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Abstract: In the past years, there has been a growing interest in innovative applications
of radially polarized laser beams. Among them, the particular field of laser-driven electron
acceleration has received much attention. Recent developments in high-power infrared laser
sources at the INRS Advanced Laser Light Source (Varennes, Qc, Canada) allowed the
experimental observation of a quasi-monoenergetic 23-keV electron beam produced by a
radially polarized laser pulse tightly focused into a low density gas. Theoretical analyses
suggest that the production of collimated attosecond electron pulses is within reach of the
actual technology. Such an ultrashort electron pulse source would be a unique tool for
fundamental and applied research. In this paper, we propose an overview of this emerging
topic and expose some of the challenges to meet in the future.
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1. Introduction

Although the potential of lasers for particle acceleration was yet recognized in the early 1960’s [1],
research over the past 50 years has shown that developing an effective laser acceleration scheme is
not straightforward. In the explosion-like interaction of tightly focused ultra-intense laser pulses with
matter, electrons are violently expelled out of the focal region and are effectively accelerated only over
short distances, typically comparable to the dominant wavelength of the pulse spectrum. Preferably,
particles should be kept in phase with the intense laser field over ranges longer than the beam collimation
distance. To reach this goal, a myriad of laser-light driven particle acceleration schemes have been
proposed. Plasma wakefield acceleration [2,3], the most successful so far, has been proven to be reliable
in producing collimated multi-MeV electron beams with per-cent-level energy spread [4–7]. Energy
gains in the multi-GeV range were also reported [8,9]. Laser-wakefield accelerators, combined with
a plasma-wakefield afterburner [10], have an exceptional potential for high-energy physics. However,
there are also good motivations to develop sub-femtosecond electron sources at nonrelativistic energies
for ultrafast electron diffraction [11–13]. Direct electron acceleration by radially polarized lasers beams
(RPLBs) offers an interesting avenue [14–17]. Independent works suggest that directional and collimated
attosecond electron pulses could be produced [18,19]. The experimental realization of this scheme is
challenging but promising [20]. The technique could also be used for proton acceleration [21–23].

The paper is organized as follows. First, we review the characteristics of RPLBs (Section 2). Second,
we present the theory behind electron acceleration in RPLBs (Section 3). Next, we discuss the special
case of electron acceleration by tightly focused ultrafast radially polarized laser pulses (RPLPs) by
presenting both the theory (Section 4) and experimental results (Section 5). Finally, we conclude by
exposing some of the challenges to meet in the future (Section 6).

2. Radially Polarized Laser Beams

In the paraxial limit, the intensity profile of an RPLB of order p—also referred to as a TMp1 beam—is
characterized by p + 1 rotationally symmetric concentric rings [24,25]. There exists several ways to
produce RPLBs (see Appendix A). In particular, the lowest-order RPLB (TM01) is often represented
as a superposition of two Hermite-Gaussian modes with orders (0, 1) and (1, 0) [26]. As the name
says, the electric field oscillations of RPLBs are radially polarized (in the weak focusing limit). This
feature confers to this beam family very particular properties. The most striking characteristic is the
central dark intensity region that turns into a bright spot of sub-wavelength diameter under tight focusing
conditions [27–29]. This behaviour is explained by the particular beam symmetry that favors a strong
axial longitudinal electric field component [30].
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In complex notation (E = Re[Ẽ exp(jω0t + jφ0)], where ω0 is the frequency of maximum spectral
amplitude and φ0 is a constant phase delay), the field components of the lowest-order RPLB can be
written in the very compact form [25]:

Ẽr = A0j2(k0R̃) sin(2θ̃) exp(−k0z0) (1a)

Ẽz =
4

3
A0

[
j0(k0R̃) + j2(k0R̃)P2(cos θ̃)

]
exp(−k0z0) (1b)

B̃θ =
2

c
jA0j1(k0R̃) sin θ̃ exp(−k0z0) (1c)

where A0 is a normalization constant, k0 = ω0/c is the wave number, jn(k0R̃) is the order-n spherical
Bessel function of the first kind, and P2(cos θ̃) = 1

4
[1 + 3 cos(2θ̃)] is the Legendre polynomial of degree

2. The complex coordinates (R̃, θ̃) are defined as R̃ = [x2 +y2 +(z+ jz0)
2]1/2 and cos θ̃ = (z+ jz0)/R̃,

respectively. The confocal parameter z0 is related to the Gaussian beam waist size w0 by z0 = w0[1 +

(1
2
k0w0)

2]1/2. All other field components (Ẽθ, B̃r, and B̃z) are zero. The beam waist corresponds to
z = 0.

