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Abstract: The world’s energy demand is on the rise, leading to an increased focus on renewable
energy options due to global warming and rising emissions from fossil fuels. To effectively monitor
and maintain these renewable energy systems connected to electrical grids, efficient methods are
needed. Early detection of PV faults is vital for enhancing the efficiency, reliability, and safety of
PV systems. Thermal imaging emerges as an efficient and effective technique for inspection. On
the other hand, evidence indicates that monitoring inverters within a solar energy farm reduces
maintenance expenses and boosts production. Optimizing the efficiency of solar energy farms
necessitates comprehensive analytics and data on every inverter, encompassing voltage, current,
temperature, and power. In this study, our objective was to perform two distinct fault analyses
utilizing image processing techniques with thermal images and machine learning techniques using
inverter and other physical data. The results show that hotspot and bypass failures on the panels can
be detected successfully using these methods.

Keywords: PV panels; diagnosis; fault detection; thermal image; machine learning

1. Introduction

The global demand for energy is steadily rising each year, primarily relying on fossil
fuels for the majority of energy consumption. Fossil fuels are both limited and contribute
to greenhouse gas emissions. In 2022, fossil fuels accounted for 82% of the total primary
energy consumption, while hydro and other renewable energy sources made up about 14%
(Figure 1) [1]. The burning of oil, natural gas, and coal releases around 35 billion tons of
carbon dioxide into the atmosphere annually. To address this issue, it is essential to replace
fossil fuels with renewable alternatives [2,3]. In addition, it is stated that the utilization rate
of renewable energy sources in the world for 2022 increased by 13%, and the installed PV
power capacity increased by 22.2% compared to 2021 [1]. It is an acceptable prediction that
this increase will continue in the coming years.

As developing countries continue to industrialize, the need for energy is expected to
rise. Hence, numerous nations have made energy conservation and efficiency enhance-
ments central to their strategies for tackling climate change and ensuring energy security,
as they have initiated and advocated various measures to achieve these goals [4]. This
has led to the installation of more alternative energy units, such as solar fields and wind
turbines, resulting in a growing need for economic and efficient maintenance.

Solar photovoltaic (PV) technology is a widely accepted and cost-effective method for
generating clean energy by converting sunlight into electricity [5]. It is an environmentally
friendly system that operates silently with no moving parts, making it highly reliable and
requiring minimal maintenance [6]. It offers a highly modular technology that can be
manufactured in large plants or deployed in small quantities for various applications.
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planned time [9]. Some panels can also break due to physical damage from extreme 
weather conditions and extreme contrasts in temperature. They can also have manufac-
turing defects, or become damaged beyond repair [10,11]. Additionally, concerns like 
corrosion and short circuits may arise. They experience a decrease in energy yield due to 
various factors over time, including single-cell breakdown and inefficiencies in important 
components like inverters. Furthermore, the potential for a single PV cell to overheat 
emerges in cases of connector damage or reverse bias effects [12]. 

With these facts, as the need for solar PV increases, two basic issues become im-
portant for the continuity and sustainability of the system: monitoring of the arrays and 
methods for fault detection and diagnosis. 

1.1. Monitoring of the PV Arrays 
With the increasing demand for solar energy worldwide, there is an urgent need for 

advanced monitoring methods. Monitoring involves observing and recording parameters 
from solar PV power plants in real time. A reliable monitoring technology enhances 
performance efficiency by providing up-to-date information and implementing preven-
tive measures when flaws are detected. Additionally, this monitoring approach alerts 
users to unexpected events in the solar PV system [13]. 

One approach to real-time monitoring is using Internet of Things (IoT) technology. 
IoT represents a breakthrough in electronics, employing sensor technology connected to 
the internet either through wired or wireless means. This enables users to access data and 
control the system remotely from anywhere at any time via the Internet [14]. The IoT 
technology allows users to monitor the performance of the PV systems in terms of pro-
duced power, evaluating the voltage, current, produced energy, ambient and module 
temperatures, wind velocity, humidity, and irradiance value [15,16]. 

