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Abstract: In recent years, with advancements in nanotechnology and materials science, new enzyme
immobilization strategies based on nanomaterials have continuously emerged. These strategies
have shown significant effects on enhancing enzyme catalytic performance and stability due to their
high surface area, good chemical stability, and ease of enzyme binding, demonstrating tremendous
potential for industrial applications. Those methods that can rapidly synthesize nanocarriers under
mild conditions allow for the one-step synthesis of nanocarriers and enzyme complexes, thereby
exhibiting advantages such as simplicity of process, minimal enzyme damage, short processing
times, and environmental friendliness. This paper provides an overview of simultaneous enzyme
immobilization strategies accompanied by nanocarrier synthesis, including organic–inorganic hybrid
nano-flowers (HNFs), metal–organic frameworks (MOFs), and conductive polymers (CPs). It covers
their preparation principles, post-immobilization performance, applications, and existing challenges.

Keywords: enzyme; immobilization; nanomaterial; organic–inorganic hybrid nanoflowers (HNFs);
metal–organic frameworks (MOFs); conductive polymers (CPs)

1. Introduction

Enzymes are naturally evolved, biodegradable, and biocompatible, highly efficient
catalysts widely applied in various scientific, technological, and industrial fields due to
their notable catalytic efficiency, substrate specificity, and environmentally friendly nature
under mild reaction conditions [1]. Despite the advantages of enzymes over chemical
catalysts, such as high catalytic efficiency, high substrate specificity, minimal side reactions,
and environmental friendliness, the inherent protein nature of enzymes makes them prone
to structural collapse and loss of activity under extreme environmental conditions [2].
Additionally, enzymes typically exist in a soluble state within the reaction system, making
it challenging to separate and extract the products after the reaction, leading to difficulties
in product isolation and enzyme recovery, consequently increasing production costs. These
issues constrain the industrial application of enzymes [3].

Enzyme immobilization technology refers to the process of fixing enzymes within a
defined spatial range using physical or chemical means to protect them from environmental
factors and enhance their stability [4]. Common enzyme immobilization methods include
adsorption [5–9], encapsulation [10–14], and cross-linking [15–19]. Apart from the impact of
immobilization methods, the choice of immobilization carriers also significantly influences
the catalytic performance of enzymes [20]. Since the first report of enzyme immobiliza-
tion in 1916, many carriers [21], such as chitosan, oxidized graphene, or polyurethane
foam, have been widely used for enzyme immobilization. However, the development of
novel immobilization matrices and techniques continues to attract significant attention,
including polymer matrices, nanomaterials, porous materials, microcapsules, and magnetic
materials [22]. With the vigorous development of nanotechnology, the application of nano-
materials in the field of enzyme immobilization has garnered widespread attention. This is
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due to the unique properties of nanomaterials [23], such as a larger surface area-to-volume
ratio, greater resistance to stress, and lower mass transfer resistance, which help address
the drawbacks of traditional enzyme immobilization methods.

Currently, there are many strategies [24,25] for enzyme immobilization based on
nanomaterials. However, most of these immobilization strategies typically involve the
preparation of carrier materials for enzyme loading, followed by the physical or chemical
binding of the carrier and enzyme. The preparation and separation of carriers involve
multiple steps and cumbersome processes, which are time-consuming [26]. Therefore, there
is a growing research interest in developing strategies that can simultaneously synthesize
carrier materials and immobilize enzymes. These immobilization strategies involving
nanocarriers can be rapidly synthesized through simple physical or chemical reactions,
with characteristics such as easy preparation steps, mild conditions, short processing times,
and minimal enzyme damage often achieving better results. In this review, we have
selected three immobilization strategies that align with these characteristics, including
organic–inorganic nano-flowers, metal–organic frameworks, and conductive polymers as
nanocarriers for enzyme immobilization (Figure 1). We have outlined their mechanisms
of action, general operational processes, key influencing factors, and post-immobilization
effects. Additionally, we have briefly discussed the existing limitations and improvement
directions for these three strategies. This paper aims to provide more theoretical references
for the research and development of strategies that simultaneously synthesize carrier mate-
rials and immobilize enzymes during the carrier synthesis process. Due to the abundance
of acronyms in this review, we have created an acronym table for better understanding
(Abbreviations).
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enzyme immobilization.

2. Organic–Inorganic Hybrid Nanoflowers

Nanoflowers refer to nanostructures characterized by a distinctive flower-like mor-
phology at the nanometer scale. These structures have undergone extensive research owing
to their promising applications in diverse fields, including catalysis, energy storage and
conversion, sensors, and biomedical imaging. The notable characteristics of nanoflowers,
such as their high surface area and unique morphology, contribute to enhanced catalytic
activity, superior optical properties, and increased sensitivity. Moreover, the flower-like
structure offers a larger contact area for biomolecules to bind, making nanoflowers par-
ticularly suitable for applications in biosensors and bioimaging. Based on differences
in composition, nanoflowers can be classified into several types, including inorganic
nanoflowers [27–30], organic nanoflowers [31–33], and hybrid nanoflowers (consisting
of both organic and inorganic components) [28]. In 2012, Ge et al. [34] first discovered the
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formation of organic–inorganic hybrid nanoflowers by co-incubating proteins, copper ions,
and phosphates. During the synthesis process, inorganic components precipitate, grow,
and aggregate around the enzyme, eventually forming flower-shaped particles with a size
of approximately 100–500 nm. This novel nanomaterial is referred to as organic–inorganic
hybrid nanoflowers (HNFs) [35].