The set of Equations (1) is a rigorous closed form solution to Maxwell equations and is valid
for arbitrary beam waist sizes [25,31] (see Appendix B). In the paraxial limit (k0z0 � 1), the
electromagnetic field components can be expanded into infinite series [30,32,33] whose leading
terms are:
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where q̃ = z + jz0 is the Gaussian beam complex parameter and c the speed of light in free space. It
should be noted that in the paraxial limit z0 ' zR = k0w

2
0/2, where zR is the Rayleigh distance [34]. In

the paraxial limit, the parameter A0 is related to the peak value E0 (in V/m) of the Ẽ(0)
r field component

by A0 = −j(
√

2/4)k30w
3
0 exp(1/2)E0.

The power carried by an RPLB can be obtained through the integral of the projection of the average
Poynting vector over a surface perpendicular to the beam propagation [35]. In mathematical terms
it reads

P =

∫ 2π

0

∫ ∞
0

Sav · êzrdrdθ (3a)

=
1

2µ0

∫ 2π

0

∫ ∞
0

Re{ẼrB̃∗θ}rdrdθ (3b)

Accordingly, the power associated with the lowest-order RPLB is [36]

P =
πA2

0

2η0k50z
3
0

exp(−2k0z0)[1− 2(k0z0)
2 + 2k0z0 sinh(2k0z0)− cosh(2k0z0)] (4)

where η0 = µ0c is the impedance of free space. In the paraxial limit:
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P ' πw2
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4η0
exp(1)E2

0 (5)
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In the limit where k0z0 = 0, the power defined at Equation (4) is identically zero. It corresponds to
the case where an RPLB is focused uniformly over 4π steradians [37,38]. In an ideal setup, the inward
and outward energy flows would then be perfectly balanced, resulting in a null Poynting vector.

In the weak focusing limit (k0z0 � 1), RPLBs appear as the characteristic doughnut-shape profile
shown in Figure 1(a). In this case, most of the electric energy is concentrated in the transverse component
(We ∝ |E|2 ' |Er|2). Nevertheless, as the beam spot size is decreased, part of it is transferred to the
longitudinal component Ez that is maximum at r = 0. The dark center then gradually disappears and,
eventually, the longitudinal component of the electric field dominates [see Figure 1(b)–(c)]. In the limit
of extreme focusing (k0z0 → 0), most of the electric energy is concentrated at the center of the beam that
now appears as a bright symmetric spot whose diameter is smaller than the dominant laser wavelength
[see Figure 1(d)]. This particular transition from paraxial to subwavelength focusing, where rotational
symmetry of the beam profile is preserved, was predicted [25,28,30,33,39] and observed [27,40–43]
by different authors. Because of their field symmetries and strong axial longitudinal electric field
component, RPLBs are appealing for electron acceleration.

Figure 1. Transverse distribution of the average electric energy density We = ε0|E|2/2 of
a focused RPLB at beam waist. The energy density associated with the individual electric
field components is shown to emphasize the contribution of the longitudinal field when the
beam spot size is comparable to or below the wavelength. In (a) k0z0 = 350; (b) k0z0 = 10;
(c) k0z0 = 5; and (d) k0z0 = 1. Insets show the intensity distribution (the scale is that of the
corresponding transverse coordinate axis).
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3. Electron Acceleration with Radially Polarized Laser Beams

RPLBs are the free-space analogs of the transverse-magnetic (TM) modes produced in the
superconducting cavities used in conventional linear accelerators. However, acceleration with
high-power lasers differs considerably from that with radio frequencies. In this section we discuss how
acceleration in RPLBs proceeds and explain how attosecond electron pulses can be produced.

3.1. Free-Space Electron Acceleration in Laser Beams

The classical motion of a charged particle in a laser beam is given by the Lorentz force equation [35]:

dp

dt
= q (E + v ×B) (6)

where the particle’s attributes are its mass, charge, velocity, kinetic momentum, and energy defined by
the symbols m, q, v, p = γmv, and W = γmc2, respectively, with γ = (1 − v2/c2)−1/2. E and
B are the electromagnetic field components of the laser beam [e.g., from Equations (1) or (2)]. For a
non-relativistic motion in a weak harmonic electric field of angular frequency ω0:

|ṽ|
c
'
(

q

mcω0

)
|Ẽ| (7)

It is thus common to define a dimensionless parameter a20 = (q/mcω0)
2E2

0 whose value relative to 1
characterizes distinct regimes of particle dynamics (see Table 1).

