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Abstract: In this study, we introduced the chaos game optimization-artificial neural network (CGO-
ANN) model as a novel approach for predicting peak particle velocity (PPV) induced by mine blasting.
The CGO-ANN model is compared with other established methods, including the particle swarm
optimization-artificial neural network (PSO-ANN), the genetic algorithm-artificial neural network
(GA-ANN), single ANN, and the USBM empirical model. The aim is to demonstrate the superiority
of the CGO-ANN model for PPV prediction. Utilizing a dataset comprising 180 blasting events from
the Tonglushan Copper Mine in China, we investigated the performance of each model. The results
showed that the CGO-ANN model outperforms other models in terms of prediction accuracy and
robustness. This study highlights the effectiveness of the CGO-ANN model as a promising tool for
PPV prediction in mining operations, contributing to safer and more efficient blasting practices.

Keywords: peak particle velocity (PPV); chaos game optimization (CGO); artificial neural network
(ANN); mine blasting; prediction model; Tonglushan Copper Mine

1. Introduction

Blasting serves as a fundamental technique for rock breakage in both mining and civil
engineering ventures worldwide, owing to its efficiency and cost-effectiveness compared
to alternative methods. It enables the successful completion of various large-scale projects,
rendering them technically and economically feasible [1]. Despite its effectiveness, blasting
operations release only a fraction of the explosive energy towards actual rock breakage
and displacement, with the remaining energy contributing to undesirable environmental
effects such as ground vibration, noise, fly rock, and noxious gases [2,3]. These reper-
cussions can extend to reserved slopes and structures, potentially compromising their
structural integrity.

Among the detrimental effects of blasting, ground vibration stands out as a major
concern for mine planners, designers, and environmentalists [3,4]. Ground vibration
manifests as a wave motion, propagating outward from the blasting source akin to ripples
spreading across a water surface after an object impact. Peak particle velocity (PPV) serves
as the primary parameter for evaluating blast-induced ground vibration, according to
regulations governing blasting practices and research on blast-induced ground vibration [5].
The archived surveys and obtained results demonstrated that PPV can cause structural
damage to buildings, bridges, and other infrastructure in the vicinity; disturb sensitive
ecosystems, such as nearby wildlife habitats or aquatic environments; cause settlement or
subsidence of the ground, particularly in areas with loose or uncompacted soil; disturb
underground aquifers or disrupt nearby water bodies, leading to contamination from
pollutants or sedimentation; and promote rockburst in deep openings [6–11].

Efforts to quantify blast-induced ground vibration based on PPV have resulted in
three main categories: field measurement, empirical equations, and computational methods
(including finite element and artificial intelligence techniques). While field measurements
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offer accuracy, they are costly, time-consuming, and site-specific, leading engineers to rely
predominantly on traditional empirical models.

Several researchers have proposed variants of traditional empirical models, such as
those by Thoenen et al. [12], Langefors and Kihlström [13], Ambraseys and Hendron [14],
and others [15,16]. Traditional empirical models have paved the way for intelligent algo-
rithmic predictions, with recent studies showcasing the efficacy of techniques like modified
Kuz–Ram models and comparisons between empirical formulations and intelligent al-
gorithms [17]. However, these equations, while simple to implement, are known to be
inaccurate and site-specific, rendering them unusable for rocks with similar characteristics
to those used in developing the equations.

Over the years, researchers have sought to overcome the limitations of conventional
empirical equations by employing advanced soft computing analytics to describe complex
real-world phenomena. Techniques such as artificial neural networks (ANNs), fuzzy
models, linear regression, decision trees, random forests, and deep learning have been
utilized to predict and estimate blast-induced vibrations [18–25]. Notable studies by
Refs. [23–25] have focused on predicting ground vibration induced by blasting using ANN
methodologies, categorizing their models based on the parameters employed. Additionally,
research has explored various machine learning (ML) approaches, with ANNs, support
vector machines (SVMs), and adaptive neuro-fuzzy inference systems (ANFIS) emerging
as prominent algorithms [18]. Hybrid models combining multiple ML algorithms have
shown promise in enhancing prediction accuracy, although they often present complex
mathematical formulations [18,26].

