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Abstract: This paper reviews recent inelastic X-ray scattering investigations of simple inhomogeneous
materials, such as nanoparticle suspensions in liquids. All studies reported emphasize the ability
of immersed nanoparticles to dampen or attenuate acoustic waves through the hosting medium,
the effect becoming even more pronounced upon freezing. Additionally, the results show that
suspended nanoparticles can cause the onset of non-acoustic modes in the system. Also, the crucial
role of Bayesian analysis in guiding spectral line shape modeling and interpretation is discussed.
In summary, the presented results demonstrate that the simple inclusion of a sparse amount of
nanoparticles profoundly influences sound propagation through a medium. This finding can inspire
new avenues in the emerging field of terahertz acoustic steering and manipulation.
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1. Introduction

In recent years, the interest in the manipulation of acoustic propagation through
the control of the mesoscale structure has been growing steadily. This task is especially
compelling at terahertz frequencies, where phonons are the leading heat carriers in insu-
lators, and their control becomes crucial to implementing heat flow management [1]. In
principle, phononic crystals (PCs) are excellent candidates to achieve this goal [2], as their
tailored structure impacts sound propagation, potentially enabling its complete shaping.
It was demonstrated that PCs can pave the way for the development of novel thermal
devices, such as thermal diodes [3], thermoelectrics [4], and thermocrystals [5]; furthermore,
they lend themselves to applications as relevant as energy harvesting [6] and the man-
agement/control of thermal properties [7]. A prerogative of these devices is the ability to
forbid acoustic propagation in some frequency bands, customarily referred to as phononic
gaps, which represent the mechanical equivalent of electronic and photonic bandgaps in
semiconductors [8] and photonic crystals [9], respectively. While, in photonic crystals, band
gaps originate from periodic variations of the refractive index, in PCs, they stem from the
periodic modulation of the density and elastic modulus. Creating composite materials
impeding or otherwise steering sound propagation in given frequency windows permits
the manipulation of heat transfers in those windows [1]. In practice, to effectively impact
heat transport, phononic devices must have spatial periodicity matching the nanometer
wavelengths of terahertz phonons, their fabrication thus requiring the most advanced
nanotechnology methods.

Recently, the scientific community has been shifting its main interest towards acoustic
metamaterials (AMs) also due to a host of far-from-trivial and rather promising effects ob-
served in these materials [10–13]. The main difference between PCs and AMs is that, while,
in the former devices, sound propagation is manipulated via the structural periodicity, in
the latter, local resonators [14,15] are used for the same scope. Structural periodicity might
be advantageous, but it is not strictly required for the functioning of SMs, which makes the
fabrication of AMs less challenging.
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The works discussed in this review suggest that, as a potential alternative method
to impact terahertz sound damping, one can include structural heterogeneities in a fluid,
such as floating nano-objects. The mismatch of elastic properties between the floating
colloids and the hosting liquid hinders the propagation of sound waves through the system,
decreasing their lifetime. In this case, the arrangement of nano-objects is not present at all.

Regardless of the strategy adopted to impact sound propagation, a pivotal concern
is the identification of best-suited characterization methods. Natural candidates are high-
resolution inelastic X-ray (IXS) [16] or neutron scattering (INS) [17,18] techniques. Con-
ceptually, an inelastic spectrometer resembles a microscope “pointed on the dynamics”,
which one can zoom in on dynamic events occurring in a given system over increasingly
small distances and time lapses upon the increase of the energy, E, and the momentum, h̄Q,
exchanged in the scattering event; here, Q is the wavevector transfer and h̄ = h/2π with h
the Plank constant. Notice that, due to the inherent isotropy of a disordered or a partially
ordered system, the direction of the exchanged momentum is irrelevant, the parameter of
interest being rather Q = |Q|.

When dealing with a hybrid (liquid and solid state) system as an NP suspension, by in-
creasing Q and E, one could map the whole dynamic crossover between the hydrodynamic
response and the intra-NP one. A host of recent IXS studies carried out by my research
group focused on the dynamics of liquid suspensions along this crossover, demonstrating
several non-trivial effects, including the ability of immersed NPs to decrease the lifetime
and the amplitude density waves propagating through the hosting medium.