Table 1. The three dynamical regimes associated with the motion of a charged particle in a
laser beam in terms of the normalized field parameter a0 = (q/mcω0)E0.

Regime a2
0

Non-relativistic � 1

Relativistic ∼ 1

Ultra-relativistic � 1

The non-relativistic regime is often referred to as the ponderomotive regime. Effectively, charged
particles in a relatively weak laser beam (a20 � 1) drift away from the high-intensity regions with
an average motion that is independent of the laser polarization [44]. The mathematical form of
the ponderomotive force (PF)—the net force resulting from the temporal average of the quivering
particle motion associated with the rapid field oscillations—was initially proposed in the 1960’s [45,46].
Relativistic (a20 ∼ 1) formulations came some 30 years later from independent authors [47–49]. In
ponderomotive acceleration models, it is often assumed that the effect of the longitudinal electric field
component cancels out when averaging over a full laser field cycle. For ultra-relativistic laser intensities
(a20 � 1), this assumption fails [16]. To effectively reveal the phase-sensitive sub-cycle dynamics
that characterizes longitudinal acceleration in RPLBs, it is necessary to take into account all the field
components and their oscillations, as it is done when working directly with the Lorentz force equation.
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Despite the controversy that has surrounded the experimental observation of ponderomotive electron
acceleration in Gaussian laser beams [50–53], the mechanism by which the particles acquire a significant
(relativistic) momentum is now well understood and accepted [54]. The relativistic generalization of
the original PF model [45–49] helped to explain and understand experimental observations in terms
of relativistic ponderomotive scattering (RPS), where particles are expelled out of the beam focus
within only a few laser cycles [55,56]. Typically, RPS proceeds in three steps. First, electrons are
released by ionization (predominantly tunnel and above-threshold ionization) and accelerated toward
the low-intensity regions of the laser beam by the transverse electric field component. Second, the
trajectories are bent in the k ∝ (E × B) direction by the magnetic field (via the v × B contribution
of the Lorentz force). Third and finally, the longitudinal electric field component takes over and
provides a final extra push. Although the amplitude of the longitudinal component is usually tiny
(∝ E0λ0/w0), including it into calculations changes the result from vanishingly small to considerable
acceleration [54,55,57]. This can be explained by the fact that an electron moving longitudinally can
possibly stay in phase with the longitudinal electric field over longer distances.

During RPS the electrons leave the focal region of an ultra-intense Gaussian beam with a large
transverse momentum, and very few of them remain close to the beam propagation axis [51,58,59]. To
limit the transverse excursion, it was proposed using a combination of a Gaussian beam and higher-order
modes to create an intensity minimum at beam center that acts as a confining potential [60]. It was later
shown that the use of RPLBs improves even further upon longitudinal acceleration and electron beam
confinement [61,62]. The particular geometry of RPLBs forces a significant proportion of the particles to
move toward the beam propagation axis and remain there while they are accelerated by the longitudinal
electric field component. Authors usually refer to this phenomenon as to relativistic ponderomotive
trapping (RPT) [61], in analogy to RPS where electrons are pushed toward the beam periphery.

3.2. Direct Longitudinal Electron Acceleration with Radially Polarized Laser Beams

By RPS and RPT, free electrons gain a substantial energy due to the combined action of the transverse
and longitudinal electric field components. However, strong acceleration can take place at the center
of RPLBs without the action of the transverse field components [16,17,63,64]. Direct longitudinal
acceleration with RPLBs allows for matching the electrons with the longitudinal field oscillations and
effectively offers the possibility of producing well collimated quasi-monoenergetic relativistic attosecond
electron pulses [16,18,19].

