG Signals

In the field of sEMG gesture recognition, when a deep-learning model is utilized for
image recognition tasks, it is often necessary to convert one-dimensional sEMG signals
into two-dimensional sEMG grayscale images for input into the deep model. In this paper,
we form the sEMG matrix using a sliding window, and this matrix is transformed into an
sEMG image via a mathematical mapping equation. The size of the generated sEMG image
is detailed in Equation (1).

Image ∈ SC×W×H (1)

In this paper, we utilize original sEMG signals where the number of picture chan-
nels (C) equals the number of features, with C = 1 for original sEMG. Arturo et al. [12]
demonstrated that a 150–250 ms window for sliding sampling of sEMG signals was optimal.
Considering the computational power of computers and the requirements for real-time
processing, the picture height (H), which is the total number of sliding windows in a 200 ms
time period, is set to 20 for original sEMG; the picture width (W), representing the number
of sampled electrode channels, is 10. We used only the original sEMG signals for grayscale
image transformation without feature extraction. This approach simplifies the training
process and reduces the number of parameters involved.

Each group of sEMG signals is filtered, and the filtered data are then mapped to the
grayscale interval [0, 1], resulting in the creation of an sEMG grayscale image. Figure 5
presents a schematic diagram of the signal-to-image conversion process. The equation for
maximum–minimum normalization is shown in Equations (2) and (3).

X[0,1] = F(X(i,j)) (2)

F(X(i,j)) = (X(i,j) − Xmin)/(Xmax − Xmin) (3)

where X[0,1] is the sEMG matrix after mapping conversion, with element values ranging
from 0 to 1; F( ) is the mapping function that converts one-dimensional signals to two-
dimensional images; X(i,j) represents the value at row i and column j in the sEMG matrix,
formed by a sliding window, where 0 < i ≤ H and 0 < j ≤ W; Xmax is the largest value
within the sEMG matrix formed by the sliding window. Similarly, Xmin is the smallest
value in the matrix.
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3. Construction of Recognition Model
3.1. InRes-ACNet Model

An InRes-ACNet model, based on the ResNet50 model [33], is presented in Figure 6.
Initially, we design an inception–attention module for multi-scale feature extraction, en-
hancing the model’s ability to capture abstract, complex, and representative features. This
module, integrated into the InRes-ACNet model, employs a multi-scale attention mecha-
nism, focusing on important features at various scales to improve detail capture in grayscale
images. By incorporating the inception–attention module before ResNet50, the model bene-
fits from early acquisition of multi-scale gray features, providing a strong foundation for
subsequent feature learning.
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Furthermore, to enhance the attention and representation capabilities of the ResNet50
model, an ACmix module is incorporated. This module merges convolution and self-
attention mechanisms, thereby improving the model’s ability to learn feature relevance
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while retaining high efficiency. With the ACmix module integrated into ResNet50, the net-
work more effectively captures long-range dependencies between features, thus enhancing
the model’s expressiveness and generalization capabilities.

3.2. Inception–Attention Module

The inception module [34], a classical feature extraction module, was first intro-
duced by GoogLeNet. It captures feature information at various scales using different-
sized convolution kernels and parallel pooling. These features are then concatenated
in the channel dimension. This approach allows the model to simultaneously consider
local details and global information at different scales, thereby enhancing its ability to
understand images.

To extract sEMG features, this paper introduces the inception–attention module, de-
picted in Figure 7. This module combines the inception architecture with the SE (squeeze-
and-excitation) module, a lightweight attention mechanism. The SE module adaptively
learns the relationships between channels, allowing for the dynamic adjustment of each
channel’s importance. To fit the input requirements of the inception–attention module, we
resize each pre-processed grayscale image to 224 × 224 pixels.

Appl. Sci. 2024, 14, 3237 8 of 18 
 

improvements, the inception–attention layer is better suited to the characteristics of 
sEMG signal grayscale maps, thus enhancing the performance and effectiveness of the 
feature extraction layer in sEMG-related tasks. 

