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Abstract: This study refines the YOLOv7-tiny model through structured pruning and architectural
fine-tuning, specifically for real-time eye state detection. By focusing on enhancing the model’s effi-
ciency, particularly in environments with limited computational resources, this research contributes
significantly to advancing driver monitoring systems, where timely and accurate detection of eye
states such as openness or closure can prevent accidents caused by drowsiness or inattention. Struc-
tured pruning was utilized to simplify the YOLOv7-tiny model, reducing complexity and storage
requirements. Subsequent fine-tuning involved adjustments to the model’s width and depth to
further enhance processing speed and efficiency. The experimental outcomes reveal a pronounced
reduction in storage size, of approximately 97%, accompanied by a sixfold increase in frames per
second (FPS). Despite these substantial modifications, the model sustains high levels of precision,
recall, and mean average precision (mAP). These improvements indicate a significant enhancement
in both the speed and efficiency of the model, rendering it highly suitable for real-time applications
where computational resources are limited.

Keywords: eye state detection; driver fatigue monitoring; YOLOv7-tiny; structured pruning; neural
network optimization

1. Introduction

Research conducted by the AAA Foundation for Traffic Safety reveals that between
6% and 11% of all motor-vehicle accidents reported to police, and from 16% to 21% of fatal
accidents, may involve drowsy driving [1]. This statistic underscores the urgent need for
the implementation of appropriate systems designed to detect driver fatigue. Such systems,
by monitoring fatigue indicators and issuing alerts in real time, play an essential role in
reducing the risk of drowsy driving, with the potential to significantly lower the incidence
of traffic accidents and related fatalities.

In the domain of vehicular safety, the current research is focused on reducing accidents
caused by driver somnolence through three primary detection methodologies: physiolog-
ical metrics (including electroencephalography (EEG) [2,3], electrooculography [4], and
multi-modal algorithms [5]); vision-based methods (tracking eyelid movement, yawning,
and head orientation) [6–10]; and vehicular dynamics analysis (such as lateral position and
speed variation) [11,12]. Although vehicular dynamics offer an indirect measure of alert-
ness, physiological and optical methods provide a more direct assessment. Physiological
markers, especially EEG patterns indicating alpha wave dominance, are sensitive but may
be considered invasive. In contrast, image analysis of eye, mouth, and head movements is
non-invasive and increasingly favored for its practicality in real-life applications, striking a
balance between effectiveness and user comfort.

In the specialized area of driver drowsiness detection through image analysis, research
has concentrated on eye blink detection, facial landmark analysis, and facial expression
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analysis using classifier models. Various deep learning models have been successfully
employed in eye blink detection [13,14]. Facial landmark analysis has also received at-
tention, with technologies like MTCNN (Multi-task Cascaded Convolutional Neural Net-
work) for face detection and classification systems achieving high accuracies in identifying
drowsiness [15,16]. The exploration of 3D-CNN (Three-dimensional Convolutional Neural
Network) integrated with LSTM (Long Short-term Memory) and other CNN architectures
for facial expression analysis has yielded high accuracy rates on various datasets [17–20].

However, image analysis-based methods for drowsiness detection face challenges,
including variability in ocular surface texture across different ethnicities, influenced by
anatomical, dermal, and external factors like lighting conditions and eyewear. Additionally,
the need for real-time processing of complex visual data demands substantial computational
resources, posing an obstacle to wider adoption.

This study introduces a real-time driver fatigue detection system utilizing an opti-
mized You Only Look Once version 7-tiny (YOLOv7-tiny) model. YOLOv7-tiny, chosen for
its real-time processing capabilities and efficiency, is ideal for in-vehicle systems without
high computational demands [21–24]. This model was selected based on its superior perfor-
mance in diverse and challenging visual environments, demonstrating robust adaptability
to various lighting conditions and head poses. These attributes are critical in dynamic
driving contexts where changes in environmental light and driver movement are frequent.
Furthermore, the implementation of structured pruning and parameter adjustments within
the YOLOv7-tiny framework has been strategically employed to refine the model’s op-
erational efficiency, thus ensuring that performance optimization does not come at the
expense of detection accuracy. Performance metrics such as precision, recall, and mean
average precision (mAP) are used to evaluate the model’s effectiveness post-pruning,
ensuring the balance between accuracy and computational efficiency for deployment in
resource-constrained settings.