The fundamental issue with longitudinal acceleration with RPLBs is the superluminous axial phase
velocity. In fact, RPLBs have an axial variation of the carrier phase of (p + 2)π from z = −∞ to∞,
independently of the beam spot size and pulse duration [30,39,65]. This is (p + 2) times that of the
fundamental Gaussian beam, twice for the lowest order (p = 0) RPLB. This higher value of the Gouy
phase shift is due to the fact that RPLBs diffract more rapidly than the fundamental Gaussian mode [66].
When considering a point of constant phase along r = 0, the phase velocity is

vphase = c

[
1− (λ0/w0)

2

π2(1 + z2/z2R)

]−1
(8)
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where it was assumed that w0 � λ0 and p = 0, for simplicity. Because of the velocity mismatch, a
particle moving in the beam will inevitably drift with respect to the carrier oscillations. Within a given
time interval ∆t, the net energy gain is optimal if that drift is less than half the laser wavelength, i.e., if
∆t|vphase − vz| . λ0/2, where vz is the particle’s longitudinal velocity. During that same time interval,
the particle has traveled over a distance

∆zdph =
λ0/2

|vphase/vz − 1| (9)

which defines the dephasing length. An interaction with the laser field for exactly two dephasing
lengths—corresponding to a complete cycle drift—results in no acceleration, on average. For the special
case of an electron with a relativistic longitudinal velocity (vz ' c), the dephasing length is:

∆zdph =
λ0
2

[(
πw0

λ0

)2

+

(
z

w0

)2

− 1

]
(10)

It is thus observed that around the beam waist (z ' 0), where the longitudinal field is the most
intense, the distance over which a relativistic electron remains in phase with the laser field is only about
the Rayleigh distance [∆zdph ' (πzR)/2]. This sets a fundamental limit on the energy that can be
transferred from the laser field to particles (see also [14]).

Assuming a perfect synchronization between an electron moving along the z axis and the laser field,
the maximum variation in the total electron energy from zi to zf is

∆W |zfzi = Re

[
−e
∫ zf

zi

Ẽz(0, z) exp(−jφ0)dz

]
(11a)

= −ezREz0
{

[A(zi)− A(zf )] cosφ0 + [B(zi)−B(zf )] sinφ0

}
(11b)

where Ẽz is the complex envelope of the field component given at Equation (2b). Above, −e is the
electron charge, Ez0 = [2

√
2 exp(1/2)/(k0w0)]E0 is the amplitude of the longitudinal electric field

component, A(z) = [w0/w(z)]2, and B(z) = zR/R(z). Respectively, w(z) = w0[1 + (z/zR)2]1/2 and
R(z) = z + z2R/z are the beam waist size and radius of curvature of the wavefront at z. According to
Equation (11b), there are two situations where the energy gain is optimal. One is when the acceleration
occurs between two axial positions where the wavefront curvature radius is minimum but of opposite
sign. This happens when [zi, zf ] = [−zR, zR]. The other situation is when acceleration takes place
between two positions where the beam spot size is minimal and infinite, respectively. This corresponds
to [zi, zf ] = [0,±∞]. For these two cases ∆W = ezREz0. This defines the following theoretical limit to
the energy gain (see also [14,67,68]):

∆Wlim[MeV] ∼ 31 (P [TW])1/2 (12)

where P [TW] is the laser power in terawatts.
Different longitudinal acceleration scenarios were reported in the literature ; a selected list is given in

Table 2. The first case is that of an electron that travels from z = −∞ to ∞ at ultrarelativistic speed.
Because of the Gouy phase, it drifts by 2π in the wave and, on average, the energy is zero. This is a
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typical example that illustrates the Lawson-Woodward theorem [14]. To break the symmetry and allow
for substantial electron energy gains, Scully and Zubairy [69], Esarey et al. [14], and Liu et al. [15]
suggested different avenues to effectively limit the electron interaction to −zR . z . zR. However, the
proposed schemes require optical materials close to the high field intensity regions. Such a configuration
is inevitably limited by the destruction of the device and does not take full advantage of the high peak
power delivered by actual ultraintense lasers.

As a matter of fact, material destruction—where free electrons are released due to ionization by
the intense laser field—can be considered as a part of the acceleration process. A target should thus
be composed preferably of a material with deeply bound inner shells so that most electrons remain
bound during the rise time of the laser pulse, but released near the peak [17,19,70,71]. In that situation,
electrons experience an optimal acceleration from z ' 0 to ∼ ∞. In that range, the carrier phase shifts
only by π. Here, the Lawson-Woodward theorem is not violated because the electron is initially at
rest and the interaction is maintained over a semi-infinite distance. According to works by some of us,
where preionized targets were considered [16,18,67], half of ∆Wlim comes from acceleration outside the
Rayleigh zone, i.e., between zR and ∞. In this region, the longitudinal electric field is weaker than at
focus but the Gouy phase evolves much more slowly (which considerably increases the dephasing time).