Input(1×224×224)

3×3 conv 1×1 conv 3×3 
Maxpool1×1 conv

3×3 conv

3×3 conv

3×3 conv

SE block SE block SE blockSE block

Concatenation

1×1 conv

 
Figure 7. Inception–attention module. 

3.3. ACmix Module 
The ACmix module [35], proposed by researchers at Tsinghua University, 

introduces a new deep-learning architecture specifically designed to enhance the ability 
of convolutional neural networks to process complex features. This module combines 
convolution and self-attention operations, as illustrated in Figure 8. Initially, feature 
maps are processed through three 1 × 1 kernel convolutional layers, producing 3 × N 
intermediate feature maps. Subsequently, based on the initial feature conversion, two 
operations are executed: a convolution operation via a lightweight fully-connected layer 
to transform feature maps and generate k2 new feature representations; and the 
introduction of a self-attention mechanism to compute attention weights for the query, 
key, and value, followed by their fusion. Finally, the outcomes of the convolution and 
self-attention processes are integrated with varying weights at the ACmix module’s 
conclusion using the following formula: 

out att convF F Fα β= +
 

(4)

where α  and β  are learnable parameters; attF  is the weight obtained by 

self-attention operation; convF  is the feature obtained by convolution operation; and 

outF  is the fusion output. 
In this research, ACmix is integrated into the ResNet50 model to enhance the 

traditional convolutional network’s ability to process high-level features. The ACmix 
model introduces a self-attention mechanism at the network’s early stages, enabling the 
capture of more comprehensive information from sEMG signals while maintaining 
sensitivity to local features. The integration of the ACmix module into ResNet50 occurs 
as follows: The ACmix module is inserted immediately after the first convolutional layer 
(conv2d) within the first residual block (layer1) of the ResNet50 network, as shown in 

Figure 7. Inception–attention module.

The development of the inception–attention module involves the following process:
Four branches are established using convolution kernels of different sizes (3 × 3 and
1 × 1), enabling the extraction of information across various spatial scales. Specifically,
the first branch employs 3 × 3 convolution kernels to extract features and capture local
details. The two middle branches first use 1 × 1 convolution kernels to increase the channel
count, followed by 3 × 3 convolution kernels for feature extraction. The fourth branch
uses a 3 × 3 max-pooling operation to highlight important information in the images,
followed by feature extraction with 3 × 3 convolution kernels, and then alters the channel
count using a 1 × 1 convolutional layer. To enhance the representation capability of the
inception–attention module further, an SE block is integrated into each branch. The outputs
of the four branches are then concatenated in the channel dimension, forming the final
output of the inception–attention module.

The four branches of the inception–attention module capture diverse features of sEMG
signals across multiple scales, enhancing adaptation to the complexity of sEMG signal



Appl. Sci. 2024, 14, 3237 8 of 17

grayscale maps. Integrating the SE block into the inception–attention module allows
for the reweighting of features across channels, enabling the module to adaptively learn
channel relationships and optimize feature representation. Features extracted by each
branch are then fused in the channel dimension, creating varied feature representations
and enriching the information provided to subsequent tasks. With these improvements,
the inception–attention layer is better suited to the characteristics of sEMG signal grayscale
maps, thus enhancing the performance and effectiveness of the feature extraction layer in
sEMG-related tasks.