Subsequent research has revealed that HNFs constitute a versatile strategy for the
immobilization of large biomolecules. Antibodies [36–40], proteins [41], DNA [42–46],
amino acids, and other biomolecules can serve as organic components of HNFs. In principle,
any biomolecule with metal-binding sites can form complexes with metal ions through
coordination [47]. HNFs integrate the advantages of both organic and inorganic materials,
making them an ideal carrier for enzyme immobilization. The formation of HNFs with
enzymes as organic components generally involves three steps: coordination, precipitation,
and self-assembly [2,35,48]. In the initial stage, metal ions react with phosphate ions
to form primary crystals of metal phosphates. Functional groups on proteins (amide,
carboxyl, or hydroxyl groups) coordinate with metal ions, providing a site for the nucleation
of proteins and primary crystals. In the second stage, metal phosphate crystals begin
to grow at the metal ion-binding sites and continue to grow through the continuous
binding of protein nanoflower petals and primary crystals. In the final stage, the formation
of nanoflowers is completed through anisotropic growth. In recent years, HNFs have
garnered widespread attention due to their comprehensive functionality, combining organic
and inorganic materials, as well as their environmentally friendly and straightforward
preparation steps.

2.1. Conventional HNFs Immobilized Enzymes

HNFs can be obtained by mixing metal ions, phosphate, and enzyme solutions and
allowing them to co-incubate. Among the various enzyme nanoflowers studied, there
has been a significant focus on single-enzyme HNFs, with enzymes such as laccase [49],
lipase [50], horseradish peroxidase (HRP) [51], glucose oxidase (GOx) [52], α-amylase [53],
urease (Ur) [54], and papain [55] being successfully prepared in the form of single-enzyme
HNFs [3] (see Table 1).

Table 1. Summary of HNF applications and enhanced performance.

Enzyme Metal Ions Applications Improved Performance Ref.

ω-Transaminase Co2+ Production of chiral amines Enhanced reusability [56]

lipase Zn2+ Regioselective acylation of
arbutin Enhanced reusability [57]

L-arabinose isomerase Mn2+ Synthesis of D-tagatose Enhanced reusability and
storage stability [58]

Lactoperoxidase Cu2+ Detection of dopamine and
epinephrine

Enhanced activity, pH
stability, and reusability [59]

Lipase from thermomyces
lanuginosus Ca2+ Proof of concept

21.7 times more catalytic
activity and

thermal stability than a free
enzyme

[60]

Phosphotriesterase Co2+ & Mn2+ Use in nerve agent (GD and
VX) degradation

Enhanced stability and
reusability [61]

Burkholderia cepacia Ag+/Fe2+/Cu2+/Au3+ Proof of concept Enhanced stability [62]

Aldehyde/ketone reductase
and alcoholdehydrogenase Ca2+

Synthesis of (S)-1-(2,6-
dichloro-3-fluorophenyl)

ethyl alcohol
Enhanced thermal stability [63]
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Table 1. Cont.

Enzyme Metal Ions Applications Improved Performance Ref.

Polyketone reductase and
glucose dehydrogenase Ca2+ Synthesize

(R)-(-)-pantolactone
Enhanced stability and

reusability [64]

Galactose oxidase and
horseradish peroxidase Mn2+ Detection of glutamic acid Enhanced reusability [65]

Horseradish peroxidase and
glucose oxidase Cu2+ Degradation of acridine and

wastewater treatment Enhanced pH stability [66]

Nucleoside kinase and
polyphosphate kinase Cu2+ Generation of nucleotides Enhanced reusability [67]

Glucose oxidase and lipase Cu2+ Epoxidation of alkenes Enhanced reusability [68]

Streptavidin and
horseradish peroxidase Cu2+

Colorimetric sensor for
alpha-fetoprotein (AFP)

detection
Enhanced storage stability [69]

Glucose oxidase and
horseradish peroxidase Cu2+ Counting the number of

living bacteria in urine Enhanced thermostability [70]

In the majority of reported cases, hybrid nanoflowers (HNFs) exhibit higher catalytic
activity compared to the corresponding free enzymes. This phenomenon can be attributed
to the following reasons [2,15,50]: (1) Increased surface area: The larger surface area of
nanoflowers facilitates the enrichment of substrates around the enzyme, thereby enhancing
the catalytic efficiency. (2) Metal Activation: Certain metal enzymes can be activated
by the metal ions present in the nanoflowers. (3) Conformational favorability: Enzymes
immobilized through coordination bonds in nanoflowers can maintain a conformation
favorable for catalysis. The enhanced stability observed in HNFs is attributed to the
interaction between the rigid inorganic precipitate and the flexible enzyme. This interaction
provides a rigid framework for the enzyme, reducing the degree of conformational change.
As a result, it prevents enzyme denaturation under extreme conditions, improving the
stability of the enzyme in complex environments and under various conditions [60,71].

In practical production processes, single-enzyme HNFs may not be suitable when
multiple enzymes are involved in a reaction. Single-enzyme HNFs struggle to rapidly
remove unstable intermediates, hindering the progress of the reaction. In contrast, multi-
enzyme HNFs, based on the simultaneous immobilization of multiple enzymes, prove
more effective. The co-immobilization of enzymes not only reduces the cost of repetitive
operations but also brings enzymes closer together. This proximity facilitates the transfer
of intermediates between different enzymes in cascade reaction systems [72,73]. Han et al.
reported the co-immobilization of cellulase, endoglucanase, and β-glucosidase to prepare
multi-enzyme HNFs (ECG-NFs) for the one-pot conversion of cellulose to glucose. ECG-
NFs, compared to free multi-enzyme systems, exhibited excellent performance in terms of
pH stability, thermal stability, storage stability, and catalytic efficiency [73]. Aydemir et al.
synthesized TrpE@ihNFs using α-amylase, lipase, protease, and Cu2+ ions as raw materials.
TrpE@ihNFs demonstrated significantly higher enzyme activity and stability than other
free enzymes, protecting the enzymes from the impact of extreme temperature and pH
fluctuations. These multi-enzyme HNFs show promise in applications such as wastewater
treatment, biosensors, biocatalysts, and future bio-related devices [74].

