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Abstract: In this paper, bismuth (Bi) was successfully deposited on graphite felts to improve the
electrochemical performances of vanadium redox flow batteries. Modified graphite felts with different
Bi particle loadings were obtained through electrochemical deposition at voltages of 0.8 V, 1.2 V and
1.6 V in 0.1 M BiCl3 solution for 10 min. The optimal Bi particle loading was confirmed by scanning
electron microscopy (SEM), single cells and electrochemical tests. The SEM images revealed the
deposition of granular Bi particles on the fiber surface. The Bi-modified felts which were electro-
chemically deposited at 1.2 V (Bi/TGF-1.2V) showed excellent electrochemical performances in
cyclic voltammetry curves and impedance spectroscopy. Meanwhile, the single cells assembled
with Bi/TGF-1.2V as negative electrodes exhibited higher voltage efficiencies than the others. The
optimized Bi particle loading induced better catalysis of the V3+/V2+ reaction and hence significantly
improved the cell performances. In addition, the prepared Bi-modified felts showed stable cell
performances and slower charge–discharge capacity declines than the other electrodes at current
densities between 20 mA/cm2 and 80 mA/cm2. Compared with the pristine felt, the voltage efficiency
of the vanadium redox flow battery assembled with Bi/TGF-1.2V graphite felt was 9.47% higher at
the current density of 80 mA/cm2. The proposed method has considerable potential and guiding
significance for the future modification of graphite felt for redox flow batteries.

Keywords: vanadium redox flow battery; graphite felt; electro-chemical deposition; bismuth;
electrochemical performance; cyclic voltammetry curve; impedance spectroscopy; capacity decay;
voltage efficiency

1. Introduction

The continuous depletion of traditional fossil fuels and the resulting environmental
problems have increasingly encouraged the development of renewable and green energy
sources. However, renewable energy sources such as solar energy and wind energy are
unstable and intermittent during generation, and thus these valuable electric energies
are difficult to apply continuously and stably. To tackle this issue, the employment of
large-scale energy storage systems combined with renewable energy may greatly improve
the utilization rate and stability of renewable energy [1,2]. Redox flow batteries (RFBs) are
considered to be one of the best choices for megawatt-level power storage, and megawatt
demonstration systems have been installed, for example, in China, the United States, and
Australia. RFBs are characterized by compact structures, long-life service, and can be
charged quickly [3]. Hence, they are not only suitable for energy storage systems of wind
power and photovoltaics but also can be used with the power grid. Compared with other
energy storage batteries, vanadium redox flow batteries (VRFBs) have obvious advantages.
The capacity and power of the battery can be adjusted flexibly according to the needs, and
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the electrolyte is easy to recycle to restore the battery capacity and prolong the lifetime of
the VRFB [4–6]. In particular, VRFBs have been widely studied as a new type of efficient,
economical and environmentally friendly secondary batteries due to the wide standard
reduction potentials of vanadium redox couples [7–9].

Key materials in VRFBs include electrodes, electrolytes, ion exchange membranes and
current collector plates. The electrode does not participate in the redox reactions, only
provides the reaction place, and electrons pass through the electrode/electrolyte interface to
form a potential difference. After such a process, the VRFB can be charged and discharged
based on the redox reactions of the vanadium redox couples. The electrolyte is composed
of active substances and supporting electrolytes, in which the content of active substances
determines the battery capacity, and supporting electrolytes can improve the conductivity
of the electrolyte. The ion exchange membrane is used to separate positive and negative
active substances, while selectively allowing the protons as the charge carriers to migrate
through the membrane under the electric driving force to maintain electric neutrality and
electrolyte balance.

The electrode materials play important roles in the performances of VRFBs because the
redox reactions of vanadium ions occur on the electrode surface [10–12]. Graphite felt (GF)
is used as the most common electrode material in VRFBs [13,14]. GF is characterized by a
high specific surface area, strong oxidation resistance, corrosion resistance and high electri-
cal conductivity. However, large-scale application of GF is limited by its poor hydrophilicity
and electrochemical activity [15,16]. Tremendous efforts have been devoted to improving
the electrochemical properties of GF. The modification of GF is mainly achieved by increas-
ing the amount of active functional groups, enhancing the effective area, and introducing
surface catalysts [17–19]. B. Sun et al. proposed that -OH and C=O functional groups are
the main reasons for improving the electrochemical activity of carbon felt [20,21]. Since
then, a large number of researchers have been dedicated to the preparation of hydrophilic
GFs by heteroatom doping, such as N-doping [22] and B-doping [23,24]. Surface area is also
the main reason affecting the electrochemical activity of carbon felt. Proper surface area
means better diffusion and mass transfer of electrolytes on the surface of carbon felt [25–27].
The modification of GF with catalysts is a promising method to improve the electrochemical
performances. Moreover, metal (In [28], Bi [29], Pb [30]), metal oxide (MnO [31], CoO [32],
TiNb2O7 [33]) and activated carbon material (carbon nanotube [34], graphite oxide [35,36])
have been used to enhance the catalytic activity of GF.