The primary objective of the monitoring system for the PV power plant is to transmit 
data reliably, securely, and efficiently. However, various challenges can significantly im-
pact the performance of monitoring technologies in terms of efficiency, security, range, 
data processing capability, sampling rate, and signal interference. For instance, any dis-
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The most common figure handed out for the lifespan of solar PV panels is
25–30 years [7,8]. That is, they technically do not have an expiration date. But the sit-
uation is slightly different from a usage perspective. Various environmental elements
like wind, salt, snow, and dust can compromise the efficiency of PV modules, leading
to substantial declines in power generation as well as reducing the effective lifespan by
almost half the planned time [9]. Some panels can also break due to physical damage from
extreme weather conditions and extreme contrasts in temperature. They can also have
manufacturing defects, or become damaged beyond repair [10,11]. Additionally, concerns
like corrosion and short circuits may arise. They experience a decrease in energy yield
due to various factors over time, including single-cell breakdown and inefficiencies in
important components like inverters. Furthermore, the potential for a single PV cell to
overheat emerges in cases of connector damage or reverse bias effects [12].

With these facts, as the need for solar PV increases, two basic issues become important
for the continuity and sustainability of the system: monitoring of the arrays and methods
for fault detection and diagnosis.

1.1. Monitoring of the PV Arrays

With the increasing demand for solar energy worldwide, there is an urgent need for
advanced monitoring methods. Monitoring involves observing and recording parameters
from solar PV power plants in real time. A reliable monitoring technology enhances
performance efficiency by providing up-to-date information and implementing preventive
measures when flaws are detected. Additionally, this monitoring approach alerts users to
unexpected events in the solar PV system [13].

One approach to real-time monitoring is using Internet of Things (IoT) technology.
IoT represents a breakthrough in electronics, employing sensor technology connected to
the internet either through wired or wireless means. This enables users to access data
and control the system remotely from anywhere at any time via the Internet [14]. The
IoT technology allows users to monitor the performance of the PV systems in terms of
produced power, evaluating the voltage, current, produced energy, ambient and module
temperatures, wind velocity, humidity, and irradiance value [15,16].

The primary objective of the monitoring system for the PV power plant is to transmit
data reliably, securely, and efficiently. However, various challenges can significantly impact
the performance of monitoring technologies in terms of efficiency, security, range, data
processing capability, sampling rate, and signal interference. For instance, any disruptions
in real-time communication can lead to interruptions in data reception, thereby affecting
performance predictions.

To address the above-mentioned challenges, the use of unmanned aerial vehicles
(UAVs) and thermography is increasing as an alternative monitoring approach. This tool
provides valuable information to maintenance workers, planners, and engineers, enabling
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timely decision-making. Thermal imaging allows for non-intrusive assessment of the tem-
perature distribution across PV panels, aiding in identifying hotspots and inefficient regions
that may impact overall efficiency. Anomalies and defects in PV cells can result in localized
heating. It also helps in identifying these irregularities, enabling timely maintenance and
repair [17,18]. During manufacturing and installation, thermal imaging can ensure uni-
form temperature distribution and detect potential defects, contributing to higher-quality
PV panels. Continuous thermal monitoring provides insights into panel performance,
facilitates predictive maintenance, and reduces downtime.

1.2. Methods for Fault Detection and Classification

Detecting anomalies in PV modules holds paramount importance due to their capacity
to induce significant power losses and performance degradation. Predicting equipment
faults and failures helps reduce maintenance costs, avoid total failures, and prevent un-
wanted repair and replacement expenses. Such predictive analytics also safeguard against
financial losses, indirect impacts on customer confidence, and the deterioration of a com-
pany’s image, ensuring long-term profitability and customer retention.