These findings have a broad general interest as, in principle, they may suggest a simple
method to manipulate sound propagation in a simple liquid. More recently, a similar effect
was observed in an IXS measurement on a frozen suspension, thus demonstrating that
embedded nanoparticles can also impact the sound properties of solid-state aggregates. A
critical review of these IXS investigations is the main focus of this paper. Before discussing
these results, it is important to remark that, even at the lowest Q values covered by
these works, the probed phonon wavelengths were smaller than the NP size by almost
an order of magnitude. Therefore, it is safe to assume that, in all cases, acoustic waves
perceived the nanoparticles as infinitely massive, thus experiencing merely elastic collision
at their interface.

2. The Pivotal Role of Bayesian Analysis

Overall, IXS studies on nanostructured materials are still sporadic, primarily due to the
complexity of their dynamic response and the usually weak and poorly resolved inelastic
contributions to their spectral profile. We recall here that the shape of an IXS spectrum from
a Soft Matter system is often relatively unstructured. A typical example is displayed in
Figure 1 and refers to an aqueous suspension of gold nanoparticles (Au-NPs) measured at
Q = 3 nm−1. The plot compares the raw measurement with its best fitting model line shape
and its elastic and inelastic contributions. As typical of these measurements, the spectral
features of the raw line shape are not well pronounced and mutually resolved. However,
the comparison with the model profiles helps us recognize that, at these relatively low Qs,
the spectral shape is somehow reminiscent of the well-known Brillouin triplet typically
observed in the hydrodynamic limit. The latter features a central peak—usually dominant
in an IXS spectrum from a disordered system—and two broad shoulders symmetrically
sitting on its wings. The elastic peak arises from all non-propagating processes occurring
in the system over timescales too long to be adequately resolved by the measurement, such
as relaxation or diffusion. These processes affect density fluctuations in the target system,
dominating them at low frequencies, where their essentially elastic contribution becomes
preponderant over the inelastic one. This trend becomes more pronounced upon increasing
Q, reflecting the decreasing ability of the system to support density wave propagation.

Aside from these merely qualitative aspects, any detailed modeling of the spectral
shape would require a firm theory of the IXS line shapes in the mesoscopic regime. Unfortu-
nately, such a theory is currently lacking and usually replaced by suitable phenomenological
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generalizations of the exact hydrodynamic description valid at the lowest Qs and Es only.
This generalized description demands, first and foremost, some assumption on the Q-
dependent shape of the model profile and, in particular, on the number of spectral modes
contributing to it. Aside from these inherent dilemmas, additional interpretation problems
usually come from the χ2 best fitting routines involving too many adjustable parameters,
whose result often turns out to be model-dependent.

Figure 1. An example of an IXS spectrum from a dilute suspension of 15 nm sized gold nanopar-
ticles, Au-NPs (circles), compared with the best fitting line shape and related elastic and inelastic
contributions (see the legend).

To make the scenario even more puzzling, the insight typically sought from the line
shape analyses of current IXS measurements is becoming increasingly informative and
detailed. To unclutter this complicated matter, a reliable interpretation of the experimental
spectral shape is highly desirable and would require, in the first place, evidence-based
modeling recipes. In this endeavor, the use of Bayesian inference [19,20] is highly beneficial:

(1) It can rate the plausibility of competing model options;
(2) It privileges consistent models with fewer adjustable parameters;
(3) It protects the numerical algorithm from remaining trapped in local, rather than global,

χ2 minima;
(4) It may be implemented using minimally invasive external constraints;
(5) It efficiently copes with the limited statistical accuracy of experimental results.

Among various topics, this review will illustrate how a Bayesian inference model
enables an informative and unbiased interpretation of line shape measurements. However,
before going any further, it is helpful to describe some general principles of the Bayesian
inference approach followed in the data analysis presented here.
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2.1. The Bayes Theorem

In the past, a few studies used Bayesian methods to extract accurate structure factor
amplitudes from powder diffraction patterns with strongly overlapping Bragg peaks [20].
More recently, these methods have also been employed by my group to determine the
number of excitations present in inelastic neutron or X-ray scattering spectra [21–24], or the
number of diffusive processes in the frequency [25,26] or time-dependent [27] response of
a system. The conceptual pillar of this approach is the Bayes theorem, whose enunciation
also comes in handy here because it permits us to introduce the key distributions one deals
with in Bayesian inference to model the measured spectral shape.

Suppose a spectral measurement is consistently described by a model identified by
the set Θ = (θ1, θ2, · · · , θm), where the θm component of the vector Θ is the mth parameter
defining the spectral profile, as, e.g., the amplitude, inelastic shift, or damping of a mode,
the background, and similar.