In particular, bismuth is considered ‘the most cost-effective’ surface catalyst in
VRFBs [37–40]. The methods employed for surface modification of GF by bismuth in-
clude in situ deposition and external deposition (e.g., hydrogen reduction, hydrothermal
reaction) for VRFB applications [41–44]. However, in situ deposition is affected by many
conditions, such as electrolyte flow rate, electrodeposition current density and initial
concentration [41,45]. By contrast, external deposition is a better controllable method to
modify GF with Bi. Recently, Zhang et al. introduced Bi on carbon felts by the electro-
deoxidization processing in KOH and found that the VE of VRFB single-cells reached
73.4% at 400 mA/cm2 [43]. Although bismuth has been successfully used in the electrode
modification of VRFBs as a catalyst, the existing methods are not easy to apply due to
extra hetero-ion introduction. To overcome the complex pretreatment procedures which
are often employed during the modification of GF with Bi, electrochemical deposition
was utilized to modify negative GF with Bi particles in this study. The proposed method
was advantageous in terms of simple operation and short treatment periods. The GFs
before and after modification with Bi were investigated by means of SEM, FTIR, XRD
and electrochemical tests. In detail, the electrochemical tests refer to cyclic voltammetry
(CV), linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS).
The catalytic effects of Bi particles on the electrochemical performances of VRFBs were
also examined.
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2. Experimental
2.1. Electrodes Modification

Polyacrylonitrile-based graphite felts (5 mm thickness, Gansu Haoshi Carbon Fiber
Co., Ltd., Baiyin, China) were used as raw electrode materials. In order to achieve a higher
carbon content, graphite felt generally needs to be treated at high temperatures to obtain
a high graphitization degree. This also makes it have poor wettability, resulting in low
electrochemical activity. Therefore, graphite felt must be activated properly before use.
Such methods include heat treatment, surface deposition of catalysts, oxidation treatment,
etc. [26,46]. Among them, the oxidation of graphite felt in hot air is considered to be the
simplest and easiest method for industrialization. Therefore, based on previous work [13],
the pristine graphite felts were pretreated by traditional thermal treatment at 500 ◦C for
5 h, and the obtained samples were denoted as TGF (thermally-treated graphite felt). Before
the electrochemical deposition, TGF was washed with distilled water and dried at 80 ◦C for
24 h. The deposition process was carried out by using a constant voltage source (KXN-
3010D, Shenzhen Zhaoxin Electronic Instrument Equipment Co., Ltd., Shenzhen, China)
as the power source. The plating solution was prepared by dissolving a certain amount
of Bi2O3 (99.0%, China National Pharmaceutical Chemical Reagent Co., Ltd., Shanghai,
China) in the corresponding volume of dilute hydrochloric acid (3 M) to yield a 0.1 M Bi3+

solution. As shown in Figure 1, the TGFs (3.0 cm × 3.0 cm × 0.5 cm) were immersed in the
solution as both the anode and the cathode. The distance between the anode and cathode
was kept at approximately 3.0 cm. Copper wires were used to connect TGFs with the power
source. After the TGFs were soaked in the 50 mL plating solution for 30 min, the metal
Bi was reduced in the cathode side by the power source supplying a constant voltage for
10 min. The operating voltages were selected as 0.8 V, 1.2 V and 1.6 V, and the obtained
samples were denoted as Bi/TGF-0.8V, Bi/TGF-1.2V and Bi/TGF-1.6V, collectively referred
to as Bi/TGFs.
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Figure 1. Schematic illustration of electrochemical deposition.