2. Materials and Methods
2.1. Principles of YOLOv7-Tiny Network Structure

The YOLOv7-tiny model is a state-of-the-art neural network for object detection tasks,
offering a compact and efficient alternative to its larger counterparts [25]. The “tiny” version
is specifically designed to balance performance with computational efficiency, making it
suitable for deployment on devices with limited computational resources.

The architecture of YOLOv7-tiny is divided into two primary components: the back-
bone and the head, as elucidated in Figure 1. The backbone is crucial for extracting feature
maps from input images, which are then utilized by the head to determine object classifica-
tions and locations. A notable innovation within the backbone is the integration of ELAN
(Enhanced Efficient Layer Aggregation Network) blocks, which significantly improve the
extraction and integration of multi-scale features. This is vital as edge information plays a
critical role in defining object boundaries, a key factor in accurate object detection.

Furthermore, the backbone architecture is augmented by the inclusion of the SPPC-
SPC (Spatial Pyramid Pooling—Cross Stage Partial Connections) block, a hybrid module
that amalgamates the Spatial Pyramid Pooling (SPP) and Cross Stage Partial Connections
(CSPC) methodologies. The SPP facet of this block guarantees the preservation of feature
map spatial dimensions, thereby facilitating the detection of objects varying in size by
amalgamating features pooled at disparate scales into a rich, spatially invariant feature
representation. Concurrently, the CSPC component innovates upon traditional layer con-
nectivity paradigms by implementing partial connections between stages, thus curtailing
computational overhead whilst maintaining the flow of essential information. This strate-
gic design choice significantly contributes to the model’s streamlined profile, eschewing
superfluous computations in favor of efficiency and effective learning.
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Figure 1. Architectural overview of YOLOv7-tiny: integrating ELAN and SPPCSPC for enhanced
object detection.

Positioned at the terminus of the YOLOv7-tiny network, the head component employs
detection heads operational at diverse scales (notably, 80 × 80, 40 × 40, and 20 × 20),
exploiting the multi-scale feature maps synthesized by the backbone. This multi-resolution
processing framework enables the adept detection of objects across a spectrum of sizes.
Notably, the 80 × 80 feature maps, with their finer granularity, are indispensable for the
detection of minuscule objects, providing an enhanced pixel density per object for capturing
minute details. Conversely, the 40 × 40 feature maps offer a harmonious equilibrium
between granular detail and broader context, apt for objects of intermediate size. The
20 × 20 feature maps, with their broader receptive fields, are adept at encapsulating the
necessary context for detecting larger objects. This stratified approach to feature map
scaling is indispensable for ensuring robust object detection across varying scales and
aspect ratios, underlining the YOLOv7-tiny model’s versatility and precision in object
detection endeavors.

2.2. Structured Pruning for Eye State Detection

To optimize the YOLOv7-tiny model for the specialized task of detecting eye states, a
method known as structured pruning is employed. This approach elaborately targets and
eliminates less-essential scales of feature maps that do not significantly contribute to the
accuracy of detecting small to medium-sized objects such as eyes, which are critical in the
context of image resolution and camera proximity.

Structured pruning involves the strategic removal of layers or channels associated
with these non-essential scales. For example, coarser 20 × 20 feature maps, which typically
provide less detail required for detecting eye states, can be pruned to reduce redundancy.
This reduction reallocates computational resources to more relevant feature map scales,
thereby enhancing both the detection speed and accuracy.