If we then represent the measurement outcome with the vector (y1, y2, · · · , yn), where
n is the number of sampled values, we can assume that the latter provide a sampling yi
(i = 1, · · · n) of a random variable y. We can also formally represent our a priori information
on the physical problem under scrutiny with the symbol I. With this notation, the Bayes
theorem [19] reads as:

P(Θ|y, I) =
P(y|Θ, I)P(Θ|I)

P(y|I) , (1)

where P(Θ|y, I) is the posterior distribution of the model parameters conditional on the
achieved measurement and the available information. Our a priori knowledge—or lack
thereof—about the model parameters is reflected by the prior distribution P(Θ, |I)). The
distribution P(y|Θ, I) is the likelihood of the data and measures the plausibility of a given
outcome conditional on the truth of the information and the model. Finally, P(y|I) is the
marginal probability, whose primary role is enabling the probability in Equation (1) to be
correctly normalized, i.e., to have the unit integral over the integration variable Θ. Let us
now comment in further detail on these distributions, starting with the prior distribution
(or simply the prior).

2.2. The Prior Distribution

As mentioned, the prior probability incorporates all prior knowledge on the model,
including physical constraints, sum rules, or previous results it needs to comply with. This
previous knowledge can be accrued, e.g., from the general line shape theory, a computation,
a measurement, or any relevant direct or indirect literature finding. The inclusion of the
previous information in the inference process is peculiar to the Bayesian approach and can
be more or less coercive. For instance, a specific parameter, θ, must attain a precise value
because it was already measured or computed in previous works. We may thus assume
that the parameter takes that with unit probability. Suppose we opt for a more agnostic
approach. We can, therefore, impose that the parameter follows a Gaussian distribution
centered at θ⋆ with variance suitably chosen to limit parameter swings around the expected
value. By doing so, we assign a higher probability to parameter values in the neighborhood
of θ⋆.

The information available on the parameters might be more vague. For instance,
we might only know that a specific parameter must be non-negative or vary in a limited
interval, thus requiring a truncated distribution. Parameters having an a priori unknown
value inside a domain can be assumed to be uniformly distributed within such a domain.
Also, whenever feasible, any mutual entanglement between parameters and any selection,
conservation, or sum rule should be translated in a workable analytic form into the prior
distribution function.
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2.3. The Likelihood Function

The likelihood is the joint probability of obtaining a specific measurement outcome,
conditional on the accuracy of the adopted model. In other words, it evaluates how
plausible a particular result is, assuming the model adopted is correct. As mentioned,
the set of measurements y = (y1, y2, · · · yn) can be interpreted as the sample of a random
variable Yi, which follows the (parent) distribution f (Yi; Θ). The main grounds of this
interpretation are that, after repeating a data collection, one will generally obtain a different
result, even under the same experimental conditions. After data collection, yi becomes
a specific realization (sampling) of the random variable Yi. Since the variables Yi are
independent, the compound probability of the whole sampling is the product of the
probabilities of the individual values yi. Our spectroscopy results read as follows:

yi = SM(Q, Ei) + ϵi, (2)

where SM(Q, E) is the model that depends on a vector of unknown parameters Θ, while
ϵ = (ϵ1, ϵ2, · · · , ϵn) is a vector of random errors. The latter can be assumed independent
and normally distributed; hence, the sampling ϵ1, · · · , ϵn has probability distribution:

P(y|Θ) =
n

∏
i=1

1√
2πσ2

i

exp

[
− [yi − SM(Q, Ei)]

2

2σ2
i

]
= const · exp

[
−

n

∑
i=1

[yi − S(Q, Ei)]
2

2σ2
i

]
. (3)

Notice that the quantity above can be interpreted as the probability of obtaining the
sampling yi conditional on the model’s accuracy, which, by definition, is the likelihood of
the whole set of N values yi.

2.4. The Posterior Distribution and Its Normalization

The quantity on the left-hand side of Equation (1) is the joint posterior distribution of
the model parameters. This distribution takes into account both the prior knowledge and
the measurement outcome. Any Bayesian inference rests on this probability distribution,
which incorporates the earlier knowledge—through the prior—and the data evidence—
through the likelihood function. In summary, one can recognize that the final posterior
distribution is obtained by updating the previous knowledge with the data evidence, i.e.,
the measurement outcome.

To obtain estimates for a single parameter θk, one needs to integrate the posterior distri-
bution over all other parameters, except θk. This integration is often referred to as marginal-
ization, the marginalized distribution being denoted as P(θk|y) =

∫
Θ−k

P(Θ|y)dΘ−k. Here,
the integrand Θ−k includes all components of the parameter vector except θk. To estimate
the most plausible value of θk and its uncertainty, one can consider the mean and the
standard deviation of P(θk|y), respectively. Consistently, the probability that the parameter
θk belongs to a specific interval is evaluated by integrating its marginal posterior over such
an interval.