Broadly, faults within PV systems can be categorized into two primary types: irrepara-
ble faults stemming from mechanical or electrical issues like open circuits, short circuits,
and PV cell deterioration, and momentary power loss faults attributed to factors like shad-
ing, such as cloud-induced shadows [19]. Common permanent defects encountered in PV
systems include mismatches, arising from the integration of cells with dissimilar physical
traits or operating conditions; cracks, prevalent and varying in formations, directions,
and sizes; discolorations caused by internal factors like lower mechanical properties, high
temperatures, and humidity; soiling, which pertains to the accumulation of dirt on the
surface; delamination of bonds over time; and snail tracks or trails—black or brown lines
of discoloration on cell surfaces—emerging after months or years of panel operation [20].
According to the study of Constantin et al., three categories of PV system faults exist:
(i) module-related faults, (ii) string- and system-related faults, and (iii) racking and system
balance issues [21]. In the case of module faults, they encompass concerns such as cell
hotspots, diode malfunctions, fractured or soiled modules, coating, and fogging compli-
cations, as well as junction box overheating. For the string and systems faults, there are
wiring issues (reversed polarity, frayed cables), charge controller issues, and inverter and
fuse failures. On the other hand, Chen et al. [22] stated that typical faults in a PV system
include irradiance change, ground faults, line–line faults, arc faults, and so on.

No matter how the faults are classified by researchers and field experts, the important
thing is the rapid detection using the monitoring systems and diagnosis and solution of
the fault. Among the diverse PV faults, this study focuses on the hotspot phenomenon,
recognized as the principal module defect, and bypass diode failure. Therefore, both have
garnered considerable attention as a prominent research subject within the photovoltaic
systems domain. Hotspots are created mainly because cracked PV cells with broken contacts
conduct electric current only on part of their surface area, hence they can be mentioned
as localized heat sources that can be present in part of the PV module, leading to locally
increased temperature in the solar cells. Dhimish [23,24] highlighted the significance of
hotspotting, where a cell or group of cells heats up significantly compared to adjacent
solar cells, decreasing the optimum power generated. A solitary fault within a cell holds
the potential to propagate neighboring modules, culminating in a complete operational
breakdown [25,26].

On the other hand, the purpose of using diodes in photovoltaic panels is to provide
unidirectional current flow. Diode failures are mostly caused by incorrect connection and
overheating [27]. Xiao et al. [28] emphasized that defective bypass diodes are often the
largest factor leading to power loss in solar modules and reported on failure mechanisms
by investigating shunted bypass diodes from a rooftop installation.

Over the past decade, various methods have been developed for detecting and di-
agnosing the above-mentioned faults in PV systems. Amiri et al. made an introduction
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to different methods including a model-based approach, procedures using current and
voltage indicators, a method by setting a power residual threshold in their article [29].
However, it is important to understand that each approach comes with its own advantages
and drawbacks.

In addition, in recent years, different artificial intelligence techniques have been
accepted as the basic methods for fault detection [30]. Studies in this area mostly include
Neural Networks [31], Convolutional Neural Networks [32], Support Vector Machine [33],
k-Nearest Neighbor, Decision Tree, and Fuzzy Logic. On the other hand, computer vision
applications have an important impact and represent efficient findings for classification
of and localizing faults for PV systems, as in other engineering fields, such as the motor
system. Long et al. proposed a motor fault diagnosis method based on visual knowledge
for improving the feature extraction ability, showing that the limitations of traditional
signal analysis have been overcome [34]. In another study aiming to eliminate the limits in
existing studies, a continual learning framework was developed to diagnose the electric
motor faults. Experimental results showed the effectiveness and superiority of the proposed
approach for class-added fault diagnosis [35].

We organized our paper as follows. Firstly, in Section 2, we provide brief information
about the status of the PV generation in the world and the significance of the maintenance
issue. Also, thermal imaginary is introduced. Section 3 is the main part of the paper
and describes methods for PV placement, thermal imaging, image processing, and fault
detection and classification. In this section, the results of fault detection and classification
using inverter data are also given and discussed. Section 4 constitutes the closing part of
the study, and in this chapter, information about the study is given and the main findings
obtained are stated.

2. Background and Motivation

Solar PV generation increased by a record 270 TWh (up to 26%) in 2022, reaching
almost 1300 TWh. It demonstrated the largest absolute generation growth of all renew-
able technologies in 2022, surpassing wind for the first time in history. This generation
growth rate matches the level envisaged from 2023 to 2030 in the Net Zero Emissions by
2050 Scenario [13].