In open-pit mining, there is an increasing trend towards using intelligent algorithms
for predictive and optimization techniques to address blast-induced ground vibration.
As a result, researchers have suggested integrating intelligent algorithms and additional
influencing factors into prediction models to improve accuracy [27–29]. Recent endeavors
have concentrated on enhancing prediction models through hybrid approaches like cuckoo
optimization and particle swarm algorithms, resulting in better PPV predictions [30–32].
Moreover, preprocessing input data using methods such as clustering and feature selection
has demonstrated potential in boosting model performance [33–35].

Metaheuristic algorithms play a vital role in optimizing hybrid models for blast
vibration prediction and mine-blasting optimization [30–32,36–38]. For instance, the grey
wolf optimization (GWO), hunger games search (HGS), manta ray foraging optimization
(MRFO), aquila optimization (AO), the bat-inspired algorithm (BA), and the naked mole-rat
algorithm (NMRA) have been utilized to predict blast-induced ground vibration [36,39]
under the integration of ANN models, while the whale optimization algorithm (WOA),
grey wolf optimization (GWO), and Bayesian optimization algorithm (BO) have been
applied to effectively optimize the hyper-parameters of the XGBoost model for predicting
blast-induced ground vibration [40]. Chen et al. [41] also utilized various metaheuristic
algorithms to optimize another machine learning model (i.e., SVR), such as the firefly
algorithm (FA), the genetic algorithm (GA), and particle swarm optimization (PSO).

Existing methodologies, such as empirical equations and traditional prediction models,
often lack the accuracy and flexibility required to effectively capture the complex dynamics
of blast-induced ground vibrations. While some studies have attempted to address this by
employing advanced soft computing techniques like artificial neural networks (ANNs) and
machine learning algorithms, many still fall short in achieving optimal prediction accuracy.
Additionally, some models may provide impractical mathematical formulations or require
significant manual tuning, making them less suitable for real-world applications.

In light of these limitations, there is a pressing demand for a novel and robust predic-
tive model capable of accurately forecasting PPV while circumventing the constraints of
current methodologies. Thus, this study introduces a pioneering chaos game optimization
(CGO)-ANN model, which integrates CGO, a metaheuristic optimization technique, with
the ANN model. This hybrid approach capitalizes on the advantages of both methodologies,
employing CGO to optimize the parameters of the ANN model and enhance its predictive
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efficacy. Furthermore, the PSO and GA algorithms were employed to optimize the ANN
model, and a comparison was made between the CGO-ANN model, a single ANN, and
USBM empirical models in PPV prediction. By introducing the CGO-ANN model, this
study seeks to rectify the limitations of prior approaches and offer a more precise and
dependable tool for PPV prediction in mine blasting scenarios. Through rigorous testing
and validation, the proposed CGO-ANN model endeavors to demonstrate its superiority
over existing methodologies, providing enhanced predictive accuracy and practical utility
in real-world mining contexts.

2. Methodology
2.1. Artificial Neural Network

The principle of ANNs is grounded in simulating the structure and functions of the
human brain to process information. ANNs belong to the domain of artificial intelligence,
alongside other methods such as case-based reasoning, expert systems, and genetic algo-
rithms. While classical statistics, fuzzy logic, and chaos theory comprise related fields,
ANNs stand out for their ability to perform massively parallel computation for data pro-
cessing and knowledge representation.

At its core, an ANN comprises interconnected processing elements known as neurons,
organized into distinct layers within the network structure. The most effective type of ANN,
the multi-layer perceptron (MLP), typically consists of three layers: an input layer, an output
layer, and one or more hidden layers. Neurons within each layer are interconnected but not
within the same layer. Information processing occurs as signals are transmitted between
neurons through connection links, each with an associated weight that modulates the signal.
The sum of weighted input signals to each neuron is transformed by an activation function,
typically nonlinear in nature.

The performance of an ANN is influenced by the network architecture, the activation
function, and the learning algorithm. For network architecture, this involves the arrange-
ment of neurons and layers within the network. The number of hidden layers and neurons
is determined by the complexity of the problem being addressed. In addition, the activation
function determines how the weighted sum of inputs is transformed into an output signal.
It introduces nonlinearity into the network, allowing it to model complex relationships
between inputs and outputs. The learning algorithm governs how the network adjusts its
connection weights during training to minimize prediction errors. One commonly used
algorithm is the feedforward backpropagation algorithm, which updates weights based on
the difference between the predicted and actual outputs.