3.3. ACmix Module

The ACmix module [35], proposed by researchers at Tsinghua University, introduces a
new deep-learning architecture specifically designed to enhance the ability of convolutional
neural networks to process complex features. This module combines convolution and
self-attention operations, as illustrated in Figure 8. Initially, feature maps are processed
through three 1 × 1 kernel convolutional layers, producing 3 × N intermediate feature
maps. Subsequently, based on the initial feature conversion, two operations are executed: a
convolution operation via a lightweight fully-connected layer to transform feature maps
and generate k2 new feature representations; and the introduction of a self-attention
mechanism to compute attention weights for the query, key, and value, followed by their
fusion. Finally, the outcomes of the convolution and self-attention processes are integrated
with varying weights at the ACmix module’s conclusion using the following formula:

Fout = αFatt + βFconv (4)

where α and β are learnable parameters; Fatt is the weight obtained by self-attention opera-
tion; Fconv is the feature obtained by convolution operation; and Fout is the
fusion output.
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In this research, ACmix is integrated into the ResNet50 model to enhance the tradi-
tional convolutional network’s ability to process high-level features. The ACmix model
introduces a self-attention mechanism at the network’s early stages, enabling the capture
of more comprehensive information from sEMG signals while maintaining sensitivity to
local features. The integration of the ACmix module into ResNet50 occurs as follows: The
ACmix module is inserted immediately after the first convolutional layer (conv2d) within
the first residual block (layer1) of the ResNet50 network, as shown in Figure 6. Initially, the
original feature maps are processed by ResNet50′s initial convolutional layer, then undergo
deep feature extraction and transformation within the ACmix module. The output from
the Acmix module serves as the input for the subsequent residual block, facilitating close
collaboration between ACmix and ResNet50′s other modules. Through this strategy, a
more robust and adaptable model is developed, achieving an enhanced performance across
various complex grayscale image vision tasks.

4. Model Training and Experimental Results

Two kinds of experiments were conducted: the first experiment was based on the
publicly available dataset NinaPro DB1 and NinaPro DB5; the second experiment was
based on sEMG signals collected by 8-channel wireless sEMG armband.

4.1. Experiment Based on Publicly Available Dataset

The NinaProDB1 dataset encompasses 52 hand gestures, classified into three categories
for training: (A) 12 finger gestures; (B) 8 gestures of uniform opening and closure with
equal length, along with 9 wrist gestures; (C) 23 basic grasp gestures. A total of 10 healthy
volunteers (7 males and 3 females, aged 22 to 30 years old, without any medical history and
of similar physique) participated in the collection of sEMG signals from forearm muscles
using an ELONXI electromyography system equipped with 18 dry electrodes, including 2
for grounding. The sampling frequency was set to 100 Hz. Each participant performed the
52 hand gestures 10 times, with each gesture lasting 10 s. A 3-s rest was allowed between
gestures, and subjects could rest for 10 min between different sessions.

The NinaProDB5 datasets encompass 52 hand gestures, classified into three categories
for training: (A) finger gestures; (B) gestures characterized by uniform opening and closure
of equal length, along with wrist gestures; (C) basic grasp gestures. Ten healthy volunteers
participated in the collection of sEMG signals, utilizing a 16-channel sampling system.
The sampling frequency was set at 200 Hz. Each participant was required to perform the
52 hand gestures in the experiment, repeating each gesture 6 times, with each repetition
lasting 5 s. Participants were allowed a 3-s rest period between different hand gestures.

In the experiment, the sEMG data from the second and sixth repetitions of each gesture
constituted the test sets, while the remaining data formed the training and validation sets.
The distribution among the training, validation, and test sets was approximately in a 6:2:2
ratio. We employed data augmentation techniques, such as random and center cropping, to
enhance the diversity of the training data. Each recognition model was trained individually,
and the corresponding trained model was then utilized for each individual. The batch size
for training was set at 64, with the Adam optimizer (adaptive moment estimation method)
selected. The learning rate was established at 0.001, and a dropout rate of 0.4 was applied
to improve the model’s generalization capability.