The worldwide growth of photovoltaics is extremely dynamic and varies strongly by
country. In 2022, the leading country for solar power was China, with about 393 GWp,
accounting for nearly two-fifths of the total global installed solar capacity, as the total global
solar capacity reached 1 TWh. As shown in Figure 2, Türkiye ranks 14th.

In 2022, fossil fuels, notably natural gas, continued to dominate Türkiye’s energy
generation landscape. Additionally, hydroelectric power plants, categorized as renewable
energy sources, significantly contribute to electricity generation. Over the past two decades,
there has been a steady increase in both overall electricity generation and the capacity
for renewable energy generation including solar energy as well. In other words, solar
energy is a very new energy source for our country, and it also leads to the development of
technology and ease of use in this field. One of the most important eases of use in question
is the locally and nationally developed systems for maintenance and repair.

Today, due to the growing capacity of PV systems, there has been an increase in the
power conversion units, monitoring systems, communication equipment, and protection
devices being added to PV installations [37]. As a result, massive PV data, both instan-
taneous and historical, become available. Various PV data are available from PV arrays,
PV inverters, and the utility grid. IoT technology has various benefits for PV monitoring,
predictive maintenance, and real-time data collection. Reliability and maintenance are just
the two downsides that have been stated; there may be other issues as well.

To overcome this and also maintenance challenges, the use of UAVs and thermography
is increasing. Thermal imaging allows for non-intrusive assessment of the temperature dis-
tribution across PV panels, aiding in identifying hotspots and inefficient regions that may
impact overall efficiency. Anomalies and defects in PV cells can result in localized heating.
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Thermal imaging helps in identifying these irregularities, enabling timely maintenance and
repair. During manufacturing and installation, thermal imaging can ensure uniform tem-
perature distribution and detect potential defects, contributing to higher-quality PV panels.
Continuous thermal monitoring provides insights into panel performance, facilitating
predictive maintenance and reducing downtime. Drones equipped with thermal cameras
provide a larger-scale view of PV arrays, enabling efficient inspection and monitoring.
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3. Method and Analysis

In PV systems, hotspot faults and bypass diode failures are just two of the many
possible fault types. These flaws reduce the PV system’s generated output power and
impair system performance. This study will provide a native and national solution for
hotspot and bypass diode problems, starting with panel architecture and ending with
analysis results. Two distinct verifications will be made using both the images obtained
from thermal images with image processing techniques and the numerical data obtained
from the real-time monitoring system.

3.1. Thermal Imaging, Panels Settlement, and Fault Detection

In this study, a DJI Matrice 300 drone equipped with a DJI Zenmuse H20 T camera
developed by FLIR (Wilsonville, OR, USA) was used to capture the thermal images with
640 × 512 pixel resolution, at a relative flight height of 35 to 65 m. In the study, varied
quantities of images were employed for each site, with the quantity of photos differing
based on factors like field size and overlay rates. The drone operated at altitudes of either
35 or 65 m, contingent on the field’s features such as slope. The mapping process was
facilitated by the utilization of the WebODM 1.9.16 software. Image processing was coded
in the Python 3 language using the principal libraries of NumPy, OpenCV, Pillow, and the
Detectron 2 package was used for object detection. To conduct an aerial thermal inspection
for testing our proposed algorithm, and detect potential faults, the data collected from a
total of 10 MWp PV farms in Malatya, Türkiye, will hereinafter be referred to as Site-1.