This study begins with the baseline configuration of the YOLOv7-tiny model. The
primary objective here is to identify fine details such as the open or closed state of eyes,
necessitating higher resolution feature maps like the 80 × 80 scale. These maps are more
capable of capturing the intricate details essential for accurate eye state analysis. Con-
sequently, we introduce the YOLOv7-tiny-First-Prune architecture, which eschews the
model’s original components tied to the 20 × 20 feature map scale, as depicted in Figure 2.
This strategic decision is predicated on the understanding that the task of eye state detection
does not necessitate the discernment of less detailed spatial information, often associated
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with the detection of larger objects. Progressing further, the YOLOv7-tiny-Second-Prune
architecture streamlines the network even more by also excising elements contributing
to the 40 × 40 feature map scale, as illustrated in Figure 3. This refinement suggests that
the network can forgo processing details of larger and medium-sized objects, which are
extraneous for the detection of eye states. The impact of these pruning interventions on the
model’s performance is meticulously evaluated to ascertain that the optimized model main-
tains its efficacy for the intended detection task. This approach underscores a concerted
effort to balance model complexity with performance efficiency, ensuring the YOLOv7-tiny
model remains a viable and effective tool for real-time eye state detection applications.
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2.3. Fine-Tuning Model Architecture

Initially, the depth_multiple parameter is adjusted, which alters the number of con-
volutional layers in the network. This reduction in layers is designed to decrease the
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model’s complexity and enhance inference speed without significantly compromising the
accuracy of eye state detection. Similarly, the width_multiple parameter is refined to control
the number of neurons in each layer, effectively reducing the number of computational
operations required for each forward pass through the network.

These fine-tuning steps are systematically implemented in stages, with depth and width
parameters being scaled down from initial values of 0.5 to more compact configurations
of 0.33, 0.125, and finally, 0.0625. This structured approach not only ensures incremental
optimization of the model’s efficiency, but also maintains a balance between performance
and speed, essential for deployment in systems with limited computational capabilities.

The empirical validation of these fine-tuning endeavors is conducted with utmost
rigor. We subject the modified model architectures to a series of evaluations, utilizing
established metrics such as precision, recall, and mAP. These metrics serve as benchmarks
to assess the model’s efficacy in accurately detecting eye states under varying conditions.
This methodological approach to fine-tuning allows for a granular analysis of the impact
each adjustment has on the model’s overall performance, ensuring that the final architecture
is not only optimized for eye state detection, but is also viable for real-time application
within constrained computational environments.

2.4. Dataset

This study utilizes the Nighttime–Yawning–Microsleep–Eyeblink–Distraction (NI-
TYMED) dataset [26]. This dataset is a valuable resource containing video recordings of
male and female drivers showing signs of drowsiness through eye and mouth movements
during nighttime vehicle operations. The importance of this dataset is heightened by its
focus on nighttime driving scenarios, a time during which the likelihood of drowsiness-
induced vehicle accidents increases significantly. The dataset carefully collects examples
of drivers operating actual vehicles under nighttime conditions, thereby enhancing the
ecological validity of the study.

Drivers represented within the NITYMED dataset comprise 11 Caucasian males and
8 females, carefully chosen to represent a broad spectrum of physical attributes (including
variations in hair color, the presence of facial hair, and the usage of optical aids), thereby
ensuring a diverse sample that could potentially affect the detection of drowsiness-related
symptoms.

For the purpose of this study, video recordings featuring 14 drivers (consisting of
8 males and 6 females) were selected to generate a substantial pool of training and validation
data, amassing a total of 3440 images. This study adopts a binary classification approach,
delineating the data into two distinct categories: “Open Eyes” and “Closed Eyes”. From
the total dataset, 2955 images (constituting 86% of the dataset) were allocated for training
purposes, with the remaining 485 images (representing 14% of the dataset) set aside for
validation. Furthermore, video content featuring an additional 5 drivers was incorporated
as test data to rigorously evaluate the model’s efficacy.

A critical aspect of this research involves the analysis of ocular activities to infer the
driver’s state of alertness. A driver is considered to be in an awake state if the duration of
eye closure ranges between 100 and 300 milliseconds; should this duration extend beyond
300 milliseconds, the driver is deemed to be in a state of drowsiness [27,28]. Given that
the NITYMED dataset operates at a frame rate of 25 frames per second, a detection of the
driver’s eyes remaining closed for more than 8 frames is indicative of drowsiness.