During training, the network is exposed to a sufficient number of input-output pat-
terns, known as training pairs, to learn the underlying relationships between inputs and
outputs. The training process involves iteratively adjusting the connection weights until a
specified error goal, such as root mean square error (RMSE), is reached. Once trained, the
network can be used to predict outputs (e.g., blast-induced ground vibration) for new input
data. Figure 1 illustrates an ANN model for predicting blast-induced ground vibration.

2.2. Chaos Game Optimization

The chaos game optimization (CGO) algorithm, introduced by Talatahari and Az-
izi [42], is an innovative metaheuristic optimization technique rooted in chaos theory and
fractals. Chaos theory, a branch of mathematics, explores the behavior of dynamic systems
highly sensitive to initial conditions, revealing hidden patterns and definite rules amidst ap-
parent randomness [43–45]. It emphasizes interconnections, feedback loops, self-similarity,
and self-organization in complex systems, epitomized by the butterfly effect, where small
changes can lead to significant outcomes elsewhere.

Fractals, geometric structures with self-similarity at various scales, play a central role
in chaos theory. The Sierpiński fractal, an equilateral triangle recursively subdivided into
smaller triangles, exemplifies self-similarity. CGO leverages chaos theory and fractals to
optimize solutions.
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In the chaos game methodology, initially, three vertices are chosen to form a triangle,
each marked with a different color. A random initial point, or seed, is selected within the
triangle. Rolling a die with colored faces determines the movement of the seed towards
the corresponding vertex, halving the distance. This process iterates, with the new seed
position becoming the starting point for subsequent iterations. Through repeated die rolls,
the seed converges towards creating the Sierpiński triangle fractal.

The CGO algorithm inherits chaos theory’s emphasis on sensitivity to initial conditions,
utilizing fractal generation principles to iteratively optimize solutions. By integrating chaos
game theory into optimization, CGO offers a parameter-free approach, distinguishing it
from conventional optimization methods. This unique blend of chaos theory, fractals, and
optimization makes CGO a promising tool for tackling complex optimization problems.

The mathematical formulation of CGO draws upon the self-similarity principles
inherent in chaos theory and the fundamental techniques for generating the Sierpiński
triangle, and it is described as follows:

Initially, an initialization procedure is established by defining the initial positions
(Xi) of solution candidates within the predetermined search space, which is modeled as a
Sierpiński triangle:
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where the problem dimension and the total number of initialized candidates within the
Sierpiński triangle search space are denoted by d and n, respectively. xj

i(0) represents the

initial value of the jth design variable for the ith point in the search space, with xj
i,min and

xj
i,max indicating the lower and upper bounds of the decision variables. The variable Rand

denotes a randomly generated number within the range [0, 1].
The primary search loop of the CGO algorithm involves adjusting the initially created

points to achieve the complete shape of a Sierpiński triangle. Each point within the
triangle is connected to two other points to form a temporary triangle: the Global Best GB
vector, representing the best solution found so far, and the Mean Group MGi, obtained by
averaging a set of points randomly selected around the candidate solution (ith point).

To update the position of each temporary triangle, three individual seeds are placed
at the triangle’s three points. For the seed located at the ith candidate point Xi, a die with
three red and three green faces is used. If the green face appears upon rolling the die, the
seed moves towards the global best solution GB; if the red face appears, it moves towards
the ith mean group MGi. This process is mathematically represented by generating two
random integers between 0 and 1, with the possibility of generating two equal integers taken
into account, allowing the seed to move along the line connecting GB and MGi. This aspect is
illustrated in Figure 2a, with its mathematical representation provided in Equation (3).

Seed1
i = Xi + αi × (βi × GB − γi × MGi), i = 1, 2, . . . , n (3)

where Seed1
i represents the seed positioned at the ith solution candidate point; αi denotes

the movement limitation factor; βi and γi are vectors containing randomly generated
numbers within the range [0, 1].

For the seed positioned at the global best solution point GB, a die with three red
and three blue faces is used. Upon rolling the die, if a blue face appears, the seed moves
towards the ith candidate Xi; if a red face appears, it moves towards the ith mean group
MGi. Considering the possibility of generating two equal integers, the seed can also move
along the line connecting Xi and MGi. This concept is illustrated in Figure 2b, while the
mathematical representation is shown in Equation (4).