Panel detection primarily revolves around the task of recognizing rectangular struc-
tures. But as mentioned by Diaz et al. [38], accomplishing this task becomes challenging
when applied to thermal images. This difficulty arises due to the partial visibility of panel
edges, coupled with the interference of irregularities like shadows from weeds, reflections
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caused by sunlight, and thermal hot spots. These diagnostic challenges are compounded
by various other factors, including variations in flight altitudes, shifts in lighting condi-
tions, the presence of structures resembling panels, the existence of energy lines, and the
occurrence of lens distortion in images, as shown in Figure 3. All these factors collectively
contribute to the complexity of the background against which the panel detection must
be performed.
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Panel detection is essential for defining the region of interest required in identifying
and categorizing anomalies. This is because accurate classification relies on the geometric
characteristics within panels or the spaces between them. Rectangular structures are
detected and roughly fixed as panels (Figure 4). Since thermal images are raw, that is, under
real conditions, they are of poor quality, and therefore, some corners and edges are not
fully visible. Therefore, to obtain the exact corner coordinates is needed (Figure 5). In order
to attain an accurate estimation, a geometric model for the PV modules is established. The
segmented contour is then adjusted to conform to this assumed model, as shown in Figure 6.
The resulting rectangular shape possesses distinctive attributes like its longer/shorter edges,
center point, and angle. The angle value holds significant importance in this context. It
is used to properly find coordinates of each panel. In this rectangular structure, a center
point is assigned for each panel with the help of the mask (Figure 7) used from the OpenCV
library as in Figure 8. Nevertheless, it is evident that there exists a discrepancy among
the designated centers for each panel within the panel block. Despite the accurate count
of center points, they fail to accurately represent the actual layout. As can be seen from
Figure 9, panel dimensions need to be harmonized with the image. The panel drawing
is rearranged to reflect the real situation by using the upper left and lower right corner
coordinates of the rectangular structure covering the block and the number of center points
assigned to each panel (Figure 10). Hence, the arrangement of the panels is established
using thermal images acquired through drone assistance.
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After placing the panels on the map, the existing faulty panels are marked. The exami-
nation of hotspot and bypass diode failures relies on color identification with the aid of
OpenCV. Initially, colors are categorized into distinct color groups, and color histograms are
generated for a detailed color analysis. To create this histogram, the images are converted
to HSV (Hue, Saturation, Value) color space. The hue component represents the actual
color information of the image. A process known as filtering is employed to isolate the HSV
format panel images from their consistent background clutter. Through this, a threshold
value is determined by examining the output vector of each filter. By comparing these
threshold values to the characteristics of each panel, we select the higher value, thereby
identifying the defective panels. Furthermore, the coordinate values were calculated to
establish the correspondence between the defective panel and its respective string order.

Detectron2 is a flexible computer vision model package implemented by PyTorch 1.0.0.
In the proposed algorithm, Detectron2 is used with Faster R-CNN Mask for faulty object
detection, and then faults are categorized. Faults that show continuity throughout the
predefined area are considered as bypass diode failure (Figure 11), and point faults that are
seen as regional and scattered in this area are considered as hotspot faults (Figure 12).
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The model proposed in this study was implemented and tested using the images of
Site-1 shown in Figure 13. The general information about the thermal inspection and the
inspection hardware is given in Tables 1 and 2, respectively. There are six different power
plants (TK-1 to TK-6) on this PV farm; five of them consist of 160 strings with 22 panels
each, and the last one consists of 125 strings with 22 panels.
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Table 1. Inspection Overview.

Site Name Site-1 (Malatya, Türkiye)

Inspection Location 38.230585833, 38.049603833
Irradiance >600 W/m2

Wind Speed <5 m/s

Inspection Summary 1 round of visual scanning
1 round of thermal scanning

Table 2. Inspection Hardware.

Description Specification

Drone DJI Matrice 300
Visual Camera DJI Zenmuse H20T
Visual Camera Resolution 4000 × 3000
Thermal Camera DJI Zenmuse H20T
Thermal Camera Resolution 640 × 512
Operating Range (0C) −25 to 153
Sensitivity (NEdT) <50 mK

As reported in [39], accuracy assessment is performed to evaluate the detection results
of the testing dataset from the ML algorithms. Three precision metrics, namely precision,
recall, and F1-score, are defined as Equations (1)–(3):

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 − score =
2 ∗ Precision ∗ Recall

Precision + Recall
(3)

where True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN)
indicate the correctly detected, the incorrectly detected, the correctly rejected, and the
incorrectly rejected objects, respectively.

The area under the receiver operating characteristics (ROC) curve (AUC) value and
the above-mentioned accuracy metrics obtained for PV settlements of Site-1 are as follows:
AUC of 0.911, Precision of 0.849, Recall of 0.848, and F1-score of 0.848. The actual and
predicted results of defects for the Site-1 solar PV plant are given in Table 3.