2.2. Factors Affecting the Formation of HNFs

HNFs’ morphology and performance are influenced by factors such as temperature,
pH, time, metal ions, and enzyme concentration during the preparation process. Therefore,
when using this method to immobilize enzymes, it is generally necessary to systematically
optimize these conditions to achieve the best results. However, there are relatively few
reports on strategies for the controlled synthesis of HNFs. Wang and colleagues reported
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the preparation of a series of HNFs [chloroperoxidase (CPO)-(Cu/Co/Cd))3(PO4)2] and
their application in crystal violet decolorization (Figure 2). They introduced an excess of
chloride ions during the preparation of HNFs to form [MCl4]2− complexes, which slowed
down the precipitation of phosphates and simultaneously promoted the coordination
of M2+ with amide groups. This affected the growth process and morphology of the
nanoflower [75].
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Hua and colleagues reported a method for preparing size-controlled laccase-copper
phosphate composite material (Lac@Cu3(PO4)2) (Figure 3). using ethylenediaminete-
traacetic acid (EDTA) as a chelating compound. Lac@Cu3(PO4)2 was employed for the
rapid and sensitive detection of phenol in water, exhibiting excellent catalytic activity and
reusability. In terms of activity, Lac@Cu3(PO4)2 was 7–11 times higher than free laccase [76].
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The reusability of HNFs has been shown to be improved by changing the type of metal
ions. Patel and colleagues immobilized laccase using copper (Cu) and zinc (Zn) ions in a
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phosphate buffer solution. The hybrid Cu/Zn ion HNFs formed a novel multi-metal HNF
system, Cu/Zn Lac, showing higher catalytic activity and reusability. The kcat/Km was
enhanced 3.2-fold through the multimetal hybrid Cu/Zn-Lac compared with values of 2.1-
and 2.4-fold with Cu-Lac and Zn-Lac over the free enzyme (71.0 s−1 µM−1). The results
indicate that multi-metal HNFs are more beneficial than single-metal HNFs and can be
used to immobilize various enzymes for sustainable applications [77].

While the activity and stability of HNFs have significantly improved, their synthe-
sis speed is generally slow, often requiring incubation at room temperature for up to
1–3 days [78]. This severely limits their practical applications. To address this issue, Batule
and colleagues developed an ultrasonic-assisted method for synthesizing flower-shaped
HNFs. This method is simple and efficient, enabling the synthesis of HNFs using laccase as
a model protein and Cu3(PO4)2 within 5 min at room temperature. The resulting laccase
nanoflowers exhibited remarkable enhancements in activity, stability, and reusability [79].

2.3. Combination of Hybridized HNFs with Other Immobilization Methods

Despite the many advantages of HNFs, their structure, characterized by numerous
fragile petal-like structures, is prone to breakage during processes such as stirring or
centrifugation, leading to structural fragility [80]. This mechanical instability limits their
reusability and application in the field of biocatalysis [81]. Scientists have addressed this is-
sue by enhancing the mechanical strength of HNFs through the introduction of connections
between petals, resulting in the synthesis of efficient, durable, and recyclable HNFs.

Natural biopolymers such as gelatin (Ge) and chitosan (CS) possess an ample number
of amino and hydroxyl groups, serving as nucleation points for crystal formation. They re-
duce the nucleation barrier of crystal formation and promote the heterogeneous nucleation
process of inorganic minerals [82], achieving controlled mineralization. The regulation of
biomineralization by natural biopolymers represents a promising immobilization method
characterized by excellent stability and recyclability. Xu et al. utilized the natural biopoly-
mer CS to regulate the biomimetic mineralization of calcium phosphate (CaP). Through
self-assembly, they immobilized sucrose phosphorylase (SPase), creating a novel type of
HNF with excellent stability and catalytic activity: CS-CaP@SPase (Figure 4). Even after
10 cycles, the relative activity of CS-CaP@SPase remained around 80%, and after 15 days, it
maintained a relative activity of approximately 75% [82].
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The incorporation of carbon nanotubes (CNTs) into HNFs can enhance the mechanical
strength of the nanoflowers and provide additional accessible adsorption binding sites,
effectively improving enzyme activity. Dadi et al. synthesized HRP-NF@CNTs composed
of horseradish peroxidase (HRP), Cu2+, and CNTs using an in situ method. Due to the
synergistic integration of CNTs and Cu3(PO4)2 crystals, HRP-NF@CNTs exhibited out-
standing peroxidase-like activity and stability. Compared to HRP-NF, HRP-NF@CNTs also
demonstrated excellent stability after 10 cycles. Furthermore, compared to free HRP, the
kinetic parameters of HRP-NF@CNTs were improved, with a reduction in the Km value by
18.05 times [83].

Cheno et al. coupled amine-functionalized Fe3O4 magnetic nanoparticles (MNPs)
with glucose oxidase (GOx) molecules, followed by the addition of Cu3(PO4)2 to prepare
embedded MNPs-GOx NFs. MNPs-GOx NFs exhibited excellent peroxidase-like activity
and demonstrated more sensitive glucose detection activity compared to MNPs mixed
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with free GOx. The close proximity between MNPs and Cu3(PO4)2 crystals facilitated the
accumulation of H2O2 molecules produced during the catalysis of glucose oxidation by
GOx, creating a substrate channel environment that enhanced catalytic activity. MNPs-
GOx NFs prepared through this strategy demonstrated excellent selectivity, stability, and
magnetic reusability [84].

For cofactor-dependent reactions, the recycling of expensive cofactors is crucial for
implementing enzyme catalysis at an industrial scale. The immobilization of cofactors
is considered an effective strategy to address these challenges. Cao and colleagues pio-
neered the co-immobilization of omega-transaminase (ω-ta) and 5′-pyridoxal phosphate
(PLP) within Co3(PO4)2 nanoflowers, creating a novel self-sufficient biocatalyst, ω-TA-
PLP@Co3(PO4)2. In comparison to free ω-ta, ω-TA-PLP@Co3(PO4)2 demonstrated higher
catalytic efficiency, stability, storage stability, and repeatability [56].