4.1.1. Ablation Experiment

We conducted comparative experiments using four distinct network architectures:
the ResNet50 model, the ACResNet model (which integrates ACmix into ResNet50), the
InResNet model (introducing inception–attention into ResNet50), and the InRes-ACNet
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model. We employed the cross-entropy loss function for forward propagation, a standard
approach in addressing multi-classification problems, as illustrated in Equations (5) and (6).

loss =
1
S

S

∑
i

lossi (5)

lossi = −
M

∑
c=1

yic log(pic) (6)

where loss is the average loss rate; lossi is the loss rate of the ith sample; S is the total
number of samples; M is the number of classes; The value of yic can be 0 or 1, it is 1 if the
true class of the ith sample is to class c, 0 otherwise; pic is the predicted probability that the
observed sample i belongs to class c.

The results of the ablation experiments are presented in Table 1. The ResNet50 model
demonstrated an accuracy of 82.71% in the sEMG gesture recognition test, attributed to its
robust feature extraction capabilities embedded in the deep convolutional structure. The
ACResNet model achieved an increased accuracy rate of 85.98%, owing to the incorporation
of the ACmix module, which facilitated more precise information integration, thereby
enhancing the model’s ability to comprehend and characterize image content.

Table 1. Ablation experiment of the InRes-ACNet model.

Method Params Best Test Acc

ResNet50 24.03 M 82.71%

ACResNet 24.04 M 85.98%

InResNet 24.25 M 86.31%

InRes-ACNet 24.26 M 87.82%

The InResNet model demonstrated a slight improvement in accuracy to 86.31%. This
enhancement is attributed to the integration of the inception–attention module, which
enables the model to capture multi-scale feature information. The InRes-ACNet model,
combining the inception and ACmix modules, achieved a notable accuracy of 87.82% in
sEMG gesture recognition, significantly surpassing other individually enhanced models.
Compared with the ResNet50, the recognition accuracy of the ACResNet and InResNet
models increased by 3.24% and 3.6%, respectively. The InRes-ACNet model’s accuracy
improved by 5.11%, with only a 0.23 M increase in the number of parameters. As indicated
by the parameter values in Table 1, the InRes-ACNet model effectively extracts both local
details and global information of sEMG signals, thanks to its improved module structure,
while maintaining parameter efficiency, thus significantly enhancing model performance.

In experiments, it was demonstrated that both the inception–attention module and
the ACmix module individually enhance the model’s recognition performance. The InRes-
ACNet model, which integrates these two modules simultaneously, exhibits a superior
classification performance in sEMG gesture recognition tasks.

4.1.2. Comparative Analysis of Identification Performance of Different Model

This experiment utilized the NinaPro DB1 dataset, covering 17 different gestures. The
InRes-ACNet model, as proposed in this study, was employed for sEMG gesture recognition.
The experimental results were compared with mainstream recognition methods reported
by other researchers, as illustrated in Table 2. The results indicated that traditional sEMG
gesture recognition methods, such as SVM and the random forest algorithm, yielded
relatively low gesture recognition rates of 69.45% and 75.36%, respectively. The adoption of
deep-learning methods, specifically the convolutional neural network variant MyoCNN
and VGGNet models, significantly enhanced the recognition performance, with rates
of 78.25% and 81.12%, respectively. Furthermore, the accuracy of the MSCNet model
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increased to 83.24% through the extraction of multi-scale features. The InRes-ACNet model
proposed in this study, integrating a multi-scale module, the ResNet50 architecture, and the
ACmix module, achieved a recognition rate of 86.46%, demonstrating considerable promise
in gesture recognition. This outcome further substantiates the efficacy of the attention
mechanism and multi-scale feature fusion strategy in enhancing the performance of sEMG
gesture recognition tasks.

Table 2. Gesture recognition results of different models.

Method Author Model Recognition Acc

Pizzolato SVM [7] 69.45%

Atzori Random forests [12] 75.36%

Wei MyoCNN [23] 78.25%

Atzori VGGNet [12] 81.12%

Simonyan MSCNet [36] 83.24%

This paper InRes-ACNet 86.46%

4.1.3. Individual Variability Analysis

The primary objective of this research is to assess the model’s performance when ap-
plied to various datasets, with a particular focus on evaluating its recognition performance
across different gestures of different individuals. The experiment involved four datasets:
NinaPro DB1 E1, NinaPro DB1 E2, NinaPro DB5 E1, and NinaPro DB5 E2.