Table 3. Actual and predicted results of faults of Site-1.

Block
Bypass Diode Failure Hotspot Faults Block Subtotal

Actual Predicted Actual Predicted Actual Predicted

TK-1 43 40 13 14 56 54
TK-2 11 11 2 2 13 13
TK-3 9 10 1 1 10 11
TK-4 45 43 16 18 61 61
TK-5 14 14 6 6 20 20
TK-6 5 4 0 1 5 5

Defect Subtotal 127 122 38 42 165 164

With the thermal images at hand, the identification of defective panels and the charac-
terization of the faults were reiterated employing an application known as Orange data
mining platform. It is an open-source and component-based visual programming software
package for data visualization, machine learning, data mining, and data analysis. From the
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thermal images acquired, panels were chosen, and individual panel images were captured
at a resolution of 24 × 40 pixels and 96 dpi.

In the real situation, 127 bypass diode faults and 38 hotspot faults were detected
throughout Site-1. By making use of these determinations, a sample of the system was
tried to be created and the sample in question includes a total of 415 images, including all
images of defective panels and 250 randomly selected no-fault panel images. Hierarchical
clustering of images was performed on the Orange platform. The image transformation
was made with the help of the image embedding algorithm, then the distance metrics
were applied for calculating the distances. Once the data are passed to the hierarchical
clustering, the widget displays a dendrogram, a tree-like clustering structure. According to
the branches of the dendrogram, the data are divided into several clusters. Table 4 shows
the number of clusters needed to group each state under consideration with different
distance metrics. Comparative representation of the actual and the predicted values is
given in Table 5.

Table 4. Hierarchical cluster numbers under different distance metrics.

Distance Metric
Number of Clusters

Type Description

Cosine Cosine distance 14
Euclidean Square root of summed difference between values 12
Manhattan Sum of difference between values 10

Table 5. Hierarchical clustering results of Site-1 with the different distance metrics.

Distance Metric
Bypass Diode Failure Hotspot Faults No-Fault Panels

Actual Predicted Actual Predicted Actual Predicted

Cosine 127 123 38 38 250 249
Euclidean 127 121 38 38 250 249
Manhattan 127 119 38 38 250 247

Table 5 reveals that the cosine distance metric yields the most successful results. While
all three metrics achieved a 100% success rate in detecting hotspot fault, the algorithm
should exhibit greater sensitivity to differentiate between a defect-free panel and bypass
diode failure. This observation is consistent with the recorded results, which indicate
a correct prediction rate of 96.9% for bypass failure malfunctions and 99.6% for panels
without faults.

3.2. Processing Historical Inverter Data

Within this section, we have undertaken a mathematical examination of both hotspot
faults and bypass diode failures using the current and voltage measurements obtained
from the inverters of Site-1. For this purpose, four different machine learning methods,
namely Neural Network, Random Forest, kNN, and Gradient Boosting, were used.

According to thesis study of Kaloorazi and Yazdi [40], the simulation results show
deviation from measurements of 2% in summer and 25% in winter conditions. The reasons
for the higher inaccuracy in the wintertime are lower production, higher uncertainty in the
albedo values, and more diffuse irradiation. In this study, data from the March–August
period collected for 3 years were used. Thus, the effect of seasonal deviations was minimally
reflected in the dataset. The dataset consists of instantaneous data obtained from Site-1 and
there are also missing data and extraordinary instantaneous data. Therefore, the dataset
was revised, and missing and meaningless data lines were excluded.

As is known, bypass diodes are wired within the PV module and provide an alternate
current when a cell or panel becomes shaded or faulty. They are used to enhance the
output power production during partial shading conditions and to protect partially shaded
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PV cells from fully operating cells in full sun within the same solar panel when used in
high-voltage series arrays.