Table 2. Comparison between different electron acceleration scenarios in RPLBs. In the first
column is the interaction range, followed by the corresponding change in energy calculated
with Equation (11b), and finally a short description (scenario) with references.

[zi, zf ] ∆W |zfzi Scenario

[−∞,∞] 0 Lawson-Woodward [14]
[−zR, zR] ∆Wlim Limited interaction [14,15,69]
[0,∞] ∆Wlim Single pulse [19,64,72]
[zR,∞] ∆Wlim/2 Pump-probe [16,18,67]

The integration of Equation (11a) to get ∆Wlim represents ideal acceleration scenarios. Rigorous
numerical simulations show that, instead, the maximum energy gain is much less unless the beam
parameters are carefully optimized [67,68,73–75]. We will see in Section 4 that exceptional conditions
are provided by ultrashort and tightly focused pulses.

3.3. Threshold for Sub-Cycle Acceleration and Attosecond Bunching

We now proceed with the evaluation of the threshold for sub-cycle acceleration. To account for the
contribution of the longitudinal electric field component, the normalized field parameter a0 is split into
radial (ar) and axial (az) components. These two new parameters are defined as follows:

ar =

(
q

mcω0

)
|Ẽr|peak (13a)

az =

(
q

mcω0

)
|Ẽz|peak (13b)
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where |Ẽr|peak and |Ẽz|peak represent the peak values of the field envelope of the radial and longitudinal
components, respectively.

With Equations (1b) and (4), the threshold power corresponding to a2z = 1 is found to be

P ∗ =
9

32

π

η0(k0z0)3

(
mc2

q

)2
1− 2(k0z0)

2 + 2k0z0 sinh(2k0z0)− cosh(2k0z0)

|j0(jk0z0) + j2(jk0z0)|2
(14)

In the paraxial limit [18,67]:

lim
k0z0�1

P ∗ ' π

8η0

(
mc2

q

)2

(k0z0)
2 ' π5

2η0

(
mc2

q

)2(
w0

λ0

)4

(15)

On the other hand, the analytical evaluation of a2r = 1, and of the corresponding threshold power, is
not straightforward and best obtained numerically. Results are shown in Figure 2, where the different
acceleration regimes in RPLBs are summarized.

Figure 2. Overview of electron acceleration in RPLBs. The far right of the graph
corresponds to the paraxial limit, where the dynamics is dominated by the transverse
electromagnetic field. In this limit, the sub-cycle longitudinal acceleration regime is reached
only if the average beam power is in the PW range (see also [18,67]). Alternatively, the
beam can be tightly focused to increase the peak intensity and lower the threshold down to
the TWs and GWs [68,75]. The sub-cycle regime characterized by a2z > 1 can itself be split
into two sub-regimes corresponding to cases where the strength of the radial component is
above threshold [Sub-cycle (1)] or not [Sub-cycle (2)].
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Figure 3. Single-electron model of longitudinal acceleration in a 12-fs (FWHM) RPLP
(k0z0 ∼ 500 with λ0 = 800 nm). The electron is initially at rest at z = 0. (a) At low
intensity (a2z = 0.1), the electron experiences a quasi-harmonic motion, with slightly longer
excursions in accelerating half field-cycles; (b) At the longitudinal acceleration threshold
(a2z = 1), this phenomenon is stronger but the final kinetic energy remains relatively small
(in the keV range); (c) Above threshold (a2z = 10), the electron escapes the laser pulse with
a relativistic longitudinal momentum. During the sub-cycle acceleration represented in (c),
the electron stays locked to the phase of the pulse carrier.
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Figure 4. In the sub-cycle regime, a collection of electrons initially at rest at the waist of an
ultra-intense 12-fs (FWHM) RPLP (λ0 = 800 nm) is bunched to form an attosecond pulse.
The initial electron positions (•) followed a 100-nm spherical Gaussian distribution centered
at (r, z) = (0, 0). Here, a magnified view reveals the extreme longitudinal compression
experienced by the electrons during sub-cycle acceleration. The position of the leading
edge of the accelerated electron distributions is about 6 mm away from beam waist. It was
translated along z for a direct comparison of the relative durations. The size of the characters
used to represent the particles gives the impression that the electron pulses are longer than
they really are. For (+), we estimate that the duration along the longitudinal axis is as short
as 170 zs. Simulation parameters were the following: (×) P = 100 TW (k0z0 ' 280,
a2z ' 4.7), (+) P = 1 PW (k0z0 ' 850, a2z ' 5.1). The carrier phase φ0 was effectively
optimized for the shortest durations.
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To illustrate the different regimes of longitudinal electron acceleration in RPLP, we performed a series
of simulations, where the time-dependent Lorentz force equation was integrated. Results are shown in
Figure 3. It is observed that above threshold (a2z & 1) the longitudinal electric component of the laser
field is strong enough to accelerate an electron initially at rest at focus to a relativistic velocity within a
half laser period. In that regime, electrons released in the same half-cycle are naturally bunched together.
This is shown in Figure 4, where three-dimensional simulations were done in the single-electron
approximation. More realistic simulations that include self-consistent particle interactions and ionization
dynamics indicate that, in most conditions, a train of attosecond electron packets—each separated by a
laser wavelength—is formed [19]. A single attosecond electron pulse could be produced if a single-cycle
RPLP is used.