2.2. Characterization

A three-electrode system connected to an electrochemical workstation (CS310H Cor-
rTest, Wuhan, China) was employed for electrochemical characterizations of the obtained
electrodes at room temperature. The graphite felt with an area of 0.4 cm2 was used as the
working electrode, a 1 cm2 platinum plate as the counter electrode, and a salt bridge filled
with saturated potassium chloride solution as the reference electrode. The CV curves and
EIS spectrogram were obtained in 1 M V3+ + 3.0 M H2SO4 electrolyte, and V3+ ions were
obtained from electrolyzing the mixed solution of VOSO4 (VOSO4·xH2O, >99%, x = 3.08,
Shenyang Haizhongtian Fine Chemical Factory, Shenyang, China) and H2SO4 (98 wt.%,
Guangzhou Donghong Chemical Factory, Guangzhou, China). CV measurements were
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performed between 0 V and −0.8 V (vs. SCE) at a scan rate of 3 mV/s. The EIS spectrogram
was obtained by applying a polarization potential of −0.4 V (vs. SCE) with 5 mV amplitude
in the frequency range from 0.01 Hz to 100 kHz in the negative reaction. LSV curves were
measured in 3 M H2SO4 and 1 M V3+ + 3 M H2SO4 solutions, respectively. The surface
morphology of graphite felts before and after battery cycling tests was characterized by
SEM (Nova Nano SEM 450AR Zeiss, Jena, Germany). The samples were tested by Nicolet
iN10MX FT-IR analyzer and processed by the KBr tablet method. The scanning range was
400~4000 cm−1. The microcrystalline structure of the samples was measured by powder
X-ray diffraction (XRD).

2.3. Cell Assembly and Test

The performances of electrode samples were tested in single dynamic cells. The
‘TGF’ before or after modification with Bi was used as the negative electrodes, and the
‘TGF’ was used as the positive electrodes. Both the negative and positive electrodes
possess an active area of 3.0 cm × 3.0 cm. A perfluorinated ion-exchange membrane
Nafion® 115 (DuPont, Wilmington, DE, USA) was employed to separate positive and
negative electrolytes. Graphite plates were employed for charge collection and transfer.
The above-mentioned three components were sealed with silicon rubber gaskets. The
positive electrolyte was composed of 50 mL 1.0 M V4+ + 3.0 M H2SO4, and the negative
electrolyte was composed of 50 mL 1.0 M V3+ + 3.0 M H2SO4. The electrolyte was stored
in external tanks and cyclically pumped into the corresponding compartments during
operation. The electrolyte flows through a peristaltic pump (MP-10R, Shanghai Zhiwo
Pump Valve Co., Ltd., Shanghai, China) at a flow rate of 100 mL/min. The cells were
monitored by a charge–discharge test system (CT2001C-5V/2A, Wuhan Land Co., Ltd.,
Wuhan, China) at the current density of 20–80 mA/cm2 and the voltage window between
0.8 V and 1.65 V. The coulombic efficiency (CE), voltage efficiency (VE) and energy efficiency
(EE) of single cells were estimated by the following formulas [47]:

CE =
Qdischarge

Qcharge
× 100% (1)

EE =
Edischarge

Echarge
× 100% (2)

VE =
EE
CE

(3)

where Qcharge and Qdischarge represent the charge and discharge capacity, respectively;
Echarge and Edischarge stand for the charge and discharge energy, respectively.

3. Results and Discussion
3.1. Electrochemical Performance

In Figure 2, the CV curves of TGF and Bi/TGFs are plotted in 1 M V3+ + 3 M H2SO4
solution. It can be seen that the curves of Bi/TGFs exhibit apparent current peaks, especially
corresponding to the oxidation peak of V2+→V3+. The oxidation peak currents of Bi/TGFs
are 186 mA/cm2 (Bi/TGF-0.8V), 218 mA/cm2 (Bi/TGF-1.2V) and 207 mA/cm2 (Bi/TGF-
1.6V), respectively. The minimum oxidation peak is observed on the TGF (56 mA/cm2).
Meanwhile, the TGF has the lowest electric double layer capacity (EDLC) of 4.085 F/cm2.
However, the EDLC values of Bi/TGFs are increased to 9.262 F/cm2 (Bi/TGF-0.8V),
12.502 F/cm2 (Bi/TGF-1.2V) and 11.480 F/cm2 (Bi/TGF-1.6V), respectively. These re-
sults indicate that the Bi deposition on TGFs promotes the negative reaction of vanadium
ions. In a comparison of the peak current and capacitance values, Bi/TGF-1.2V shows
better electro-catalytic activity than the other samples.
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Figure 2. CV curves recorded in 1 M V3+ +3 M H2SO4 solution at a scan rate of 3 mV/s.