Similarly, we can introduce a marginal likelihood, representing the probability of achiev-
ing the measurement yi(i = 1, · · · n), irrespective of the model parameters, i.e., integrated over
all of them. After this integration, the likelihood becomes the constant—P(Θ|I)—required to
normalize the posterior parameter distribution P(Θ|y, I) in Equation (1). Unfortunately, no
analytic expression of P(Θ|I) is generally available to make such an integration explicit,
and even if it were, the multidimensional integral to be performed on it would have like-
wise been overly complicated to compute. Therefore, the posterior distribution is usually
drawn up to a normalization constant. In this endeavor, the use of the Monte Carlo Markov
chain (MCMC) comes in handy, as it can simulate the joint posterior distribution, even if
the normalization constant is unknown. Inference is then made on this simulation rather
than a close analytical form of the posterior distribution. The reader can find further details
on this method in Refs. [28,29].
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2.5. Occam’s Principle

Even though Bayesian and classical analyses give consistent results in the asymptotic
limit of an infinitely large sampling, the two approaches are not equivalent. Indeed, the
former always provides the advantage of drawing probability distributions rather than
just optimal parameter values. This feature is especially advantageous when comparing
the performance of competitive models. Perhaps more importantly, the Bayesian method
embodies the Occam’s razor principle, which states that, among competing hypotheses
(models) satisfactorily explaining some evidence, the one with the smallest number of
adjustable parameters is preferable. This parsimony principle is inherent to the Bayesian
theorem in Equation (1). In fact, in its explicit form, the parameter posterior contains
the product of prior parameter distributions, which, by definition, have values less than
or equal to one. Therefore, adding parameters to the model amounts to multiplying
the posterior (of each parameter) by additional factors less than or equal to one, thus
correspondingly lessening the parameter’s posterior, i.e., making any guess on such a
parameter less plausible.

2.6. The MCMC Method

In practice, MCMC methods construct an ergodic Markov chain that draws Θm, with
m = 1 · · · M, and a stationary distribution corresponding to the joint posterior distribution.
The number of updates of the parameter values in an MCMC algorithm is generally called
the number of sweeps, denoted by M. A new draw of the posterior is obtained at each
algorithm sweep. The latter updates all the parameters in sequence, drawing each from
the respective posterior distribution, conditional on the other parameters’ values. Further
details on the algorithm moves can be found in Refs. [21,30].

I finally stress that the Bayesian approach described here is ideally suited for minimally
biased and evidence-based modeling of experimental results. Upon suitable modifications,
it can be applied to an unlimited class of measurements in which the resolved variable can
be the energy, as in inelastic scattering; the time, as in time-resolved measurements; the
angle, as in X-ray and neutron diffraction; or any other relevant probe parameter scanned.
Furthermore, Bayesian methods are equally valuable when modeling the response of a mea-
surable quantity to the variation of temperature, pressure, or any other sample conditions.
Unlike frequentist approaches, whose rigorous predictions heavily rest on the asymptotic
sampling, i.e., the unlimited repetition of a measurement, Bayesian inference enables robust
inference from single-event experiments, which are very common in modern science.

3. What Can We Learn from an IXS Measurement on a Suspension?

An extended treatment of the theoretical and practical aspects of the IXS technique
goes beyond the scope of the present review, and the interested reader is deferred to the
existing literature [16,31]. Here, I recall some very general features we could expect from
an IXS measurement on a simple system.

As discussed in the introductory section, an inelastic scattering spectrometer can focus
on dynamic events occurring over different time and length scales upon suitable Q and E
variation. In principle, this strategy could enable the whole mapping of dynamic crossover
between the hydrodynamic and the single-particle regimes. In practice, however, this
mapping cannot be achieved using a single X-ray spectrometer, as the access to hydrody-
namic scales would require using visible or UV light as a probe. Nonetheless, at the lowest
Qs reachable by IXS, the dynamic response of a liquid is averaged over sufficiently long
distances and time for a suitably generalized hydrodynamic description to hold validity.
Evidence of the transition of the IXS spectrum from this generalized hydrodynamic regime
to the single-particle one was provided, e.g., in an IXS work on lithium [32], whose main
result is summarized in Figure 2. At the lowest Qs, the spectral shape consists of a relatively
sharp triplet profile dominated by the generalized hydrodynamic modes. At low Q, the
inelastic shift of the two side peaks increases (linearly) with Q, as suggested by the dashed
line roughly connecting their maxima in the Stokes sides. As Q increases, the overall
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spectral shape evolves toward the Gaussian profile featuring the single-particle response.
In this regime, the probed event essentially reduces to the free recoil of the single struck
atom induced by the collision with the impinging probe particle, such as a photon, in the
case of IXS.