Figure 9 illustrates the validation effect of using the InRes-ACNet model on the
NinaPro DB1 E1 dataset, which encompasses 12 different gestures. It presents the validation
loss values and recognition accuracy for five subjects across 50 validation cycles (epochs).
In the initial stages of validation, the loss values for all subjects decreased rapidly, while
the accuracy rates increased significantly, nearing their peak levels. This indicates that
the model exhibits a fast convergence rate and robust learning capabilities. Throughout
the validation process, despite minor fluctuations, the loss and accuracy curves generally
remained stable, demonstrating the recognition stability of the InRes-ACNet model.
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Figure 10 illustrates the validation effect of employing the InRes-ACNet model on the
NinaPro DB1 E2 dataset, encompassing 17 different gestures. It presents the validation
loss values and recognition accuracy for five subjects across 50 validation cycles (epochs).
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At the initial stage of validation, the loss value decreased rapidly, while the accuracy
rate ascended to 95%, indicating the model’s rapid learning capability and convergence
speed. Despite minor fluctuations in loss values and accuracy between the 40th and 50th
epochs, the model demonstrated stability and high accuracy throughout the entire gesture
recognition process.
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The variability experiment results for the datasets NinaPro DB1 E1, NinaPro DB1
E2, NinaPro DB5 E1, and NinaPro DB5 E2 are presented in Table 3, with the boxplot of
recognition accuracy for these four datasets depicted in Figure 11. This boxplot illustrates
the distribution of recognition accuracy for each dataset, including statistical measures
such as the quartile, median, and mean. The NinaPro DB1 E1 and E2 datasets cover 12 and
17 gestures, respectively. As indicated in Table 3, the average recognition accuracy for these
datasets was 87.94% and 86.00%, respectively, with individual variances of 8.04% and 6.25%.
The boxplot reveals that the median recognition accuracy closely aligns with the mean,
showing a relatively balanced distribution without extreme outliers or significant skewness.
For the NinaPro DB5 E1 and E2 datasets, which cover 12 and 17 gestures respectively,
the average recognition accuracy was noted as 87.04% and 85.39%, respectively, with
individual differences of 8.45% and 8.16%. The boxplot indicates that, despite the quartiles’
wide range, the median remains close to the mean, suggesting that the model maintains
a consistent performance even in more complex gesture recognition tasks. Overall, the
results demonstrate the model’s consistent performance across different datasets in gesture
recognition tasks.

Table 3. Recognition performance of different datasets.

Dataset Average Recognition
Rate

Recognition Rate
Distribution

Number of
Movements

NinaPro DB1 E1 87.94% 8.04% 12

NinaPro DB1 E2 86.00% 6.25% 17

NinaPro DB5 E1 87.04% 8.45% 12

NinaPro DB5 E2 85.39% 8.16% 17

Overall, the InRes-ACNet model achieves a high accuracy rate in various gesture
recognition tasks, demonstrating its effectiveness in capturing and utilizing key features
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in sEMG images. While recognition accuracy rates varied across datasets, the model’s
performance underlines its effectiveness and reliability in sEMG gesture recognition. This
further validates the InRes-ACNet model’s generalization capability across diverse datasets.

Appl. Sci. 2024, 14, 3237 13 of 18 
 

gestures respectively, the average recognition accuracy was noted as 87.04% and 85.39%, 
respectively, with individual differences of 8.45% and 8.16%. The boxplot indicates that, 
despite the quartiles’ wide range, the median remains close to the mean, suggesting that 
the model maintains a consistent performance even in more complex gesture recognition 
tasks. Overall, the results demonstrate the model’s consistent performance across 
different datasets in gesture recognition tasks. 