In recent years, due to their larger surface area, greater stress resistance, and reduced
mass transfer resistance, HNFs have exhibited higher activity, stability, and reusability
compared to free enzymes. Their applications in sensor devices [85], biocatalysis [47,86],
biomedical [87], and other fields have become attractive research areas. However, there
are still some issues with this technology that require further investigation. On one hand,
not all metal ions have a promoting effect on enzymes during the immobilization process,
indicating the need for detailed studies on the enzyme’s properties and metal ions before
adopting this technology for immobilization. On the other hand, in the study of the simul-
taneous immobilization of multiple enzymes, the order and ratio of immobilizing different
enzymes can have varied effects on the overall catalytic performance and properties of
the enzymes. This necessitates comprehensive exploration and rational design in the pro-
cess of preparing HNFs. In conclusion, future efforts should focus on developing more
efficient HNFs, which will have a profound impact on areas such as sensors, biomedicine,
and detection.

3. Metal–Organic Frameworks

Metal–organic frameworks (MOFs), also known as porous coordination polymers [88],
are multi-dimensional lattices [89] self-assembled from metal ions serving as central ions,
inorganic metal ions, or metal ion clusters, and organic ligands connected through coordi-
nation bonds [90]. The principle of MOF precipitation primarily involves the formation
of coordination compounds between metal ions and organic ligands through coordina-
tion bonds. These coordination compounds begin to aggregate when they reach a certain
concentration, forming small aggregates known as nuclei. After the formation of MOF
nuclei, monomers of MOF in the surrounding solution diffuse to the nuclei and undergo
coordination reactions, causing the nuclei to gradually grow and ultimately form granular
solid-phase products. The metal ions or clusters [91–94] within MOFs are predominantly
derived from transition elements or lanthanides found in the periodic table [22]. The
organic ligands in MOFs mainly consist of polyacidic ligands, poly-pyridine-type ligands,
and functional group hybrid ligands. Owing to the multifunctionality of metal nodes and
ligands, along with their rich geometric shapes and diverse connectivity, MOFs possess
structural flexibility, tunable nanospace, and controllable synthesis advantages.

In recent years, MOFs as enzyme immobilization carriers have been widely investi-
gated. Currently, methods for in situ enzyme immobilization using MOFs mainly include
the bottom-up synthesis approach [95,96]. This method primarily involves using enzyme
molecules as cores to induce the formation of the MOF framework, allowing the in situ
growth of MOF crystals around them, ultimately forming a highly ordered and stable MOF
shell layer around the enzyme molecules [97]. This achieves the in situ immobilization
of enzyme molecules within the MOF crystals [22]. In this method, the required struc-
tural properties of MOFs, such as surface area, pore size, shape, and pore volume, can
be easily controlled [98], and the presence of the MOF shell shields the enzyme from the
impact of extreme environments, improving the enzyme’s storage stability and tolerance
to temperature, pH, and organic solvents [99–101] (refer to Table 2). The immobilization
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of enzymes with MOFs enhances stability, possibly for the following reasons [102]: (1) en-
zymes are fixed in the pores through various interactions, tending to maintain their active
conformation, aiding in increased stability and reduced enzyme leakage during repeated
use; (2) the appropriate pore structure in MOFs can provide size selectivity for specific
substrates, offering an additional protective layer for the enzyme, and substrates must
diffuse through the pore channels to approach the enzyme, positively affecting the catalytic
process; (3) MOFs prevent enzyme aggregation through physical isolation. The bottom-up
synthesis approach, also known as in situ encapsulation, can be further categorized into
co-precipitation and biomimetic mineralization methods based on whether additional
co-precipitants are needed to form immobilized enzymes [100].

Table 2. Summary of the enzyme–MOF composite’s one-step synthesis.

MOF Metal Ions Enzyme Applications Improved Performance Ref.

ZIF-8 Zn2+ Cytochrome C Oxidation of Amplex red Enhanced activity [103]

ZIF-8 Zn2+ Horseradish Peroxidase and
Glucose Oxidase Selective glucose detection Enhanced activity and

selectivity [104]

ZIF-8 Zn2+ Carbonic Anhydrase CO2/N2 selectivity
composite membranes Enhanced stability [105]

ZIF-8 Zn2+ Horseradish Peroxidase Proof of concept Enhanced thermal
stability [106]

ZIF-8 Zn2+ Lipase QLM Kinetic resolution of (R,
S)-2-octanol

Enhanced activity and
reusability [107]

ZIF-90 Zn2+ Catalase Biocatalysis Enhanced activity [108]

MIL-53/
NH2-MIL-53 Al3+ β-glucosidase/

Laccase Proof of concept Enhanced organic solvent
stability [109]

MIL-88A Fe3+
Glucose Dehydrogenase/
Horseradish Peroxidase
/Acetylcholinesterase

Proof of concept Enhanced reusability [110]

MIL-100 Fe3+ Lipase PPL Synthesis of benzyl
cinnamate

Enhanced thermal, pH,
and stability [111]

Fe-MOF Fe3+ Alcoholdehydrogenase/
Lipase/Glucose Oxidase Biocatalysis Enhanced reusability [112]

3.1. MOFs by the Co-Precipitation Method

The co-precipitation method accomplishes the synthesis of MOFs and the encapsu-
lation of enzymes in a single step, making MOFs with smaller pore sizes than enzymes
suitable as encapsulation carriers. It is noteworthy that the crystals formed by the co-
precipitation method (120 nm) have smaller sizes compared to the biomimetic mineral-
ization method (500 nm) [96]. This results in a more uniform distribution of enzymes
inside the MOFs, facilitating contact with reactants and consequently enhancing the rate
of enzyme-catalyzed reactions. Co-precipitants are typically substances that increase the
concentration of metal cations near the enzyme surface or organic ligands, promoting MOF
nucleation. In the in situ enzyme immobilization strategy, commonly used co-precipitants
to promote MOF formation include polyvinylpyrrolidone (PVP) and alkalis (such as NaOH,
NH4OH, etc.).