Figure 2. The Q-transition of the IXS spectral shape of lithium (open circles) from the quasi-
hydrodynamic regime (bottom) to the single-particle one (top). The spectra are collected at the
indicated Q values and vertically offset for clarity. The dashed line is a guide to the eye that indicates
the position of collective inelastic excitations in the spectrum. The spectral line shapes are from
Ref. [33], while the whole figure is taken from Ref. [16].

Similarly, probing the spectrum from a suspension at different Qs would enable a
mapping of the dynamical processes occurring in the sample over different scales, as
schematically illustrated in Figure 3.

Suppose the measurement is performed at low Q values well below the IXS range. In
this case, if the immersed NPs interact, one would expect inter-NP phonons to become a
relevant part of the system’s response over these large distances. These phonon modes
consist of density fluctuations originating from displacements of the NPs from their equi-
librium positions, which transmit from site to site due to the NPs’ interactions. In principle,
these modes overlap with collective excitations propagating through the hosting liquid
and, more generally, with any other dynamic processes in such a liquid, such as relaxations
and diffusions.

At larger Q values, one should expect the emergence in the spectrum of phonons
propagation modes inside the NPs (intra-NP phonons).
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Figure 3. A schematic representation of what one would expect to observe by performing an IXS
measurement on an NP suspension for increasing Q values. The figure is taken from Ref. [22].

The case of a dilute suspension is more straightforward than the one discussed above,
as the long NP separations eliminate inter-NP phonons. Furthermore, the sparse character
of the suspension likewise translates into a dynamic response similar to that of the pure
hosting liquid. More interestingly, NP suspensions are simple prototypical systems ideally
suited to investigate the manipulation of the acoustic response of a fluid via the inclusion
of structural heterogeneity. It is also worth noticing that dealing with small concentrations
in metal NP suspensions is imperative, as the requirement of sample stability limits the
concentration; indeed, the average inter-particle distance must be long enough to prevent the
quick formation of aggregates. Although our group investigated the spectral response of a
higher concentration NP suspension, the study focused on silica NPs, for which electrostatic
interactions were not a concern. However, any assessment of the effect of NP concentration
was inconclusive. Still, no IXS measurements have been reported on these systems until
less than a decade ago. In recent years, my research group has intensively investigated the
dynamics of diluted NP suspensions to shed some light on this uncharted field.

4. Experimental Details
4.1. The Measurements

We utilized the high-resolution IXS beamline Sector 30 of the Advanced Photon Source
at Argonne National Laboratory [34,35] to measure all suspension spectra presented in this
paper. The sample scattering was energy-analyzed by nine independent analyzers. These
analyzers were placed on the moving extreme of a spectrometer arm. The latter can be
rotated in the horizontal plane to select the exchanged wavevector through Q = 2π/λsinθ,
where λ and 2θ are the incident beam wavelength and the scattering angle, respectively.
The spherical analyzers were placed at a constant angular offset corresponding to a Q
separation of 2 nm−1. The incident beam energy was 23.7 keV and corresponded to the
Si(12 12 12) backscattering reflection from the analyzers, while the energy analysis was
implemented through the rocking of the crystals of the monochromator unit while keeping
the analyzers fixed. The shape of the energy resolution profile slightly varied for each
analyzer, with an average spectral width of about 1.2 meV. More details on the spectrometer
are given in Ref. [34].