Overall, the InRes-ACNet model achieves a high accuracy rate in various gesture 
recognition tasks, demonstrating its effectiveness in capturing and utilizing key features 
in sEMG images. While recognition accuracy rates varied across datasets, the model’s 
performance underlines its effectiveness and reliability in sEMG gesture recognition. 
This further validates the InRes-ACNet model’s generalization capability across diverse 
datasets. 

Table 3. Recognition performance of different datasets. 

Dataset Average Recognition 
Rate 

Recognition Rate 
Distribution 

Number of 
Movements  

NinaPro DB1 E1 87.94% 8.04% 12 
NinaPro DB1 E2 86.00% 6.25% 17 
NinaPro DB5 E1 87.04% 8.45% 12 
NinaPro DB5 E2 85.39% 8.16% 17 

 
Figure 11. Boxplot of recognition accuracy for different datasets. 

4.2. Experiment Based on sEMG Signals from 8-Channel Wireless Armband 
This paper presents the integration of the inception–attention module and the 

ACmix module to develop the InRes-ACNet model as a gesture recognition framework. 
Initially, a multi-scale inception–attention module is constructed and integrated into the 
ResNet50 model. Subsequently, the self-attention mechanism, the ACmix module, is 
incorporated into ResNet50, resulting in the formulation of the InRes-ACNet gesture 
prediction model. For online prediction, the InRes-ACNet model is employed for gesture 
recognition tasks. 

Experimenters donned an sEMG armband and executed eight types of gestures on a 
manipulator grasping mode control platform (Figure 12). For each gesture, 480 muscle 
signal segments were extracted and transformed into 480 sEMG grayscale images, 
yielding a dataset size of 3840 for each experimenter. To assess the model’s robustness, 
ten diverse experimenters, including seven males and three females, were selected. Each 
experimenter replicated the specified actions to capture muscle electrical signals. The 

Figure 11. Boxplot of recognition accuracy for different datasets.

4.2. Experiment Based on sEMG Signals from 8-Channel Wireless Armband

This paper presents the integration of the inception–attention module and the ACmix
module to develop the InRes-ACNet model as a gesture recognition framework. Initially, a
multi-scale inception–attention module is constructed and integrated into the ResNet50
model. Subsequently, the self-attention mechanism, the ACmix module, is incorporated
into ResNet50, resulting in the formulation of the InRes-ACNet gesture prediction model.
For online prediction, the InRes-ACNet model is employed for gesture recognition tasks.

Experimenters donned an sEMG armband and executed eight types of gestures on
a manipulator grasping mode control platform (Figure 12). For each gesture, 480 muscle
signal segments were extracted and transformed into 480 sEMG grayscale images, yielding
a dataset size of 3840 for each experimenter. To assess the model’s robustness, ten diverse
experimenters, including seven males and three females, were selected. Each experimenter
replicated the specified actions to capture muscle electrical signals. The dataset from each
experimenter was utilized to train the model, allocating 60% of the data for training, 20% for
validation, and 20% for testing. For the test database, twenty groups of data corresponding
to different gestures were randomly selected, totaling 160 data groups, and multiple rounds
of testing were conducted on the outcomes. A subset of the test results is displayed
in Figure 13.
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menters, obtaining comparative results. (a) is the gesture predictions for experimenter 1; (b) is the
gesture predictions for experimenter 2; (c) is the gesture predictions for experimenter 3; (d) is the
gesture predictions for experimenter 4).

The test results from four experimenters, as depicted in Figure 13, demonstrate that the
InRes-ACNet model delivers commendable recognition performance in gesture recognition
tasks. Given that the test data are randomly selected, this underscores the robustness of
the InRes-ACNet. By integrating both the attention mechanism and a multi-scale structure,
the InRes-ACNet showcases a high recognition accuracy and stability in human gesture
recognition challenges.