4. Acceleration by Ultrashort and Tightly Focused Radially Polarized Laser Pulses

Nowadays, state-of-the-art ultra-intense laser systems are able to generate terawatt laser pulses
whose durations represent only a few optical cycles [76]. With high-aperture focusing systems, these
ultrashort pulses can be focused on a spot of sub-wavelength dimension in the focal plane. While
most theoretical studies on direct acceleration in RPLBs have limited themselves to the paraxial limit
(k0z0 � 1) [18,67,68], modeling the dynamics under nonparaxial and ultrashort pulse conditions is now
necessary to bridge the gap between theory and current experiments (see Section 5).

A pulsed beam consists of a sum of monochromatic beams with different frequencies. In the special
case of an isodiffracting pulse, each frequency component has the same wavefront curvature. A rigorous
solution for the lowest-order radially polarized isodiffracting pulsed beam may therefore be obtained
by taking a coherent superposition of TM01 beams [see Equations (1)] with different frequencies but
identical confocal parameter z0 [77]. If we weight each frequency component by the spectral amplitude
function F (ω) in Fourier space and then calculate the inverse Fourier transform, we obtain the following
field components in complex notation for a TM01 pulsed beam [75,77]:

Ẽr = −3jA0 sin 2̃θ
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where G(n)
± = ∂n

∂tn
[f(t̃+)± f(t̃−)], f(t) is the inverse Fourier transform of the pulse spectrum F (ω) and

t̃± = t±R̃/c+jz0/c. It can be verified that in the limit of a delta frequency spectrum, F (ω) = δ(ω−ω0),
the fields given in Equations (1) for a TM01 beam of frequency ω0 are recovered [77].

To model ultrashort pulses, a suitable frequency spectrum is the Poisson-like function [78,79]:

F (ω) = 2π

(
s

ω0

)s+1
ωse−sω/ω0

Γ(s+ 1)
H(ω) (17)

As previously defined, ω0 is the frequency of maximum spectral amplitude. Γ(s + 1) is the Gamma
function, and H(ω) is the Heaviside step function that ensures the absence of components with negative
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frequencies. The constant s is a real and positive parameter that controls the shape of the spectrum and
the corresponding pulse. The inverse Fourier transform of Equation (17) is

f(t) =

(
1− jω0t

s

)−(s+1)

(18)

which leads to exact closed-form expressions for the electromagnetic field components of the TM01

pulse. Note that as s increases, the width of the spectrum F (ω) decreases while the pulse duration
increases. The spectrum F (ω) and the corresponding temporal profile of the Ez field component are
shown in Figure 5 for different values of s.

Figure 5. (a) Poisson spectrum F (ω) for different values of s with φ0 = 0; (b) Temporal
profile of the on-axis longitudinal electric field component at z = 0 of the corresponding
TM01 pulsed beam with λ0 = 0.8 µm and k0z0 = 10.

The direct acceleration of an on-axis electron by an ultrashort and nonparaxial TM01 pulsed beam was
investigated by some of us in a recent contribution [75]. More specifically, the laser power dependence
of the maximum final kinetic energy that an electron initially at rest at r = 0 can acquire was studied
for different pulse durations and degrees of focusing. The maximum energy gain, denoted ∆Wmax, is
calculated numerically by optimizing the electron’s initial position on the optical axis and the laser pulse
phase such that the final kinetic energy of the particle is maximal (see also [68]).