4.2. The Line Shape Model

The model used to describe the structure factor is the sum of a finite number of
excitations yielding the following analytical profile:
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S(Q, E) = Ae(Q)δ(E) + [n(E) + 1]
E

kBT

{
LA0,z0(Q, E) +

k

∑
j=1

2
π

Aj(Q)DHOj(Q, E)

}
. (4)

Here, the term δ(E) is the Dirac delta function, which defines the elastic component of
the spectrum having amplitude Ae(Q). The energy-dependent term n(E) = (eE/kBT − 1)−1

is the Bose factor, which ensures the fulfillment of the detailed balance condition. The term
in curly brackets is the sum of a Lorentzian central peak having half-width at half-maximum
z0 and amplitude A0. This term accounts for the spectral contribution of non-propagating
dynamical processes in the sample, such as diffusion and relaxation phenomena. The k
inelastic contributions are described by Damped Harmonic Oscillator (DHOj(Q, E)) terms
having amplitude Aj(Q). The parameters defining the shape of the DHO excitations, Ωj(Q)
and Γj(Q), represent the undamped energies and damping coefficients, respectively, they
determine the analytical profile of the ith excitation through the following:

DHOj(Q, E) =
Ω2

j (Q) ∗ Γj(Q)

(E2 − Ω2
j (Q))2 + 4[EΓj(Q)]2

(5)

It is worth noticing that the number, k, of DHOj(Q, E) excitations and their shape
coefficients are equally treated as adjustable model parameters.

Finally, to provide an accurate approximation of the measured line shape, the model
function in Equation (4) should be convoluted with the instrument resolution function
R(E) and the result summed to the spectral background. Explicitly:

S̃(Q, E) = R(E)⊗ S(Q, E) + B(E) (6)

where B(E) is a mildly E-dependent background intensity.

5. Results
Intra-NP Phonon Excitations

The first observation of phonon modes propagating through the NP interior dates
back to our IXS study on an aqueous suspension of gold nanoparticles (Au-NPs) [22]. An
important finding of such a work is illustrated by Figure 4, which compares two IXS spectral
shapes measured at low Qs with the respective best fitting model profiles, along with their
two inelastic contributions, determined through the Bayesian inference method described
in this paper. We assigned the two inelastic features to acoustic modes of either transverse
or longitudinal polarization propagating inside the Au-NPs’ interior. The spectrum of pure
deuterated water measured in a previous joint IXS and neutron scattering work [36] is also
reported in the plot for reference. It is evident that the two broad inelastic shoulders present
in the water spectrum essentially disappear upon NP immersion and are replaced by the
two small peaks representative of intra-NP phonons. This finding might seem surprising,
considering that the dilute nature of the suspension should make the intensity contribution
from the gold dynamics relatively small. Indeed, their visibility highlights the mentioned
ability of immersed NPs to damp the acoustic modes of the hosting medium.

In Figure 5, the Q dependence of the phonon’s inelastic shifts, i.e., the sound dispersion
curve, is reported as derived through the Bayesian analysis. Our assignment of the two
peaks to Au phonons is further supported by the favorable comparison between the
dispersion curves and the acoustic branches of gold, as illustrated in Figure 5. Most
importantly, the maxima of the two dispersion branches roughly match the energy of the
peaks of the density of state of bulk gold, which is reported on the right as computed in
Ref. [37].
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Figure 4. Two IXS spectra collected at the indicated Q from a dilute aqueous suspension of gold
nanoparticles (Au-NPs) are compared with the best fitting model line shapes determined through the
Bayesian inference method discussed in the text. The IXS spectra of pure water collected at similar Q
values are also reported for reference and vertically offset for clarity. All data are from Ref. [22].

Figure 5. (Left panel) The dispersion curves of the inelastic modes derived from the IXS spectra of the
Au-NP suspension (see Figure 4) through the Bayesian inference analysis, as indicated in the legend.
Results on liquid gold from Ref. [38]. (Right panel) The density of state (DoS) of bulk gold is reported
as computed by the lattice dynamics in Ref. [37]. The arrows emphasize the rough correspondence
between the dispersion curve maxima and the main DoS features. Data are redrawn from Ref. [22].



Appl. Sci. 2024, 14, 3377 10 of 18

6. Using Nanoparticles to Damp High-Frequency Sound Waves in a Fluid

As suggested by the above discussion, the most noticeable difference between the
line shape of a diluted NP suspension and that of the pure solvent is that the inelastic
modes of the hosting liquid are highly attenuated in the former profile. We achieved
the most striking evidence of this effect when investigating the dynamic response of an
Au-NP suspension in glycerol [39], whose IXS spectra are compared to the ones of pure
glycerol in Figure 6. The pronounced inelastic shoulders in the pure solvent spectra are
hardly visible in the suspension ones, which have inelastic wings barely emerging from the
spectral background.

At this stage, there is still a possibility that the comparison shown in Figure 6 is
misled by the normalization to the elastic (E = 0) maximum. One can argue that, since this
maximum is more intense in the suspension spectrum, normalizing to its height may cause
an apparent, but not particularly significant, attenuation of the inelastic shoulders.