Figure 3 shows the EIS spectrograms of samples in 1 M V3+ + 3 M H2SO4 solution
at a polarization potential of −0.4 V (vs. SCE). The EIS spectrograms provide further
analysis concerning the influence of Bi on the electrochemical properties of TGFs on the
negative side. As shown in Figure 3, each EIS spectrogram includes a semicircle and a linear
part. The semicircle at high frequencies (100 Hz to 100 kHz) reflects the charge transfer
resistance, while the linear part at low frequencies (0.01 Hz to 100 Hz) is related to the
diffusion of vanadium ions through the solution. Thus, the EIS spectrograms indicate that
negative V3+/V2+ redox couples on samples were mix-controlled by charge transfer and
diffusion steps. The EIS spectrograms are fitted by an equivalent circuit in Figure 3, where
Rs represents the bulk solution resistance, Rp stands for the charge transfer resistance of the
electrochemical reactions, CPE is the constant phase element that accounts for double-layer
capacitance, and W is Warburg impedance. The fitting results for all samples are given in
Table 1. Although the pristine graphite felt had been pre-treated by the thermal method, the
Rp of TGF for the V3+/V2+ redox reaction was the largest, resulting in poor electrochemical
activity. However, the Rp values of Bi/TGFs were smaller, suggesting that Bi is more
effective in catalyzing negative electrode reactions. In Table 1, the Rp for Bi/TGF-0.8V,
Bi/TGF-1.2V, and Bi/TGF-1.6V are 1.24 Ω·cm2, 0.89 Ω·cm2, and 1.39 Ω·cm2, respectively.
The results indicate that the electrodeposition potential of 1.2 V can enhance the electron
transfer rate of the V3+/V2+ redox reaction.

Table 1. The parameters obtained from fitting EIS plots with the equivalent circuit.

Samples Rs
(Ω·cm2)

CPE (T)
(×10−5)

CPE
(P)

Rp
(Ω·cm2)

W (R) W (T) W (P)

TGF 0.68 8.49 1.11 1.69 2.48 0.002 0.365
Bi/TGF-0.8V 0.66 1.41 1.08 1.24 17.72 0.040 0.652
Bi/TGF-1.2V 0.64 1.13 1.11 0.89 1.50 0.001 0.384
Bi/TGF-1.6V 0.69 7.38 1.12 1.39 17.94 0.240 0.624

To deeply analyze the electrocatalytic mechanism of Bi toward the V3+/V2+ redox
couples, LSV is conducted for samples in 3 M H2SO4 and 1 M V3++ 3 M H2SO4, as shown
in Figure 4. The potential reactions have been proposed in the literature [48]. The chemical
equations are shown as follows:
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2H+ + 2e− → H2 ↑ (4)

xH+ + Bi0 + xe− → BiHx (5)

BiHx + V3+ → Bi0 + xH+ + V2+ (6)
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The hydrogen evolution reaction (HER) is an unavoidable side reaction. Excessive
hydrogen evolution will not only cause irreversible attenuation of cell capacity but also
bring serious safety risks. Therefore, HER is a serious problem that must be explored
in acidic electrochemical power sources. As shown in Figure 4a, the onset potential of
the HER for TGF is the highest, which is found to be −0.72 V (vs. SCE) in the H2SO4
solution. The HER onset potentials of the Bi/TGFs shifted to a more positive position
probably due to some additional reactions. Although bismuth has been known to inhibit
HER ineffectively [30,43], the onset potentials of Bi/TGF-1.6V and Bi/TGF-1.2V are indeed
much closer to the TGF. The electrodeposited Bi on the graphite felt is oxidized to form
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BiHx by combining with H+ ions in the electrolyte. Therefore, the abrupt potential from
the reduction curves of Bi/TGFs is assumed to be the reactions (5). The ability for the
absorption of H+ ion is in the order of TGF < Bi/TGF-1.2V < Bi/TGF-1.6V < Bi/TGF-0.8V by
decreasing current density [49]. The nonlinear relationship between the reaction activities
of each sample to reactions (4,5) and the deposition voltage should be attributed to the
morphology of Bi particles [43], which was further analyzed by the SEM results. As an
intermediate product, BiHx acts as an effective catalyst for the V3+/V2+ reaction, which
makes the charge transfer of the reduction reaction faster in the reaction (6). As shown in
Figure 4b, the reduction peak in 1 M V3+ + 3 M H2SO4 is more pronounced. It is verified
that the V3+/V2+ reduction potential is around −0.55 V (vs. SCE). The values of reduction
current and reduction potential corresponding to Bi/TGFs are significantly higher than
those of TGF. Considering the HER, the electrocatalytic performance of Bi/TGF-1.6V and
Bi/TGF-1.2V for the V3+/V2+ redox couple is better than that of Bi/TGF-0.8V.