2.5. Evaluation Metrics

To ensure the empirical analysis was both rigorous and objective, we adopted three
principal metrics: precision, recall, and mAP. Precision is meticulously defined as the
proportion of accurately detected eye states relative to the aggregate number of eye states
identified by the model. Conversely, recall is determined by the ratio of detected eye states
to the aggregate actual eye states present. These metrics are mathematically represented in
Equations (1) and (2), where TP (True Positive) symbolizes the accurately identified eye
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states, FP (False Positive) denotes instances erroneously classified as eye states, and FN
(False Negative) signifies eye states that were not correctly detected.

precision =
TP

TP + FP
(1)

recall =
TP

TP + FN
(2)

The formula for calculating mAP is outlined in Equations (3) and (4). The area
under the precision–recall curve (PR curve) is known as AP (average precision), and
mAP represents the mean of AP values across different categories. In this study, with the
detection of drivers’ eyes being open or closed, the N value, indicating the total number of
categories tested, is 2.

AP =
∫ 1

0
P(R)dR (3)

mAP =
∑N

1
∫ 1

0 P(R)dR
N

(4)

Additionally, to provide a comprehensive evaluation of the model’s efficiency and ef-
fectiveness, we included the following metrics: GFLOPS (Billion Floating-Point Operations
Per Second), number of parameters, and FPS.

GFLOPS measures the computational complexity of the model, indicating the number
of billion floating-point operations required to process a single input. It is crucial for under-
standing the model’s demands on computational resources. The number of parameters
quantifies the total number of trainable parameters within the model. A lower number of
parameters typically implies a more lightweight and potentially faster model. FPS assesses
the model’s processing speed, specifically how many frames it can analyze per second.
Higher FPS rates are indicative of better suitability for real-time applications.

3. Experimental Results and Analysis
3.1. Quantitative Analysis of Structured Pruning on YOLOv7-Tiny for Eye State Detection

For the purposes of our research, we have availed ourselves of the computational
resources provided by Google Colab’s Central Processing Unit (CPU) environment. The
specifications of the CPU runtime allocated by Google Colab for our investigative processes
are anchored by an Intel Xeon Processor (Santa Clara, CA, USA). This processor features a
dual-core configuration, each core operating at a clock speed of 2.30 GHz. Complementing
this processing capability is a memory allocation of 13 GB RAM (Random Access Memory),
facilitating the efficient handling of data-intensive tasks inherent to our research activities.
This computational setup has been chosen to strike an optimal balance between processing
power and memory capacity, ensuring that our analytical models and algorithms perform
with the requisite efficiency and reliability.

Our research begins a systematic exploration of structured pruning applied to the
YOLOv7-tiny model, aiming to remove less important features or layers to streamline the
model for specific tasks, in this case, eye state detection. The objective was to reduce the
model’s computational demands while maintaining or improving its detection accuracy.

Table 1 contains a detailed comparison of four models: the original YOLOv7, YOLOv7-
tiny, and two iterations of YOLOv7-tiny after structured pruning (First-Prune and Second-
Prune). The data includes several key metrics for each model: Number of Parameters,
Number of Network Layers, Precision, Recall, mAP@.5 (mean Average Precision at 50%
Intersection over Union), and Storage Size of Weight File. As seen in Table 1, the progres-
sion from the original YOLOv7 model to the YOLOv7-tiny-Second-Prune demonstrates
a significant reduction in both the number of parameters and the network layers, which
directly correlates to a decrease in the model’s storage size and, presumably, its computa-
tional complexity.
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Table 1. Comparative analysis of YOLOv7 iterations: assessing the impact of structured pruning on
model efficiency and eye state detection accuracy.

Model Number of
Parameters

Number of
Network

Layers
Precision Recall mAP@.5

Storage Size of
Weight File

(MB)

Yolov7 36,487,166 314 0.995 0.984 0.996 74.8
Yolov7-tiny 6,010,302 208 0.991 0.992 0.996 12.3

Yolov7-tiny-First-Prune 3,963,128 182 0.999 1 0.996 8.1
Yolov7-tiny-Second-Prune 3,449,878 156 0.999 1 0.996 7.1

Remarkably, despite these reductions, the precision, recall, and mAP@.5 metrics
remain consistently high across all iterations. The maintained or even improved precision
and recall highlight the effectiveness of structured pruning in removing redundant or
less important features without compromising the model’s ability to accurately detect
eye states.