Figure 7 provides an answer to this legitimate doubt. Data in the plot were derived
from Ref. [40] and suggest that, aside from the relative amplitude reduction, the dominant
inelastic mode presents a significant increase of the relative damping, as defined by the
ratio Γ/Ω between acoustic damping and frequency.

To understand this effect, it is helpful to recognize that, in the mesoscopic regime
probed by IXS, the inequality Qdc/2π ≫ 1 (with dc being the colloid diameter) remains
valid even for nm-sized colloids. At these scales, multiple scattering significantly impacts
acoustic propagation, as acoustic waves are more prone to get reflected at the surface of the
colloid [41]. These reflections prevent sound waves in the surrounding liquid from entering
the colloid and vice versa. Due to multiple interface reflections, there is a considerable
mutual dephasing between acoustic waves, leading to a significant enhancement in acoustic
damping caused by interference.

Figure 6. The IXS scattering profiles from a suspension of Au-NPs in glycerol and pure glycerol
collected at the indicated Q values are reported after normalization to the respective maxima. The
corresponding resolution profiles are also included for reference after similar normalization. The
figure was reproduced from Ref. [22].
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Figure 7. The relative damping of the dominant inelastic mode in several suspensions of either
charged or neutral SiO2 NPs of various sizes (see legend) is reported as a function of Q. The dashed
line shows the critical damping condition. The data are from Ref. [40].

Another intriguing effect connected with the enhanced interface reflection is the
appearance of an additional mode resulting from the propagation of interface density waves,
customarily known as Stoneley waves [42]. An IXS work on glycerol documented the
fingerprints of these waves in the terahertz spectrum of glycerol. Their primary signature
is a low-energy branch with a nearly linear Q dependence, as shown in Figure 8.

Figure 8. The plot displays the dispersion curves determined through the Bayesian analysis of the
IXS spectra of an Au-NP suspension in glycerol. Red dots and black squares refer to the longitudinal
acoustic mode and the interfacial mode, respectively (see the text). The data are from Ref. [43] and
are compared with the IXS measurement on pure glycerol by Sette and collaborators (Ref. [44]). The
linear dispersion representing the high-frequency elastic response of glycerol is also reported as a
solid line for comparison.
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At this stage, a still unanswered question is whether a damping effect similar to the
one observed in dilute liquid suspensions can also be observed in a more rigid and ordered
system, such as a crystal with NPs embedded. A clear advantage in dealing with a non-
amorphous solid is the sharpness of its phonon features, which makes any possible line
shape modification induced by NPs more easily discernible. In a recent IXS work [45], we
addressed this issue by investigating the phonon spectrum of a frozen aqueous suspension
of Au-NPs. We found that, even at a low concentration (about 0.1% in volume), embedded
NPs substantially impact the phonon spectrum of the hosting medium, at least at some Q
values. In fact, after looking at Figures 9 and 10, one readily notices that the embedded
nanoparticles significantly attenuate the dominant phonon peak of ice (at about 8 meV).
This conclusion stems from comparing the non-normalized line shapes, suggesting that the
inclusion of NPs causes an attenuation of the phonon mode at about 8 meV, which is more
pronounced than that experienced by the elastic peak of the same spectrum. This trend is
unlikely to be a unique consequence of the more significant absorption of embedded NPs,
as any absorption increase would have affected all spectral modes, elastic or inelastic, in
equal measure.

Furthermore, the line shapes in the left plot of Figure 9 exhibit a side feature in the
9.5–12 meV range (encircled by the ellipsis), whose intensity is nearly the same in the ice and
suspension spectra despite the different absorption of the two samples. However, in ice, it is
shifted at a slightly larger energy transfer. In summary, the comparison in Figures 9 and 10
evidences distinctive features not trivially amenable to the X-ray absorption increase caused
by embedded NPs or their additional, intra-NP phonon modes. Therefore, we can conclude
that the impact of embedded NPs on the phonon spectrum of a solid is a genuine effect,
which, however, seems to affect the various spectral modes to a different extent in a way
not very well understood at present.

Figure 9. (Left panel) Comparison between the IXS spectrum measured at Q = 19 nm−1 of the ice
sample and the frozen suspension. The spectral profiles are displayed in an expanded view, and
the dashed ellipses encircle the regions where the difference between the phonon modes of the two
samples is most evident. (Right panel) The same comparison is reported at full scale.
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Figure 10. The same as Figure 9, but for Q = 21 nm−1.