3.2. SEM, FTIR and XRD

To gain a better understanding of the relationship between the surface morphology
and catalytic effect, the electrodes were subjected to SEM. Figure 5a–d depict the morphol-
ogy of modified fibers surfaces with and without Bi particles at the same magnification.
The surface of GF appeared to be clean and smooth as shown in Figure 5a, but the surface
of Bi/TGFs was attached with Bi and the size of Bi increased with the increase in electro-
chemical deposition voltage. The bismuth of Bi/TGF-0.8V (Figure 5b) is in the grooves
on the surface of the fibers, and bismuth of Bi/TGF-1.2V and Bi/TGF-1.6V attached to
the surface of the fiber is crystallized into sheets in Figure 5c,d. According to the results
of LSV, the HER and hydrogen ion absorption are preferentially carried out on the tiny
Bi particles, as shown in Bi/TGF-0.8V. Therefore, too many flaky Bi particles, as shown
in Bi/TGF-1.2V and Bi/TGF-1.6V, are not sensitive to HER and hydrogen ion absorption.
Because of this, only an appropriate Bi loading can better catalyze the negative electrode
reaction. This is the reason that the results of CV and EIS for Bi/TGF-1.2V are superior to
that for Bi/TGF-1.6V. The XRD result of Bi/TGF-1.2V was reported in Figure 5e, which
has a perfect match with the Pure Bi standard card, indicating that the metal Bi affects the
catalyst on the surface of carbon fiber. And the comparison of FTIR results between GF and
Bi/TGF-1.2V in Figure 5f showed that more oxygen-containing groups appeared on the
GF surface after Bi deposition (-O-H stretching vibration peak: c.a. 3600–3200 cm−1; alkyl
C-H bending vibration peak: c.a. 2920–2850 cm−1; -C=O stretching vibration peak: c.a.
1720–1750 cm−1) [50]. It can be seen that the more active metal bismuth becomes the active
center, so that the hydrophobic GF can absorb oxygen in the air and become a hydrophilic
electrode material. To confirm the effect of Bi on enhanced electrochemical performances,
the morphology of TGF acquired after 20 charge–discharge cycles in the cell was obtained,
and the results are depicted in Figure 5g,h. The size of metal bismuth particles deposited
on the surface of GF has always been a focus of researchers [42]. If only the catalytic activity
of Bi is considered, then the nanoscale Bi will obviously be more active. However, the flow
erosion of electrolytes and the electrolytic effect during the charge and discharge process
will inevitably affect the existence of metal bismuth particles on the electrode surface and
in the flow cells. This work attempts to control the deposition size and amount of Bi by
electrodeposition voltage so that it can adapt to the internal environment of the VRFBs. Too
large or too small scale of Bi is not conducive to its catalytic effect, so Bi/TGF-1.2V can be
concluded to own the highest catalytic activity. EDS results showed that the Bi particles
and electrolytes still remained on the surface of Bi/TGF-1.2V after 20 charge–discharge
cycles (see it in the Supplementary Material).
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3.3. Cell Performance Tests