Seed2
i = GB + αi × (βi × Xi − γi × MGi), i = 1, 2, . . . , n (4)

where Seed2
i represents the seed positioned at the global best point GB.

To adjust the seed located at the mean group point MGi, a die with three blue and
three green faces is employed. Upon rolling the die, if the blue face appears, the seed
moves towards the ith candidate Xi; if the green face appears, it moves towards the global
best GB. Accounting for the potential occurrence of two equal integers, the seed may also
traverse the line connecting Xi and GB. This concept is illustrated in Figure 2c, with its
mathematical representation provided in Equation (5).

Seed3
i = MGi + αi × (βi × Xi − γi × GB), i = 1, 2, . . . , n (5)

To improve the mutation phase of the CGO, a fourth seed positioned at the ith can-
didate point Xi is introduced for position updating. This seed is allowed to move freely
and randomly within the search space. This concept is illustrated in Figure 2d, with the
mathematical representation shown in Equation (6).

Seed4
i = Xi

(
xk

i = xk
i + δ

)
, k = 1, 2, . . . , d (6)

where δ is a vector with random number in the range of 0 and 1.
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The movement limitation factor αi is intricately integrated into the position updat-
ing process to regulate the exploration and exploitation rates of the CGO. This factor is
randomly determined by selecting one of the following scenarios:

αi =


Rand
2 × Rand
(ρ × Rand) + 1
(ε × Rand) + ε

(7)

where ρ and ε are two random integers in the range of [0, 1].
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2.3. Optimization of ANN by Chaos Game Optimization

The optimization of ANNs using CGO for predicting blast-induced ground vibration
involves fine-tuning the parameters and structure of the neural network to enhance its
performance in predicting blast-induced ground vibration. The optimization process is
implemented as follows:
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- Step 1. Initialization: The optimization process begins by initializing the weights
and biases of the ANN model. This involves setting up the initial positions Xi of the
solution candidates within the predefined search space, which is often represented as
a Sierpiński triangle.

- Step 2. Search loop: The main search loop of the CGO algorithm is executed to
adjust the positions of the solution candidates iteratively. Each candidate solution
corresponds to a specific set of weights and biases of the ANN model.

- Step 3. Objective function: The performance of each candidate solution (weights and
biases) is evaluated using an objective function, which measures how well the ANN
model performs in regards to the given task or problem. In this study, RMSE was used
as the objective function for the optimization process.

- Step 4. Position updating: During each iteration of the search loop, the positions of the
weights and biases are updated based on the CGO algorithm. This involves moving
the candidates towards better regions of the search space to improve the performance
of the ANN model.

- Step 5. Exploration and exploitation: The movement limitation factor, αi, is used
to balance between exploration (searching for new regions of the search space) and
exploitation (exploiting known promising regions). This factor helps control the
exploration–exploitation trade-off during the optimization process.

- Step 6. Convergence: The optimization process continues until a stopping criterion
is met, such as a maximum number of iterations or achieving a satisfactory level of
performance. At this point, the best weights and biases found during the optimization
process are selected as the final solution.

- Step 7. Performance evaluation: Finally, the performance of the optimized ANN is
evaluated on a separate validation dataset to ensure that it generalizes well to unseen
data and performs effectively in real-world scenarios.

The framework of the CGO-ANN model for predicting blast-induced ground vibration
is introduced in Figure 3.
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3. Application and Experiment Test
3.1. Dataset