The average recognition accuracy across ten experimenters is 88.37%. To elaborate on
the results obtained from our model, we have selected four illustrative examples. These
examples depict the gesture tests conducted by four experimenters. Figure 13a presents the
gesture predictions for Experimenter 1, with an average recognition accuracy of 84.63%.
Notably, there are a considerable number of deviations from the target category, such as the
circle, indicating that the predicted gestures significantly diverge from the actual gestures.
This is especially true for Gesture 2 (spherical grasping), which deviates markedly from its
actual form. The figure illustrates that each gesture is prone to misidentification, such as
Gesture 5 (two-finger pinch) and Gesture 6 (side pinch). Figure 13b displays the gesture
predictions for Experimenter 2, achieving an average recognition accuracy of 90.63%. Most
of the predicted category tags align closely with the actual category line, indicating more
precise gesture recognition. Figure 13c reveals the gesture predictions for Experimenter 3,
with an average recognition accuracy of 92.96%. The minimal deviation from the actual
category (i.e., circles) suggests highly accurate gesture recognition results. Figure 13d
showcases the gesture predictions for Experimenter 4, with an average recognition accuracy
of 87.32%. Despite the recognition errors, particularly for Gesture 8 (thumb extension grip),
the findings indicate variability in recognition accuracy across different experiments.
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This variability may stem from several factors, such as inconsistent muscle strength
exerted by experimenters during gesture performance or discrepancies in movement stan-
dards. Despite these variations, the gesture recognition model maintains a high accuracy
and stability, underscoring the InRes-ACNet model’s robust capability in gesture recogni-
tion tasks, particularly in natural grasp, cylindrical grasp, and tip pinch.

For comparative purposes, the ResNet50 model was also employed in gesture predic-
tion tasks. Utilizing the same ten experimenters as in the previous InRes-ACNet model
tests, the gesture prediction results are summarized in Table 4. The InResNet50 model
achieves an average recognition accuracy of 85.63%, while the InRes-ACNet model attains
an average recognition accuracy of 88.37%, highlighting the superior performance of the
InRes-ACNet model in gesture prediction tasks.

Table 4. Comparison of recognition performance for the models ResNet50 and InRes-ACNet.

Model Average Recognition Rate Epoch Number of Movements

ResNet50 85.63% 50 8
InRes-ACNet 88.37% 50 8

5. Conclusions

In this study, by incorporating an attention mechanism and multi-scale module into
the ResNet50 model, we propose the InRes-ACNet model for gesture recognition based
on surface electromyography (sEMG) signals. Initially, the study constructs the inception–
attention module based on the multi-scale inception module, which is then integrated into
the ResNet50 model to enhance its multi-scale feature extraction capabilities. Subsequently,
the self-attention mechanism, the ACmix module, is incorporated into ResNet50, enabling
the model to maintain a lower parameter count while improving its feature extraction
performance. Ultimately, employing the InRes-ACNet model on the NinaPro DB1 and
NinaPro DB5 datasets for gesture recognition yielded accuracy rates of 87.94% and 87.04%,
respectively. Additionally, the InRes-ACNet model was applied to the prediction of grasp-
ing modes in an electromyography manipulator, achieving an average recognition accuracy
of 88.37%. These results confirm the effectiveness of the InRes-ACNet model for gesture
recognition tasks based on sEMG signals.

Our research enhances gesture recognition performance by incorporating multi-scale
modules and attention mechanisms, alongside utilizing the grayscale images of the original
sEMG signals. Nevertheless, the InRes-ACNet model, integrating the inception–attention
module, ACmix module, and ResNet50, entails a considerable number of parameters. This
complexity results in extensive computations and slower training speeds. Variations in
the dataset sizes, attributable to the differing collection times and frequencies for each
gesture, also affect the duration of each training step. Given the non-stationary and random
characteristics of sEMG signals, coupled with significant variations among individuals, the
model’s generalization capacity in real-time recognition is constrained. Direct application
of model training tailored to specific individuals to others may lead to a suboptimal
recognition performance.
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