The transition from the original model to its highly pruned version showcases an
impressive reduction in storage size from 74.8 MB to 7.1 MB, which is particularly benefi-
cial for deployment in resource-constrained environments. This size reduction does not
adversely affect the model’s detection capabilities, as evidenced by the consistent mAP@.5
score of 0.996 across all iterations.

This structured pruning process effectively reduced the YOLOv7-tiny model’s com-
plexity and size without compromising detection accuracy. The reduction in parameters
and layers contributes to enhanced computational efficiency, crucial for deployment in
environments with limited hardware resources. The consistency in precision, recall, and
mAP@.5 metrics across iterations demonstrates that the model retains its ability to accu-
rately detect eye states, even with significant reductions in model size and complexity.
This balance between efficiency and performance underscores the potential of structured
pruning for optimizing neural networks for specific tasks, particularly those requiring
real-time processing capabilities.

3.2. Analyzing the Impact of Fine-Tuning the YOLOv7-Tiny-Second-Prune Architecture on Eye
State Detection

Following the second structured pruning of the YOLOv7-tiny model, resulting in the
YOLOv7-tiny-Second-Prune architecture, we embarked on fine-tuning the model architec-
ture to optimize its performance for eye state detection.

Table 2 presents a detailed overview of the YOLOv7-tiny-Second-Prune model’s per-
formance across four different configurations, each with varying width and depth multiples
(0.5, 0.33, 0.125, and 0.0625), respectively named YOLOv7-tiny-OptimaFlex-0.5, YOLOv7-
tiny-OptimaFlex-0.33, YOLOv7-tiny-OptimaFlex-0.125, and YOLOv7-tiny-OptimaFlex-
0.0625. As seen in Table 2, the fine-tuning involved adjusting the width_multiple and
depth_multiple parameters of the YOLOv7-tiny-Second-Prune structure, maintaining
156 layers across all configurations but varying the number of parameters.

Table 2. Evaluating the efficacy of fine-tuning YOLOv7-tiny-Second-Prune architecture across varied
configurations for enhanced eye state detection.

Model Width Multiple/
Depth Multiple

Number of
Parameters

Number of
Layers Precision Recall mAP@.5 Storage Size of

Weight File (MB)

Yolov7-tiny-
Second-
Prune

0.5 864,174 156 0.984 0.992 0.996 1.9
0.33 358,878 156 0.997 1 0.996 0.9

0.125 55,742 156 0.997 1 0.996 0.3
0.0625 20,174 156 0.958 0.982 0.975 0.2
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The results demonstrate a clear trend of improving the model’s efficiency as we
decrease the number of parameters by adjusting the width and depth multiples. Notably,
even with substantial reductions in complexity, the model maintains high performance
levels, as indicated by precision, recall, and mAP@.5 metrics.

The configurations with width/depth multiples of 0.33 and 0.125 offer an exceptional
balance, achieving nearly perfect precision and recall with significantly reduced parameter
counts and storage sizes. This highlights the effectiveness of fine-tuning in optimizing
model performance while reducing computational demands.

The configuration with a width/depth multiple of 0.0625, while demonstrating the
highest efficiency in terms of parameter count and storage size, shows a slight drop in
precision and recall. This suggests there is a limit to how much the model can be simplified
without affecting its ability to accurately detect eye states. The substantial decrease in
storage size, from 1.9 MB in the 0.5 configuration to 0.2 MB in the 0.0625 configuration,
illustrates the benefits of fine-tuning for applications where storage capacity is limited.

The experimental analysis underscores the significance of fine-tuning the YOLOv7-
tiny-Second-Prune model architecture for specific tasks such as eye state detection. By
systematically adjusting the width_multiple and depth_multiple parameters, we can signif-
icantly enhance the model’s efficiency and suitability for real-time applications without
substantially compromising accuracy. The study demonstrates the potential for neural net-
work optimization through structured pruning followed by strategic fine-tuning, offering
insights into developing lightweight yet effective models for deployment in resource-
constrained environments.