To evaluate the efficacy of the proposed CGO-ANN model in predicting PPV induced
by mine blasting, we conducted a case study at the Tonglushan Copper Mine in China,
as depicted in Figure 4. The geological structure of the area is primarily characterized
by the skarn deposit, comprising copper–iron ore, skarn, granodiorite, marble, and other
constituents [46,47]. Given the robustness of the rock mass, blasting has been adopted as
the principal and efficient method for rock and ore fragmentation in this mine. However, as
highlighted in the introduction, its associated adverse effects, particularly ground vibration,
are well recognized.
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For the development of PPV predictive models, we gathered and updated data from
180 blasting events conducted at the Tonglushan Copper Mine. Our study considered
blasting parameters and rock properties as influential factors affecting PPV, consistent with
recommendations from previous researchers [38,47–57]. We collected 11 input variables for
PPV prediction, including maximum explosive charged per delay (Qmax), total explosive
charged per blast (Qtotal), monitoring horizontal distance (D), vertical distance (VD), burden
(B), pre-crack penetration rate (PPR), delay time (DT), rock mass integrity coefficient
(RMI), Protodiakonov’s hardness (f), angle between the least resistance line direction
and monitoring points (α), and velocity of detonation (VoD). PPVs were recorded by
seismographs within a range of 0.101 cm/s to 8.15 cm/s. GPS devices were utilized to
ascertain the positions of seismographs and blast sites. Subsequently, horizontal and
vertical distances, along with α, were computed based on the GPS results. Rock properties
such as PPR, RMI, and f were determined in the laboratory, while the remaining parameters
were extracted from the blast patterns. Table 1 provides a summary of some statistical
criteria of the dataset, and Figure 5 illustrates visualizations of the dataset.
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Table 1. Summary of the blast-induced ground vibration dataset at the Tonglushan Copper Mine.

Qmax Qtotal D VD B PPR

Min.: 160 Min.: 936 Min.: 28.40 Min.: 1.1 Min.: 4.000 Min.: 25.0
1st Qu.: 494 1st Qu.: 2552 1st Qu.: 96.03 1st Qu.: 32.1 1st Qu.: 5.000 1st Qu.: 41.0
Median: 1076 Median: 3952 Median: 141.40 Median: 53.0 Median: 5.000 Median: 50.0
Mean: 1268 Mean: 4195 Mean: 174.18 Mean: 54.8 Mean: 5.389 Mean: 58.2
3rd Qu.: 1636 3rd Qu.: 5600 3rd Qu.: 234.38 3rd Qu.: 73.0 3rd Qu.: 6.000 3rd Qu.: 75.0
Max.: 5590 Max.: 9000 Max.: 444.30 Max.: 109.3 Max.: 7.000 Max.: 100.0

DT RMI f α VoD PPV

Min.: 0.00 Min.: 0.3000 Min.: 5.000 Min.: 0.00 Min.: 2800 Min.: 0.1010
1st Qu.: 0.00 1st Qu.: 0.4700 1st Qu.: 6.000 1st Qu.: 76.25 1st Qu.: 2800 1st Qu.: 0.3862
Median: 1.50 Median: 0.5550 Median: 6.000 Median: 130.00 Median: 2800 Median: 1.0380
Mean: 30.96 Mean: 0.5656 Mean: 6.489 Mean: 121.03 Mean: 3430 Mean: 1.6262
3rd Qu.: 68.50 3rd Qu.: 0.6725 3rd Qu.: 7.000 3rd Qu.: 180.00 3rd Qu.: 4200 3rd Qu.: 2.4065
Max.: 100.00 Max.: 0.8000 Max.: 9.000 Max.: 180.00 Max.: 4200 Max.: 8.1580
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The dataset comprising 180 blasts at the Tonglushan Copper Mine in China indeed
offers valuable insights into the blasting practices and outcomes specific to this mine.
Figure 5 illustrates the extensive range of data, particularly concerning parameters like
explosive charge per delay (Qmax), Qtotal, D, VD, DT, RMI, and α.

Referring to Table 1, which summarizes the blast-induced ground vibration dataset
at the Tonglushan Copper Mine, we can observe a diverse distribution of key metrics
such as Qmax, Qtotal, D, VD, B, PPR, DT, RMI, f, α, VoD, and PPV. These metrics provide a
comprehensive overview of the blasting activities and their resulting ground vibrations,
encompassing various aspects of the blasting process and its effects.

Considering the breadth and depth of this dataset, it is reasonable to assert that the
information generated from these 180 blasts is likely to be representative of the blasting
practices and outcomes at the Tonglushan Copper Mine. This dataset can serve as a valuable
resource for analyzing and optimizing blasting operations, as well as for developing models
and strategies to minimize environmental impacts and enhance safety.

3.2. Model Development

Before predictive models for blast-induced ground vibration prediction were devel-
oped, the dataset underwent normalization to prevent data leakage, in which information
from validation or test sets inadvertently influences the training process. In this study, the
min-max normalization technique was utilized to scale the features (consisting of 11 vari-
ables from the blast-induced ground vibration dataset) to a similar range, aiding in the
facilitation of learning.