The Bayesian Inference at Work: Two Examples

Let us briefly discuss how Bayesian inference can help with line shape analysis and
interpretation.

To provide a practical example, the typical outcome of the Bayesian analysis of the
IXS spectra from a nanoparticle suspension is summarized in Figure 11, which refers to the
IXS results discussed in Ref. [22]. In Panel A, I compare the IXS spectra from an aqueous
suspension of gold NPs, the corresponding best fitting model line shapes, and their spectral
components, all already displayed in Figure 4.

Figure 11. (Panel A) displays the same spectral line shapes already shown in Figure 4.
(Panel B) shows the posterior distribution of the number of inelastic components drawn in the
same IXS study for three Q values. (Panel C), finally, illustrates the posterior of the inelastic shift of
the lower frequency phonon mode for the Q = 3.5 nm−1 spectrum.
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Panel B shows that the relative probability of the most plausible model option (k = 2)
decreases upon an increase in Q, while the probability of the alternative model option
(k = 1) correspondingly increases. Most importantly, the sharp and unimodal posterior
distributions of the inelastic shifts (e.g., that in panel C) support the physical significance of
the two spectral modes detected and the robustness of the related line shape model.

A second noticeable example of the outcome of a Bayesian analysis can be found in
Figure 12, which refers to our INS work on liquid silver. There, we used Bayesian inference
to settle a controversy about the presence of a second spectral excitation of a transverse
character. The plot displays the posteriors P(Ωl |y)k of the l-th mode’s inelastic shift drawn
for a k excitation model option and for the IXS spectrum at Q = 16 nm−1. The Bayesian
algorithm identifies the two most plausible models as those corresponding to either k = 1
or k = 2. It appears that, within the validity of the k = 2 model, the second low-frequency
excitation has an extremely broad and flat posterior, as opposed to the sharply peaked one
of the higher frequency excitations. Therefore, the evidence for the second (controversial)
excitation appears weak. Of course, the investigator is the only one ultimately entrusted
with the final decision on the number of modes present in the spectrum. However, Figure 13
speaks against the robustness of a double-mode hypothesis. As a plausible alternative,
the low-frequency excess of the spectral intensity could have been ascribed instead to a
viscoelastic dynamic behavior due to an active structural relaxation.

Figure 12. Three posterior distributions of the inelastic shift Ωl are reported as derived from the
Bayesian inference analysis of the INS spectrum of liquid silver at Q = 16 nm−1. They refer to the
alternative model options, including either one (k = 1) or two (k = 2) inelastic modes in the spectral
line shape. The data are from Ref. [46].
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Figure 13. (Panel A) IXS spectrum of a SiO2 nanoscaffold compared with the best fitting line shapes
(see the legend). (Panel B) High-resolution electron microscopy image of one of the silica nano-
platforms used as a sample for the IXS measurements (see text). (Panel C) Microscope image of the
nano-scaffold assembly and related holder used to perform the measurement.

7. Looking Ahead

As an extension of the studies discussed in this paper, one could consider systems
of NPs interacting in a controlled fashion. In this respect, at Brookhaven National Lab,
a group led by O. Gang developed a new method to assemble nanoparticles (NPs) into
ordered structures using polyhedral DNA frames [47]. These structures can be integrated
by encapsulating NPs with grafted DNA strands [48]. The symmetry of the vertices de-
termines the structure’s coordination and overall geometry, while the linkage scaffold is
uncoupled from the characteristics of the NPs embedded in it. The 3D DNA frameworks
can be “converted” by promoting inorganic material growth on DNA struts. This proce-
dure allows for the creation of several inorganic lattice frameworks made of silica [49],
superconducting niobium [50], silicon carbide [51], and more. The size of the voids can
be regulated through the growth time, allowing control of the scaffold’s void ratio from
20% to 100% (bulk solid). Preliminary measurements were performed on these systems
at APS-Argonne National Laboratory and NSLS-II-Brookhaven National Laboratory us-
ing inelastic X-ray scattering. The main result of such a measurement is summarized in
Figure 13. Although the features observed in the measured line shape look promising,
the scattering signal still needs sensible improvement. Specifically, an enhancement in
the statistical accuracy and signal-to-background ratio would require larger samples and
optimized sample+substrate arrangements.
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The following abbreviations are used in this manuscript:

AM acoustic metamaterial
APS advanced photon source
Au-NP gold nanoparticle
E energy transfer
INS inelastic neutron scattering
IXS inelastic X-ray scattering
MCMC Markov chain Monte Carlo
NP nanoparticle
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