3.3. The Impact of Structured Pruning and Architecture Fine-Tuning

The experimental results showcased in Table 3 not only highlight the efficiency and
performance of various configurations of the YOLOv7 model, but also underscore the
critical importance of utilizing structured pruning and fine-tuning of the model architecture
in achieving significant improvements in model efficiency and speed.

Table 3. Efficiency and performance enhancements in YOLOv7 models through structured pruning
and architecture fine-tuning.

Model GFLOPS FPS

YOLOv7 51.584816 1.61
YOLOv7-tiny 6.5150944 7.83

YOLOv7-tiny-First-Prune 5.689472 8.01
YOLOv7-tiny-Second-Prune 4.86528 8.69

YOLOv7-tiny-OptimaFlex-0.5 1.2399104 19.63
YOLOv7-tiny-OptimaFlex-0.33 0.7261696 21.09
YOLOv7-tiny-OptimaFlex-0.125 0.1383936 41.84

YOLOv7-tiny-OptimaFlex-0.0625 0.1109504 51.00

Initially, the YOLOv7 model, serving as the baseline, required a substantial quantity of
computational resources, reflected by its high GFLOPS. However, the structured pruning
process, which began with YOLOv7-tiny and progressed through two pruning stages,
resulted in a significant reduction in GFLOPS, suggesting a decrease in computational
load. Notably, this reduction did not compromise the model’s ability to detect eye states, as
demonstrated by the consistent mAP scores across iterations.

Fine-tuning further enhanced these results. The YOLOv7-tiny-OptimaFlex variants
demonstrate how fine-tuning, combined with structured pruning, can lead to models
that are not only significantly more efficient, but also maintain a high level of accuracy,
as evidenced by their improved FPS rates. The YOLOv7-tiny-OptimaFlex variants, with
their drastically reduced GFLOPS and significantly increased FPS, showcase an exemplary
case of how structured pruning combined with model architecture fine-tuning can lead to
breakthroughs in achieving the dual goals of high efficiency and speed.
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From the experimental results, the importance of structured pruning and fine-tuning in
model optimization is clear. These strategies allow for the creation of highly efficient models
that are well-suited for deployment in environments where computational resources are
limited, such as on edge devices. By meticulously reducing the model’s complexity while
carefully adjusting its parameters to retain accuracy, researchers and practitioners can
develop lightweight models capable of real-time inference, opening up new possibilities
for the application of deep learning models in various real-world scenarios.

A significant limitation of the current study is its reliance on a specific computing
environment provided by the Google Colab CPU, which may not fully replicate the diverse
range of real-world operational conditions in which such a system might be deployed. Ad-
ditionally, while the structured pruning and fine-tuning approaches demonstrate promising
results in controlled settings, the variability in naturalistic driving environments—including
varying lighting conditions, camera angles, and unpredictable driver behaviors—may im-
pact the generalizability of the findings. It is also important to acknowledge that while
the dataset used provides a solid foundation for initial testing, it may not encompass all
possible scenarios of eye states, particularly under different levels of occlusion or fatigue
levels. Thus, further validation with more extensive, varied datasets would be crucial for
confirming the robustness and applicability of the optimized model in real-world condi-
tions. These considerations are essential for guiding future research directions and for
realistic assessments of the system’s operational effectiveness.

4. Conclusions

This research demonstrates the significant benefits of structured pruning and archi-
tectural fine-tuning on the YOLOv7-tiny model for eye state detection, highlighting the
essential balance between model efficiency and detection accuracy crucial for real-time
applications. Through structured pruning, we effectively reduced the model’s complexity,
computational demands, and storage size while maintaining high accuracy, as evidenced
by consistent precision, recall, and mAP@.5 metrics across various model iterations. Fine-
tuning, particularly adjusting width_multiple and depth_multiple parameters, further
optimized the model, enhancing processing speed without compromising performance.
The YOLOv7-tiny-OptimaFlex variants illustrate the potential of these optimization tech-
niques in developing highly efficient and accurate models suitable for deployment in
resource-constrained environments. This study underscores the importance of model opti-
mization for real-time object detection, providing valuable insights for future developments
in neural network efficiency and application.
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