For the development of the CGO-ANN model predicting PPV, the collected dataset
comprising 180 samples was partitioned into two parts. A total of 70% of the dataset was
randomly selected as the training dataset to optimize the weights and biases of the ANN
model. Meanwhile, the remaining 30% was reserved for testing the model’s performance.

It is important to highlight that this study not only proposes and develops the CGO-
ANN model but also introduces the PSO-ANN, GA-ANN, single ANN, and USBM empiri-
cal models for comparison purposes, evaluating the superiority of the proposed CGO-ANN
model. For the hybrid models like CGO-ANN, GA-ANN, and PSO-ANN, the initial pa-
rameters of the metaheuristic algorithms play a crucial role in enhancing the optimization
processes for predicting PPV. These initial parameters are configured as follows:

- GA: crossover coefficient = 0.85; mutation coefficient = 0.05.
- PSO: local coefficient = global coefficient = 1.2; weight min coefficient = 0.4; weight

max coefficient = 0.9.
- CGO: using the number of populations and iterations.

Furthermore, all these algorithms are implemented with varying initial population
diversities (i.e., 100, 200, 300, 400, 500), and the optimization process spans 1000 iterations.

An initial ANN structure with a single hidden layer containing 15 hidden neurons
was chosen for this study, utilizing the ReLU activation function. MSE (mean-squared
error) served as the objective function for these hybrid models during the training process.
The development and optimization process of the CGO-ANN, PSO-ANN, and GA-ANN
models are illustrated in Figure 6.

Furthermore, alongside the hybrid models, a standalone ANN was developed for pre-
dicting PPV and contrasting it with the proposed CGO-ANN model. The identical datasets,
encompassing both training and testing datasets, normalization technique, and structure,
were employed in constructing the standalone ANN model. However, in this instance, the
backpropagation algorithm was employed to train the ANN model, representing the most
prevalent algorithm traditionally used for ANN model training. The performance of the
ANN model development is depicted in Figure 7.
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The USBM (United States Bureau of Mines) empirical equation stands as one of the
most frequently utilized equations for swiftly gauging the intensity of PPV in blasting.
This equation was pioneered by Duvall and Fogelson [58] and relies on historical data
and regression analysis for its computation. It is worth mentioning that the identical
datasets will be employed in establishing the USBM empirical equation, which is ultimately
formulated to estimate PPV in the following manner:

PPV = 1.684
(

D√
Qmax

)−0.337
(8)

According to the USBM equation, the horizontal distance (D) and maximum explosive
charge per delay (Qmax) should be used to calculate PPV.

4. Results and Discussion

In this section, we present the results and discuss the findings of our study aimed
at predicting blast-induced ground vibration. Our study focused on developing and
evaluating predictive models to estimate PPV, which is a crucial parameter for assessing
the potential impact of blasting operations on nearby structures and the surrounding
environment. We specifically investigated the performance of the CGO-ANN, GA-ANN,
PSO-ANN, single ANN, and USBM models, with a particular emphasis on the proposed
novel CGO-ANN model. The outcome predictions of the CGO-ANN, GA-ANN, PSO-ANN,
single ANN, and USBM models are shown in Figure 8 for both training and testing datasets.

The outcomes depicted in Figure 8 showcased diverse performance levels among
various algorithms, with certain models demonstrating superior accuracy and predictive
capability over others. Notably, the CGO-ANN model, introduced as a novel approach
in this study, exhibited particularly promising results, surpassing other models in terms
of accuracy and predictive capacity. Conversely, the USBM model displayed the weakest
performance in predicting PPV across both training and testing datasets.

Figure 9 illustrates a scatter plot correlating the measured PPVs with the predicted
PPVs to assess the accuracy of each model in predicting blast-induced ground vibration.
The findings revealed that the CGO-ANN and GA-ANN models offered greater accuracy in
PPV prediction compared to the other models. Furthermore, the hybrid models, including
CGO-ANN, GA-ANN, and PSO-ANN, demonstrated enhancements over the single ANN
model in predicting PPV within the Tonglushan Copper Mine of China. Conversely, the
empirical model (USBM) exhibited the highest errors in regards to PPV estimation.