3.1.1. PVP Co-Precipitating Agent

In the process of encapsulating enzymes into MOFs, PVP is commonly used as a
co-precipitant to facilitate the formation of complexes. PVP aids in maintaining the dis-
persion of enzymes during immobilization and stabilizes enzymes in the solution through
electrostatic/hydrogen bonding interactions [22,108]. Simultaneously, PVP promotes MOF
nucleation through its weak coordination affinity for metal cations via the pyrrolidone
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groups. Lyu and colleagues reported a straightforward method for the direct synthesis
of biologically active protein-encapsulated MOFs (Figure 5). They achieved the direct
embedding of cytochrome c (Cyt c) into zeolitic imidazolate framework-8 (ZIF-8) by adding
a solution containing Cyt c and PVP to a methanol solution of zinc nitrate hexahydrate
and 2-methylimidazole (mIM). They find that the embedded Cyt c shows a significantly
decreased Km of H2O2, which suggests the possibility that the immobilized Cyt c has a
higher substrate affinity toward H2O2 molecules. The Cyt c embedded in ZIF-8 displayed
a tenfold increase in peroxidase activity compared to free Cyt c in solution [103].
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Nadar and colleagues introduced zinc acetate solution into a water solution containing
a mixture of α-amylase, glucoamylase, PVP K-30, and mIM, preparing a dual-enzyme
combination MOF. Its stability increased threefold, and after five consecutive reuse cycles,
it retained as much as 52% of its residual activity [113]. In recent years, there has been
increasing interest in synthesizing novel hybrid MOFs for enzyme immobilization by
employing competitive ligands (amino acids, short peptide molecules, etc.) [114] along
with traditional ligands. Competitive ligands inherently contain multiple coordination sites
and various functional groups suitable for binding metal ions, enhancing the concentration
of metal cations around enzymes to promote MOF nucleation. The addition of these
competitive ligands can improve the interaction between enzymes and hybrid MOFs
and the microenvironment in which they are located [115]. Chen et al. reported a novel
strategy, amino acid-enhanced one-pot encapsulation, for the one-step preparation of
enzyme–MOF composite materials. The key principle of this preparation method relies
on the accelerated formation of a pre-nucleus cluster around proteins by the self-assembly
of protein/PVP/cysteine (Cys). The coordination interaction between Cys and metal
cations can accumulate metal cations, and Cys modification may expedite the formation of
ligands and metal ion pre-nucleus clusters around the target protein, triggering MOFs to
encapsulate these proteins [115].

3.1.2. Alkali Co-Precipitating Agents

Alkaline solutions also function as a type of co-precipitation agent. In the case of MOFs
based on carboxylate salts, the organic ligand in an acidic state can be deprotonated by a
base [116], facilitating the dissolution of the organic ligand and a direct reaction with metal
and carboxylate salt groups. Alkaline solutions enhance the crystallization dynamics [117]
by deprotonating the organic ligand. Gascón and colleagues added aluminum nitrate
solution dropwise to a mixture containing β-glucosidase, 2-aminoterephthalic acid (NH2-
H2BDC), and one of the three deprotonating agents (triethylamine (TEA), NH4OH, or
NaOH). This process resulted in the preparation of β-Glu@MIL-53-NH2(Al), enhancing
the enzyme loading in the MOFs. In the absence of deprotonating agents, the organic
ligand cannot dissolve. The three deprotonating agents have varying abilities to dissolve
the organic ligand, ranging from minutes to hours [109].

In the study by Liang et al., FCAT@MAF-7 was prepared by mixing zinc nitrate,
3-methyl-1,2,4-triazole (Hmtz), NH4OH, and fluorescently labeled catalase (FCAT). Ammo-
nia was necessary to deprotonate the Hmtz ligand. FCAT@MAF-7 exhibited continuous
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enzymatic activity over 10 consecutive reactions, with no significant decrease in enzyme
activity [118].

3.2. MOFs by Bionic Mineralization

Unlike the method involving the addition of co-precipitation agents, the biomimetic
mineralization method involves the direct mixing of biomacromolecules with the organic
ligands of MOFs. In this process, biomacromolecules act as the basic building blocks of
MOFs, aiding in the nucleation of porous crystals and resulting in rapid crystallization
around enzyme molecules. Hydrogen bonding and hydrophobic interactions between the
organic ligands and enzyme molecules contribute to retaining the enzyme molecules within
the MOF. The biomimetic mineralization method makes it possible for biomacromolecules
to be fixed in situ during the synthesis process. This method does not require the addition
of co-precipitation agents [108,119], and its preparation conditions are mild, making the pro-
cess economically efficient. Enzymes are uniformly distributed throughout the entire MOF
crystal [120]. As it avoids the use of co-precipitation agents, the biomimetic mineralization
method for preparing enzyme–MOF biohybrids eliminates the risk of co-precipitation
agents damaging enzymes at high temperatures. Therefore, materials prepared through
biomineralization exhibit enhanced stability over a broader temperature range [107,121].
Liang et al. reported the first example of biomimetic mineralization of MOFs by mixing a
zinc acetate solution with a solution containing mIM and enzymes at room temperature,
resulting in a ZIF-8-based biohybrid material. This method demonstrated that PVP and
alcohol were not necessary. Similar to co-precipitation, this process encapsulates the target
biomolecules and preserves their biological activity by imparting high biotic, thermal,
and chemical stability. Moreover, this method can be applied to other MOFs (HKUST-1,
Eu/Tb-BDC, and MIL-88A), highlighting the versatility of this biomimetic mineralization
approach [106]. Li et al. prepared Lipase@Bio-MOF by mixing zinc acetate, adenine (an
organic ligand), and enzymes in an aqueous solution [122]. Lipase@Bio-MOF exhibited
good catalytic activity and stability under high temperatures, alkaline conditions, and
in the presence of metal ions. Additionally, it demonstrated excellent recyclability in the
biodiesel production process, with no changes in morphology or crystal structure after
three cycles. Furthermore, Zhang et al. utilized the biomimetic mineralization method to
prepare Laccase@HKUST-1 biohybrids [123]. In terms of the catalytic efficiency, Kcat/Km
for laccase@HKUST-1 improved by nearly four times that for the laccase. Research by
Maddigan et al. indicated that the surface charge and chemical properties of proteins
determine their ability to grow MOFs. Converting the basic residues on the protein surface
into acidic or non-ionizable parts under standard conditions is a convenient strategy for
promoting protein biomimetic mineralization [119].