Figure 6 shows the variation of ∆Wmax with the laser power for different combinations of k0z0 and s.
Figure 6(a), in which ∆Wmax is expressed as a fraction of the theoretical energy gain limit ∆Wlim [see
Equation (12)] shows that for constant values of s, the power above which significant acceleration occurs
is greatly reduced as k0z0 decreases, i.e., as the focusing is made tighter. According to Figure 6(b), MeV
energy gains may be reached under tight focusing conditions (k0z0 ∼ 1) with laser peak powers as low
as 15 GW. In contrast, previous works based on the paraxial approximation suggested that powers three
orders of magnitude higher would be required to reach MeV kinetic energies [68]. At high peak power,
Figure 6(a) shows that shorter pulses yield a more efficient acceleration, with a ratio ∆Wmax/∆Wlim

reaching 80% for single-cycle (s = 1) pulses. This is mainly a consequence of the fact that shorter
pulses allow the electron to move close to the pulse peak; in longer pulses, the electron is trapped and
accelerated by the front edge of the pulse. As explained in [75], where additional details about the results
discussed in this paragraph may be found, the data shown in Figure 6 is completely independent of the
dominant wavelength λ0 of the TM01 laser pulse.
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Figure 6. Maximum (a) normalized and (b) absolute final energy gain of an electron initially
at rest on the optical axis versus the laser pulse power for different combinations of k0z0 and
s; (c) A close-up on the case k0z0 = 100 and s = 100 illustrates the transition from the
non-relativistic (NR) to the relativistic (R) and ultra-relativistic (UR) dynamical regimes
discussed in Table 1.

For moderately short pulses (s & 50), Figure 6(b) shows well the gradual transition between the
three acceleration regimes presented in Table 1. To illustrate this more clearly, the case k0z0 = 100 and
s = 100 is shown alone in Figure 6(c). At low laser power, ∆Wmax scales as P 2. This is a consequence
of the ponderomotive force, which is proportional to Fp ∼ A2

0 ∼ P and consequently leads to an
energy gain that increases as P 2. As the power is further increased, the dynamics undergoes a transition
to the relativistic regime where sub-cycle acceleration begins. The maximum final kinetic energy of
the electron increases rapidly since it is now allowed to copropagate with the laser pulse over longer
distances. Eventually, the energy that the electron is able to extract from the pulse saturates toward a
constant fraction of the theoretical energy gain limit ∆Wlim [see Figure 6(a)]. This marks the onset of
the ultrarelativistic regime, which is characterized by the scaling relation ∆Wmax ∼ P 1/2, in agreement
with Equation (12). For ultrashort pulses (s . 50), ∆Wmax does not scale as P 2 in the nonrelativistic
regime. This shows that the ponderomotive force model is not appropriate to describe the interaction of
electrons with pulses of a few-optical-cycle duration.

5. Experimental Observation of Electron Acceleration with Tightly Focused Radially Polarized
Laser Beams

Recently, electron acceleration by tightly focused few-cycle RPLPs was demonstrated using an
high-power infrared (IR) laser source available at the Advanced Laser Light Source (ALLS) facility
(INRS, Varennes, Qc, Canada) [20]. In this section, we describe the method used to generate few-cycle
RPLPs, specify the experimental conditions in which electron acceleration was observed, and present
the characteristics of the accelerated electrons.
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5.1. Method for Generating Tightly Focused Ultrashort RPLPs

The ALLS few-cycle IR beam line can deliver 1-mJ 15-fs pulses in the fundamental Gaussian
(TEM00) transverse mode at a repetition rate of 100 Hz [80]. The central wavelength is 1.8 µm and
the laser pulse energy stability is of the order of 2.5% rms. The s parameter associated with these IR
pulses is approximately s = 125.

To create the RPLB profile, we used a combination of wave plates specifically oriented in such a way
that the phase of the electric field taken at any position on the beam plane is shifted by π compared to its
antipodal counterpart (see Figure 7). The polarization state converter (PSC) used in the experiments is
composed of 4 sections of achromatic IR half-wave plates, each having a different fast axis orientation, as
shown in Figure 7(b). The created RPLB far-field mode profile, when focused by low numerical aperture
(NA) optics, is shown in Figure 7(d). It is comparable to the theoretical RPLB shown in Figure 1(a), with
an annular intensity profile and a minimum at the center. Weak focusing was used to image the beam
with sufficient resolution. In this limit, the longitudinal field is negligible (|Ez|2 � |Er|2). To reach the
longitudinal acceleration threshold (a2z ∼ 1), the few-cycle RPLP was focused to a sub-wavelength focal
spot with an on-axis high NA (0.7) parabolic mirror.