To delve deeper into the predictive capabilities of each model in forecasting PPV, in our
study, we undertook a regression analysis using both measured and predicted PPV values,
as depicted in Figure 10. Our analyses revealed that the hybrid ANN models exhibited
superior convergence compared to the single ANN model, with particular emphasis on
the CGO-ANN model. Notably, the predicted data points from the CGO-ANN model
clustered closer to the regression line than did those from the other models. Additionally, as
depicted in Figure 10, the confidence level of the developed models is illustrated with a 95%
confidence interval (highlighted by the grey areas). Notably, the majority of the predicted
datasets from the CGO-ANN model fall within this interval, surpassing the performance of
the GA-ANN model and other models showcased in the figure. It is significant that the
USBM empirical model displayed the least accuracy and convergence, indicating a notable
disparity between its predicted and actual values. To precisely assess the performance
of the developed models, we computed various performance metrics, including mean
squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE), and
determination coefficient (R2) based on both the measured and predicted PPV values. These
metrics are presented in Table 2 for comprehensive evaluation.
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Table 2. Performance indicators of the developed models.

PPV Predictive Model
Training Dataset Testing Dataset

MSE RMSE MAE R2 MSE RMSE MAE R2

CGO-ANN 0.261 0.511 0.426 0.899 0.259 0.508 0.425 0.909
GA-ANN 0.436 0.660 0.555 0.832 0.637 0.798 0.669 0.777
PSO-ANN 0.547 0.740 0.620 0.789 0.720 0.848 0.719 0.748

Single ANN 0.566 0.752 0.624 0.782 0.770 0.877 0.745 0.731
USBM 2.589 1.609 1.053 0.384 2.672 1.635 1.102 0.520

The performance evaluation of the PPV predictive models provides compelling evi-
dence supporting the superiority of the CGO-ANN model. Across both the training and
testing datasets, the CGO-ANN model consistently yields lower MSE, RMSE, and MAE
values compared to the other models. For instance, in the testing dataset, the CGO-ANN
model exhibits an MSE of 0.259, whereas the GA-ANN, PSO-ANN, single ANN, and USBM
models record MSE values of 0.637, 0.720, 0.770, and 2.672, respectively. Similarly, the
CGO-ANN model achieves an RMSE of 0.508 and an MAE of 0.425 in the testing dataset,
outperforming all other models.

Moreover, the R2 values further reinforce the superiority of the CGO-ANN model in
explaining the variance in PPV. The CGO-ANN model demonstrates substantially higher
R2 values compared to the other models, indicating its superior ability to capture the
underlying relationships between input variables and PPV. For instance, in the testing
dataset, the CGO-ANN model achieves an R2 value of 0.909, while the GA-ANN, PSO-
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ANN, single ANN, and USBM models record R2 values of 0.777, 0.748, 0.731, and 0.520,
respectively. Based on the results depicted in Figure 10, the reliability range of the proposed
CGO-ANN model, determined by the significance level of the estimates, falls within the range
of 89% to 91%. In contrast, other models exhibited reliability ranges between 50% and 80%.
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These numerical results provided strong evidence supporting the efficacy of the
CGO-ANN model in accurately predicting PPV. The consistently lower prediction errors
and higher R2 values demonstrated the superior performance of the CGO-ANN model
compared to traditional ANN models and the empirical USBM model. Therefore, based on
the numerical evidence, it can be concluded that the CGO-ANN model is the most effective
predictive model for PPV estimation in this study. In Figure 11, we evaluate the developed
models through the distribution of residuals.
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The distribution of residuals provides crucial insights into the accuracy and reliability
of the predictive models. Ideally, the residuals should follow a normal distribution, indi-
cating that the model effectively captures the underlying patterns in the data. A normal
distribution of residuals suggests that the model accurately accounts for the variability in
PPV, with the errors evenly distributed around zero. This implies that the model predicts
PPV values with minimal bias and consistent accuracy across the range of observed PPV
values. From Figure 11, we can see that the CGO-ANN model follows a normal distribution,
indicating that this model effectively captures the underlying patterns in the data. Mean-
while, the other models, such as GA-ANN, PSO-ANN, single ANN, and the USBM model,
yielded deviations from a normal distribution of residuals, and this could indicate potential
issues with the predictive models, such as the model systematically underestimating or
overestimating PPV values in certain ranges. In the GA-ANN, PSO-ANN, single ANN, and
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USBM models, all of their residuals are positively skewed, indicating that the models tend
to underestimate PPV in higher ranges, whereas negatively skewed residuals suggest un-
derestimation in lower ranges. In addition, heteroscedastic residuals imply that the spread
of errors varies across different levels of PPV. This suggests that the model’s predictions are
less reliable for certain ranges of PPV values, leading to inconsistent prediction accuracy.