The biomimetic mineralization process for preparing MOFs typically involves directly
adding enzyme solutions to the encapsulation system. During this process, enzymes are
usually stored in a solution containing various small molecules (such as NaCl, Tris, etc.),
and these small molecules may impact the rate and morphology of MOF formation [124].
Pu and his team reported a method to prepare (R)-PEDH@ZIF-8 by mixing ultrasoni-
cally activated (R)-1-phenylethanol dehydrogenase ((R)-PEDH), zinc nitrate, mIM, and
NaCl. They investigated the influence of NaCl on the preparation of enzyme–MOF and its
catalytic performance. The kcat/Km of the (R)-PEDH@ZIF-8 to (R)-1-phenylethanol was
1935 mM·s−1, while the kcat/Km of the free (R)-PEDH was 158 mM·s−1, indicating that
the (R)-PEDH@ZIF-8 (prepared with 0.1 M NaCl) has better substrate affinity than the free
(R)-PEDH [125].

Mechanochemical processes, proven to be environmentally friendly alternatives to
traditional solution-based processes, have been employed in the preparation of various
MOFs [126]. The preparation of mechanochemical MOFs avoids the extensive use of
organic solvents [127], and enzymes are more stable in powder form. He and colleagues
successfully encapsulated thermophilic lipase (QLM) spontaneously in ZIF-8 through
grinding, obtaining Lipase@ZIF-8. This composite was effectively applied to the kinetic



Appl. Sci. 2024, 14, 3702 11 of 22

resolution of (R,S)-2-octanol, displaying good catalytic activity and enantioselectivity over
10 cycles of reactions [107].

In recent years, various enzymes have been individually encapsulated in MOFs, and
the influence of MOF matrices on enzyme activity and stability has been studied. It is
noteworthy that, so far, studies comparing the stability and activity of enzymes in MOFs
with free enzymes in homogeneous media have mainly focused on individual enzymes
rather than encapsulating multiple enzymes together [128]. Wu et al. reported a one-step,
convenient synthesis of MOF nanocrystals containing multiple enzymes (Gox and HRP) in
aqueous solution. The rigid structure and confinement of the MOF framework significantly
enhanced the thermal stability of the encapsulated enzymes. Furthermore, it protected the
encapsulated enzymes from protein hydrolysis and chelation effects [104].

MOFs have emerged as a rapid and effective method for enzyme immobilization,
improving the catalytic stability and recyclability of enzymes. Despite the many advantages
of MOFs in enzyme immobilization, several challenges remain. Some of these challenges
include the following: (1) Regulate the composition of composite metals in MOFs to alter
morphological structures, microscopic structures, catalytic activities, etc. (2) Improvements
are needed in Achieve more uniform particle sizes and enhance the catalytic efficiency
of MOFs. (3) Some MOFs tend to degrade under acidic conditions, thereby losing their
protective effect on enzymes. Enhancing the “acid resistance” of materials is another issue
that needs to be addressed. Addressing these challenges will contribute to the further
development and optimization of MOF-based enzyme immobilization strategies.

4. Conductive Polymers

Conductive polymers (CPs) refer to polymers with a conjugated π-bonded long-chain
structure. The polymer main chain is composed of alternating single and double bonds.
CPs exhibit excellent conductivity, redox activity, environmental stability, and biocompati-
bility due to their conjugated structure. They are easily synthesized and can be used for
enzyme immobilization [129]. Commonly used CPs include polypyrrole (PPy), poly(3,4-
ethylene-dioxythiophene) (PEDOT), polyaniline (PANI), polythiophene (PTH), etc. [130].
A summary of one-step in situ enzyme immobilization in conductive polymer electropoly-
merization is presented in Table 3. The term “one-step in situ enzyme immobilization in
conductive polymer electropolymerization” typically refers to the simultaneous presence of
CP monomers and enzymes during the in situ polymerization process to form immobilized
enzymes. In this process, the formation of CPs is usually achieved through electrochemical
polymerization [131] or enzyme-catalyzed polymerization.

Table 3. One-step biosensors based on enzymes trapped inside a polymer.

Polymer Enzyme Applications Improved Performance Ref.

PTh/Ppy/PANI GOx Glucose detection biosensor Enhanced stability [132]

NMPY ChOx Cholesterol biosensor Enhanced charge transfer [133]

PANI PyOx Glucose detection biosensor Enhanced activity and stability [134]

PANI GOx/Ur Glucose and urea enzymatic
biosensors Enhanced stability and reusability [135]

Nafion®117 FDH Formaldehyde detection
biosensor Enhanced stability and reusability [136]

Chitosan derivatives
(CS-Fc) GOD Glucose detection biosensor

Enhanced electronic conductivity,
electroactive surface

area and electrochemical stability
[137]
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4.1. Immobilization by Electrochemical Polymerization of CP Monomers

Electrochemical polymerization is a method in which CP monomers and enzyme
molecules are present in an electrolyte solution. By applying a voltage, CP monomers
undergo oxidation to generate oligomers or polymers, which then co-deposit with en-
zyme molecules onto the electrode surface, achieving the immobilization of enzyme
molecules [138,139]. The oxidation potential of polymers is always lower than that of
monomers. Therefore, during the electrochemical polymerization process, monomers
form radical cations on the electrode surface under the applied potential. These radical
cations undergo dimerization through deprotonation, forming dimers that are subsequently
oxidized again to form cations. Coupling reactions then occur between the cations and
monomer radical cations, leading to chain propagation [140,141]. As a result, the main
chain of the polymer carries a positive charge [142], which is neutralized by introducing
anions from the electrolyte. Enzymes located near the electrode surface can be physically
embedded into the polymer [141]. This has proven to be an effective way to capture en-
zymes in situ within organic polymers, providing a new means for the preparation of a
variety of novel composite materials.