The three inputs, percentage of voltage drop, percentage of open-circuit voltage,
and percentage of short-circuit current, employed by Dhimish et al. [41] to investigate
bypass diode failure, were also incorporated into this study. On the other hand, hotspot
faults events have a percentage of 50% compared to all fault events in the PV modules,
according to Pramana et al. [42]. Hotspots in solar panels refer to localized areas on the
panel experiencing elevated temperatures compared to the surrounding regions. While
they are frequently encountered, predicting their occurrence poses a considerable challenge.
Cell temperatures within these hotspots can often soar to 150 degrees Celsius, resulting in
permanent and irreversible damage. For this reason, we used the temperature values of the
panels as input parameters in this study.

Current and voltage (I–V) values obtaining from the inverters of Site-1 were utilized
to create training and testing datasets including two fault types (hotspot faults and bypass
diode failures) and a normal operation. The dataset consists of real-time data between
March and August of the last three years, including 2021–2023. The reason for choosing the
data covering the period in question is that Site-1 receives more sunlight in this period of
the year due to its location.

The random sampling method was applied to test the fault detection ability of the
algorithms employed and to measure the unbiased estimate of our proposed models. In
this random sampling method, the dataset was randomly divided into a training set and
a test set (i.e., 75% and 25% of the dataset, respectively). Accordingly, each set contained
approximately the same percentage of samples of each class. The overall performance was
obtained by determining the average for all 10 iterations. Hyperparameters used for the
selected four machine learning algorithms are given in Table 6.

Table 6. Hyperparameters for selected algorithms.

Model Hyper Parameters

Neural Network Neuron in hidden layers = 100, maximum number of iterations = 1000
Random Forest Number of trees = 10, do not split subsets smaller than 5
kNN Number of neighbors = 5
Gradient Boosting Number of trees = 100, learning rate = 0.100

3.3. Results of Processing Historical Inverter Data

The ability of four algorithms to detect faults in PV plants was evaluated, and the
results were achieved, as shown in Table 7.

Precision is defined as the ratio of the TP to all the positives, as stated in Section 3.1.
That would be the measures of defective panels that, out of all the panels with a fault, our
model accurately recognizes as faulting according to our problem statement. For example,
in July 2021, the Neural Network achieved a precision score of 0.944. This means that when
predicting a panel failure, it is accurate approximately 94%. Similarly, the recall rate is
obtained as 0.951. Recall rate also gives a measure of how accurately our model can identify
the relevant data. A faulty panel that is not intervened in is an undesirable situation for
us. Deciding accuracy of the model requires a tradeoff between precision and recall. Both
metrics are important for our classification problem, and the results showed that our model
has balanced precision and recall rates giving a good F1-score.

Similar to the artificial neural network, the F1-score, precision, and recall values for
the other three machine learning models were above 0.93, and there was a slight increase
in these values compared to the artificial neural network. Looking at the averages of the
performance values obtained from the data analyzed for three different years and a total of
18 different months, the highest numerical values were obtained for the kNN model.
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Table 7. Results (F1-score, precision, and recall rates) of the Machine Learning Algorithms.

Time Stamp
(MM/YYYY)

Data Size (Number of
Monthly Records)

Neural Network Random Forest kNN Gradient Boosting

F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec.