To directly assess the normality of the residuals, a Q–Q plot was employed, providing
a clearer indication of deviations from the expected normal distribution. By comparing
the observed quantiles of residuals to those of a theoretical normal distribution, as demon-
strated in Figure 12, we obtain a more nuanced understanding of residual normality for
each PPV predictive model. This integrated approach strengthens the evaluation process,
ensuring a thorough examination and resolution of any deviations from normality. Notably,
the analysis of Figure 12 highlights insights provided by the CGO-ANN and GA-ANN
models regarding specific deviations, aiding in pinpointing areas for model improvement.
Specifically, these models exhibit deviations when the residuals of PPV predictions exceed
2 cm/s or fall below −2 cm/s. Conversely, the single ANN model and the USBM model
demonstrate pronounced skewness in the residuals, indicating heavy tails or other devi-
ations from normality. These findings underscore the need for further enhancements to
these models to ensure more accurate and reliable PPV estimation.
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From the findings and analyses of this study, it is evident that the proposed CGO-
ANN model emerges as a novel and robust approach for predicting PPV, demonstrating
superior performance and reliability. Compared to alternative optimized models such
as GA-ANN and PSO-ANN, the CGO-ANN model exhibits notable proficiency in PPV
prediction, indicating the compatibility of chaos theory with the inherent uncertainties of
PPV propagation in the ground. Furthermore, this study underscores the unsuitability of
the USBM model for PPV prediction due to its low reliability.

5. Conclusions

In this study, we explored various predictive models for estimating PPV in blast-
induced ground vibration scenarios. By leveraging machine learning techniques and
empirical modeling, we aimed to develop robust models capable of accurately predicting
PPV, a critical parameter for assessing the potential impacts of blasting operations on
surrounding structures and the environment.

Our analysis revealed compelling insights into the performance of different predictive
models. Among the models evaluated, the proposed CGO-ANN model emerged as a stand-
out, demonstrating superior predictive accuracy and reliability compared to alternative
optimized models, including GA-ANN and PSO-ANN. The CGO-ANN model, rooted
in chaos theory, proved particularly adept at capturing the uncertainties inherent in PPV
propagation through the ground, showcasing its potential as a novel approach for PPV
prediction.

Furthermore, our study highlighted the limitations of traditional empirical models,
such as the USBM model, in accurately predicting PPV. Despite its widespread use, the
USBM model exhibited low reliability in our analysis, reaffirming the need for more ad-
vanced modeling techniques to address the complexities of blast-induced ground vibration.

Finally, our study contributes to the advancement of blast management practices
and environmental stewardship by offering improved methodologies for assessing and
mitigating the impacts of blasting operations. Moving forward, further research efforts
should focus on refining and validating predictive models, incorporating additional factors
influencing PPV, and conducting field validation studies to enhance the applicability and
robustness of PPV prediction models in real-world scenarios.

Although the obtained results are promising, there are several limitations to con-
sider. The study primarily focuses on PPV prediction in blast-induced ground vibration
scenarios, potentially limiting its applicability to other types of vibration prediction or
mining-related parameters. Additionally, the dataset used for model development and
evaluation is derived from a single mining site, which may not fully represent the diversity
of blasting conditions and geological settings encountered in other mining operations.
Furthermore, the analysis may overlook certain factors influencing PPV that were not
included in the dataset, such as variations in geological structures, weather conditions, or
blasting techniques.

In light of these limitations, future research directions should include investigating
the applicability of the CGO-ANN model and other predictive models in different mining
sites and geological contexts to assess their generalizability. Exploring the incorporation of
additional variables or features into the predictive models to enhance their accuracy and
robustness, considering factors like geological properties, weather conditions, and blast
design parameters, is also warranted. Additionally, conducting field validation studies to
validate the performance of predictive models in real-world blasting scenarios and assess
their practical utility and reliability will be beneficial.
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