This method is the most direct approach for enzyme immobilization, offering the
following distinct advantages [129,142]: (1) Preservation of enzyme activity and stability:
immersing enzymes in conductive polymers helps maintain good enzyme activity and
higher stability. (2) One-step process with fast immobilization: the entire process is com-
pleted in a single step, resulting in a fast immobilization rate. (3) Uniform distribution of
immobilized enzymes: the immobilized enzymes are evenly distributed, independent of
the geometric shape and size of the electrode. (4) Precise control of membrane thickness:
the membrane thickness can be accurately controlled by regulating the amount of charge
involved in the deposition steps. Deposition can be achieved using either constant potential
or constant current methods [143].

Mello and colleagues employed an in situ electrochemical immobilization process by
mixing a solution containing aniline monomers and enzymes (GOx or Ur) to prepare a poly-
merized aniline film embedded with enzymes. This resulted in glucose and urea biosensors
incorporating immobilized GOx and Ur [135]. Additionally, Pramanik and colleagues de-
veloped a novel biosensing electrode by simultaneously electro-polymerizing pyrrole and
co-depositing graphene oxide (gRGO) and cholesterol oxidase (ChOx). Compared to other
reported cholesterol biosensors, this one-step-manufactured biosensor exhibited superior
sensitivity, a broader linear response, and a lower detection limit. The excellent porosity
of this composite material improved the efficiency of cholesterol diffusion, facilitating
enzyme-catalyzed reactions [144,145].

PPy itself has a relatively low affinity for enzymes, leading to lower efficiency when
using PPy as a CP monomer for enzyme immobilization. Enzymes are prone to release
from the PPy matrix [146]. To address these issues, in recent years, various nanomaterials
and other substances have been used in the enzyme immobilization process to enhance
the efficiency, stability, and sensitivity of biosensors [147]. Lee and colleagues reported a
one-step electrochemical method to prepare an electrode composed of PPy, polydopamine
(PDA), and enzymes (such as glucose oxidase (GOx) or lactate oxidase (LOx)) (Figure 6).
The addition of a small amount of PDA helped improve the efficiency of enzyme immo-
bilization during the PPy polymerization process [138]. Rahim and collaborators used a
one-step electro-polymerization approach to prepare a cholesterol nanobiosensor based
on a Pt electrode, incorporating gold nanoparticles (AuNPs), cholesterol oxidase (COx),
cholesterol esterase (CE), PPy, and K4Fe(CN)6. The addition of Fe(CN)6

4− and AuNPs
enhanced the sensitivity of the cholesterol biosensor. The addition of Fe(CN)6

4− serves as a
reducing electron mediator, which enhances the amperometric response of cholesterol by
improving electron transfer between the enzyme and the electrode. The presence of AuNPs
nanoparticles increases the surface area of the electrode, thereby reducing the impact of
enzyme addition on the conductivity of PPy films. The synergistic effect of Fe(CN)6

4− and
AuNPs significantly enhances the cholesterol reaction [148].
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4.2. Immobilization by Enzymatic Polymerization of CP Monomers

Another method to encapsulate enzymes within CPs is through enzyme-catalyzed
polymerization. Enzymatic polymerization of CP monomers typically involves using a
redox enzyme to catalyze the generation of a redox substance (such as H2O2), triggering a
polymerization reaction [144]. This results in the formation of CPs, with the redox enzyme
simultaneously being immobilized within the CPs.

Huang and colleagues utilized H2O2 oxidation to initiate the one-step oxidative
polymerization of pyrrole-modified glucose oxidase (GOx), pyrrole-containing monomers
(Py and 1-amino pyrrole (Py-NH2)), and a cross-linker (Py-Py). This process led to the
formation of a self-encapsulated nanoenzyme (n(GOx-PPy)). Compared to free GOx,
n(GOx-PPy) exhibited excellent temperature stability and pH stability [149].

German and colleagues achieved the one-step polymerization of corresponding
monomers (aniline, pyrrole, and thiophene) through enzyme-catalyzed polymerization,
forming nanoparticles PANI/GOx, PPy/GOx, and PTh/GOx [150] (Figure 7). Additionally,
Ramanavicius and collaborators immobilized GOx within PPy, enhancing the stability of
GOx [132].

Hybrid materials containing inorganic nanoparticles (such as gold or silver nanopar-
ticles) and CPs exhibit unique properties. The presence of oxygen or nitrogen elements
in the polymer enhances its adsorption capability for inorganic nanoparticles, allowing
the inorganic nanoparticles to form bonds with the conjugated diene segments of the
CPs chains. German and colleagues reported the synthesis of PANI/AuNPs&GOx and
Ppy/AuNPs&GOx nanocomposites through the introduction of AuNPs or chloroauric acid
(HAuCl4) to assist in the enzymatic catalysis of monomers aniline and pyrrole [151].
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4.3. Other Strategies for Enzyme Immobilization by Electrochemistry

Non-conductive polymers are an emerging matrix for immobilizing biomolecules [152].
Studies have indicated that non-conductive polymers can also be prepared for enzyme
immobilization through a one-step electrodeposition strategy. Films formed by non-
conductive polymers are typically thinner than CP layers, resulting in faster substrate
and product diffusion rates. Additionally, non-conductive polymers can prevent interfer-
ence from electroactive substances in samples, offering advantages such as high sensitivity,
rapid response time, and good reproducibility [153].

The biopolymer composite material composed of enzymes, Nafion, and CPs exhibits
excellent stability. Nafion, acting as a binder, ensures that enzymes adsorb extensively
in a manner conducive to bioelectrocatalysis and prevents enzymes from detaching from
the electrode surface. Semenova and her colleagues have reported a novel one-step syn-
thesis method that relies on the co-deposition of oxidases (such as glucose oxidase or
alcohol oxidase), Nafion®117, and palladium nanoparticles (Pd-NPs) through the electro-
chemical deposition of a phosphate multi-electrolyte. Biosensors prepared through this
method exhibit significantly enhanced mechanical stability with virtually no loss of enzyme
activity [154].