Figure 6a–c show CE, VE, and EE for VRFB single-cells at current densities from
20 mA/cm2 to 80 mA/cm2. The CE value of Bi/TGF-1.6V is significantly lower than
that of other samples, as reported in Figure 6a. Excessive Bi deposition at 1.6 V increases
the consumption of V4+ ion infiltrated from the positive electrolyte [45], resulting in a
significant decrease in CE. Under the same charge–discharge current density, the VE value
increases first and then decreases with the increase in electrochemical deposition voltage.
As shown in Figure 6b, batteries assembled with Bi/TGF-0.8V and Bi/TGF-1.2V have
better charge and discharge efficiency than those with TGF cells. At 80 mA/cm2, the
VE value of the battery assembled with Bi/TGF-1.2V can reach 86.09%, which is about
8% higher than that of the battery assembled with TGF. However, the electrochemical
performance of Bi/TGF-1.6V is worse than that of other felts. This result further confirms
the analysis of Bi morphology described above. It can be seen from the SEM results in
Figure 5 that the influence of deposition voltage on Bi morphology is significant. The
higher the voltage selected, the larger the size of the Bi particles obtained. However, only
the battery performance of the sample Bi/TGF-1.2V is good, which indicates that the
appropriate Bi particle size can play a role in the battery performance. If the Bi particles
are too small in size, then the improvement effect on the battery is not significant. Bi
particles with larger sizes are more likely to fall off and may cause a sharp decline in battery
performance. At the same time, SEM results of sample Bi/TGF-1.2V also confirmed that
after 20 cycles, Bi still remained on the electrode surface, and the battery performance was
also improved. In Figure 6c, the trend of EE changes is similar to that of VE, which is
attributed to the minor influence of CE. The above results reveal that the electro-deposition
of Bi particles on graphite felt can improve the electrochemical performance of vanadium
batteries, especially at high current densities. At 80 mA/cm2, the efficiency of Bi/TGF-1.6V
was significantly reduced. It can be concluded that excessive deposition of Bi particles is
not conducive to the electrochemical performance of VRFBs. Figure 6d reports the charge–
discharge voltage-capacity of VRFBs using TGF and Bi/TGF electrodes at a current density
of 40 mA/cm2. Compared with the VRFB assembled with the TGF electrode, the VRFB
assembled with the Bi/TGF electrode has a significant decrease in the over-potential during
the corresponding charging and discharging process. This is mainly due to the increase in
electro-catalytic activity due to the introduction of Bi particles, resulting in a decrease in
the charging voltage and an increase in the discharge voltage.
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To gain further understanding of the effect of Bi catalyst on cell capacity, the changes in
charge and discharge capacities of VRFBs at constant current densities from 20 mA/cm2 to
80 mA/cm2 were investigated (Figure 7). As current density rose, the charge and discharge
capacities decreased. The charge capacities of the cell made of Bi/TGF-1.2V electrodes
showed the highest values. At the current density of 20 mA/cm2, the charge capacities
of the cell assembled with Bi/TGF-1.2V electrodes reached 23.348 Ah/L. This value was
about 12.62% higher than that for TGF. At the current density of 80 mA/cm2, the charge
capacities of the cell made of Bi/TGF-1.2V electrodes reached 26.294 Ah/L, while the charge
capacities of the cell assembled with TGF declined to yield the lowest value. The increase
in capacity was certainly attributed to the effect of Bi particles as the catalyst. However,
the efficiency of Bi/TGF-1.6V dropped dramatically at 80 mA/cm2. Therefore, excess Bi
particles did not benefit the electrochemical performances of VRFBs.
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4. Conclusions

The electrochemical deposition of Bi particles can effectively improve the electrochem-
ical performances of redox flow batteries. During the process, Bi was converted to BiHx
during a single battery discharge, promoting the redox reaction of V3+/V2+. However,
excess or less modification will reduce the overvoltage of the redox reaction and aggra-
vate the hydrogen evolution reaction, thus leading to a reduction in battery efficiency. In
particular, the optimal Bi-modified electrode was obtained at a deposition voltage of 1.2 V
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(Bi/TGF-1.2V). The coulombic efficiency, voltage efficiency and energy efficiency were
recorded as 95.50%, 86.14% and 96.81%, respectively. The capacity attenuation rate of the
VRFB with Bi/TGF-1.2V decreased significantly at current densities between 20 mA/cm2

and 80 mA/cm2 when compared to the pristine electrode. Meanwhile, cyclic voltammetry
showed the Bi/TGF-1.2V electrode with the highest cathodic peak current, reflecting sig-
nificant improvements in electrochemical activities towards V3+/V2+ redox reactions. The
electrochemical impedance spectroscopy tests confirmed that the charge transfer resistance
of Bi/TGF-1.2V was greatly reduced, which may further improve the electrochemical prop-
erties of the VRFB. After 20 cycles, the SEM images indicated that Bi particles were still
attached to the surface of graphite fibers, promoting the redox reaction of vanadium ions.
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