03/2021 103,860 0.961 0.968 0.946 0.966 0.968 0.952 0.970 0.969 0.972 0.959 0.958 0.967
04/2021 131,367 0.930 0.928 0.941 0.937 0.936 0.944 0.942 0.940 0.945 0.921 0.936 0.901
05/2021 116,413 0.936 0.933 0.917 0.942 0.940 0.923 0.943 0.941 0.946 0.934 0.931 0.942
06/2021 150,758 0.934 0.931 0.941 0.937 0.936 0.944 0.937 0.934 0.941 0.929 0.927 0.937
07/2021 87,006 0.945 0.944 0.951 0.951 0.952 0.956 0.952 0.951 0.954 0.947 0.954 0.937
08/2021 122,714 0.948 0.947 0.955 0.952 0.951 0.957 0.954 0.953 0.956 0.943 0.942 0.951
03/2022 120,125 0.942 0.941 0.951 0.945 0.946 0.953 0.948 0.946 0.952 0.939 0.938 0.948
04/2022 130,494 0.938 0.936 0.947 0.948 0.949 0.954 0.952 0.951 0.955 0.938 0.936 0.947
05/2022 121,763 0.942 0.942 0.950 0.947 0.946 0.953 0.953 0.949 0.953 0.939 0.939 0.948
06/2022 122,061 0.929 0.928 0.941 0.937 0.936 0.945 0.938 0.936 0.943 0.928 0.928 0.940
07/2022 128,063 0.919 0.917 0.925 0.923 0.922 0.928 0.926 0.925 0.928 0.914 0.911 0.921
08/2022 119,310 0.878 0.879 0.898 0.883 0.881 0.898 0.885 0.881 0.896 0.869 0.868 0.891
03/2023 123,599 0.927 0.925 0.938 0.934 0.943 0.915 0.934 0.932 0.938 0.925 0.926 0.936
04/2023 101,510 0.952 0.951 0.955 0.954 0.953 0.957 0.953 0.952 0.955 0.949 0.948 0.952
05/2023 153,517 0.967 0.967 0.969 0.969 0.970 0.972 0.970 0.972 0.961 0.966 0.965 0.969
06/2023 138,278 0.887 0.888 0.908 0.896 0.895 0.910 0.898 0.895 0.906 0.883 0.885 0.851
07/2023 147,045 0.930 0.930 0.941 0.936 0.935 0.944 0.936 0.934 0.941 0.928 0.928 0.940
08/2023 141,714 0.939 0.938 0.951 0.945 0.945 0.954 0.945 0.942 0.950 0.938 0.937 0.949

Mean 0.933 0.933 0.940 0.939 0.939 0.942 0.941 0.939 0.944 0.930 0.931 0.935

Duranay [43] presented the performance metric results of the classification of PV
faults and compared the results of different studies given in the literature using the same
dataset [43]. The results reported in the study show that the average precision was in the
range of 88.55–98.24%, and average F1-score was in the range of 84.45–97.51%. Based on
the comparison between the results of our study and results published in the literature, our
approach is successful for anomaly detection in PV plants and consistent with the currently
ongoing studies.

4. Conclusions

The study’s objective is to conduct a thorough investigation with a view to fault
detection in solar energy systems. The goal is to identify the defective panel by analyzing
the thermal images in accordance with the malfunction predictions generated after using
machine learning and/or artificial intelligence algorithms to interpret the real-time data
collected from the fields.

Using both image processing and real-time inverter data analysis techniques, PV
panel problems—particularly hotspot faults and bypass diode failures—that are commonly
observed in solar power plants were detected. Drones were used to collect thermal im-
ages, which were then processed using a variety of algorithms to determine the panel
settlement. The field’s rough terrain presented the main obstacle in this situation. In the
beginning, when we were developing our algorithm, we used RGB and thermal images.
However, we found that our application performed better (AUC = 0.911) when it only
used thermal photos. As a result, we updated our software to only use thermal images in
this investigation.

It was intended to process the recorded panel images using the Image Analytics add-in
on the Orange platform, but here, with the increase in the number of images, the response
time of the application increased greatly. For this reason, instead of processing all the
images, all the defective panels and randomly selected non-defective panel images were
used. The results showed that with the selected sample in question, a 100% accuracy rate
for hotspot faults detection was achieved.

In the last part of the study, real-time inverter data were employed for the PV fault
detection. Training and test datasets were constructed using the numerical data gathered
from Site-1 instantaneously. Then the data were tested with four different machine learning
algorithms offered by the Orange platform. Upon reviewing the literature, it becomes
apparent that over the past five years, machine learning techniques have seen extensive
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utilization in research endeavors [44]. Notably, Neural Network algorithms emerge as
prominent contenders within this domain with the percentage of 33.75 [45]. This is followed
by the SVM method with a usage rate of 13.95%. In this study, the accuracy rates of
predictions were recorded by comparing Neural Network, which is a method that has
proven its maturity in the analysis of solar energy data and is accepted in the literature,
with random forest, kNN, and gradient boosting algorithms, which are not frequently used
in this field. The results showed that the mentioned random forest, kNN, and gradient
boosting algorithms had sufficiently successful F1-score, precision, and recall rates in the
field of detection of PV panel malfunctions.
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