Silicon dioxide (SiO2) films have attracted widespread interest as a material for en-
zyme immobilization due to their optical transparency and ease of preparation. Jia et al.
introduced a one-step electrochemical method on a platinum electrode to fabricate a glucose
oxidase (GOD) biomaterial encapsulated within a porous sol-gel silicon dioxide matrix. The
GOD encapsulated by this method exhibited superior bioactivity and stability compared
to electrodes produced through the physical adsorption of GOD. The enzyme activity
remained virtually unchanged after storage for 20 h and retained 60% activity after 120 h of
storage [155].
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Ruthenium-modified complexes can also serve as matrices for immobilized enzymes.
Otero and colleagues employed an electrochemical method to one-step immobilize di-
aphorase and ruthenium-based polymers on a nanoporous gold electrode (NPG), creating
an electrochemical sensor for NADH. Even after storage at 4 ◦C for 24 h, the catalytic
reaction rate remained at 63% [156].

One-step in situ enzyme immobilization in polymer electropolymerization strategies
has found wide application in the fabrication of biosensors for detecting glucose, ethanol,
cholesterol, and xanthine. Due to its simple and rapidly controllable preparation steps,
as well as the uniform distribution of enzymes, this strategy exhibits unique advantages
in the field of biosensors. However, challenges such as the limited variety of CPs and
the high cost of non-conductive polymers still constrain the application of one-step in
situ enzyme immobilization in polymer electropolymerization. Future research directions
should focus on expanding the types of CPs or incorporating other nanomaterials to address
these limitations.

5. Summary and Outlook

We have reviewed and discussed three strategies for enzyme immobilization that are
achieved simultaneously during the synthesis of nanocarriers. These strategies include
organic–inorganic hybrid nano-flowers (HNFs), metal–organic frameworks (MOFs), and
conductive polymers (CPs) as nanocarriers for enzyme immobilization. These three strate-
gies avoid cumbersome preparation methods, maintain mild preparation conditions, and
simplify the preparation process and workflow for enzyme immobilization. However, these
three enzyme immobilization methods still have certain issues. For instance, HNFs exhibit
poor stability. Although some studies have combined them with other immobilization
methods or incorporated additional substances during the preparation process to regulate
biomimetic mineralization, not all enzymes are suitable for this approach, limiting its appli-
cability. Future efforts should focus on enzyme modification or changing the anions used
in HNF preparation to expand the range of enzymes suitable for HNF preparation. MOFs,
based on coordination bonding for precipitation, suffer from inadequate stability due to
their single coordination bond. Moreover, the precipitation of MOFs not only requires
consideration of enzyme electronegativity but also the strength of coordination interactions
between central metal ions and organic ligands, which can affect MOFs’ stability. Future
directions should involve finding new co-precipitants to increase coordination interactions
and promote MOF nucleation, thereby enhancing their stability. One-step in situ enzyme
immobilization in a conductive polymer electropolymerization strategy based on physical
embedding within polymers may significantly impact enzyme activity. Future research
should focus on expanding the types of conductive polymers to improve enzyme stabil-
ity. Currently, there are only these three strategies mentioned in this paper for achieving
enzyme immobilization at the nanoscale during carrier synthesis, but they have shown
significant potential. Future efforts should aim to improve the technical aspects of these
strategies while also exploring and developing new immobilization strategies. This ap-
proach has the potential to leverage the advantages of simplicity, mild conditions, and other
benefits, ultimately achieving the goal of green, clean, and rapid enzyme immobilization.
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Abbreviations

Abbreviations Full Name Abbreviations Full Name
HNFs Organic–inorganic hybrid nanoflowers HRP Horseradish peroxidase
MOFs Metal–organic frameworks GOx Glucose oxidase
ZIF-8 Zeolitic imidazolate framework-8 Ur Urease
ZIF-90 Zeolitic imidazolate framework-90 Cyt c Cytochrome c
MIL-53 Materials of Institut Lavoisier-53 Cys Cysteine
MIL-88 Materials of Institut Lavoisier-88 β-Glu β-glucosidase
MIL-100 Materials of Institut Lavoisier-100 PyOx Pyranose oxidase
NH2-H2BDC 2-Aminoterephthalic acid FDH Formate dehydrogenase
Eu/Tb-BDC Eu2(1,4-BDC)3(H2O)4/Tb2(1,4-BDC)3(H2O)4 CPO Chloroperoxidase
MIL-88A Materials of Institut Lavoisier-88A QLM Thermophilic lipase
MAF-7 Metal azolate framework-7 gRGO Graphene oxide
HKUST-1 Hong Kong University of Science and Technology-1 ChOx Cholesterol oxidase
PDA Polydopamine LOx Lactate oxidase
EDTA Ethylenediaminetetraacetic acid COx Cholesterol oxidase
ABTS 2, 2’-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) FCAT Fluorescently labeled catalase
HAuCl4 Chloroauric acid GOD Glucose oxidase
PVP Polyvinylpyrrolidone CE Cholesterol esterase
PVP K-30 Polyvinylpyrrolidone K-30 Ge Gelatin
CNTs Carbon nanotubes CS Chitosan
MNPs Magnetic nanoparticles CS-Fc Chitosan derivatives
AuNPs Gold nanoparticles CaP Calcium phosphate
Pd-NPs Palladium nanoparticles SPase Sucrose phosphorylase
(R)-PEDH (R)-1-phenylethanol dehydrogenase ω-ta Omega-transaminase
K4Fe(CN)6 Potassium ferrocyanide PLP 5’-Pyridoxal phosphate
NADH Nicotinamide adenine dinucleotide SiO2 Silicon dioxide
CPs Conductive polymers mIM 2-Methylimidazole
PPy Conductive polymers Hmtz 3-Methyl-1,2,4-triazole
PEDOT Poly(3,4-ethylene-dioxythiophene) TEA Triethylamine
PANI Polyaniline NPG Nanoporous gold electrode
PTH Polythiophene Py-NH2 Amino pyrrole
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