Figure 7. Method to generate the lowest-order RPLB. (a) Transverse profile of the incident
linearly polarized Gaussian (TEM00) beam; (b) The polarization state converter (PSC)
composed of 4 sections of IR achromatic half-wave plates with the fast axis orientation of 0◦

(top), +45◦ (right), +90◦ (bottom), −45◦ (left); (c) The near field beam profile and relative
electric field direction at the output of the PSC; (d) The far field image of the weakly focused
RPLB. (a) to (c) are theoretical representations while (d) is an experimental measurement.
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In the experimental configuration, characterization of the focal spot at high intensity is not possible
by conventional methods due to the high numerical aperture and the on-axis geometry of the focusing
parabola. Local surface quality of the parabola was tested and found to be better than λ0/4 at
λ0 = 675 nm with a diode laser source. Performances were extrapolated to 1.8 µm. The beam waist is
estimated tow0 ≈ 0.6λ0, corresponding to k0z0 ≈ 8 and a transverse beam profile somewhere in between
those shown in Figure 1(b) and 1(c) (|Ez|2 & |Er|2). The energy measured after the parabola is 550 µJ
per pulse. This results in a peak power of 36 GW and an intensity of 7.2× 1017 W/cm2, approximately.
According to Figure 2, this corresponds to a normalized parameter a2z ' 1.7. However, a comparison
with Figure 6 suggests that this value of a2z overestimates the real strength of the interaction. In the
light of the predictions made in Section 4 and the experimental results presented below, it is most likely
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that electron acceleration proceeded in the early phase of the relativistic regime where the longitudinal
electric field is dominant but too weak to create attosecond electron pulses.

5.2. Electron Acceleration Measurements

For the electron acceleration experiment, the few-cycle RPLP presented in the previous section was
focused into a low-density oxygen gas with a controlled pressure of 800 mTorr. According to the
barrier suppression ionization model [81], up to 6 electrons per oxygen atom can be released during
the interaction with the intensity mentioned above. This suggests a maximum photo-electron density of
∼ 3× 1017 cm−3 in the focal region at the peak of the laser pulse.

The experimental configuration for electron acceleration and measurement consisted of a tilted mirror,
a high NA (0.7) on-axis parabola, and the electron deflector and detectors. All components were located
inside a low-pressure (800 mTorr) gas chamber filled with oxygen and aligned with the focusing axis
(see Figure 8). A small aperture hole was drilled in the reflective mirror to let the electron beam
propagate freely to the detectors. To detect the electrons, a particle-sensitive plastic scintillator with
a thin aluminum overcoat was used to convert the incoming electron beam into photons in the visible
region (500 nm). These photons were then collected by a photo-mutiplier tube (PMT) to produce the
correlated signal. To measure the electron distribution, the same scintillator-overcoat combination was
coupled to a high dynamic range (16 bits) CCD camera.

Figure 8. RPLP electron acceleration and measurement set-up. The 25-mm diameter RPLP
is reflected off a mirror placed at 45◦ and sent toward the focusing on-axis parabola. The
resulting longitudinal field at focus is strong enough to ionize the oxygen molecules from
the ambient gas (800 mTorr) and accelerate the photo-electrons along the propagation axis.
The electron beam created passes through a small aperture (4 mm) in the reflecting mirror
and is collected by different detectors positioned 10 cm away from the focal plane .

It is worth mentioning that the carrier-envelope phase of the IR pulse was not stabilized. Therefore,
the carrier phase φ0 was fluctuating randomly between −π and π from shot to shot. The average
transverse profile of the electron beam that propagates through the hole of the reflective mirror is shown
in Figure 9(a). The measured divergence of the electron beam, from the focal plane to the detector, is
37 mrad (half-angle at 1/e). This includes probable space-charge effects and scattering.
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By rotating the linear polarization before the PSC with the help of a half-wave plate, the intensity
of the longitudinal field at focus can be controlled. With a vertical input polarization (90◦), the output
mode of the PSC has a radial polarization (TM01 mode) that generates a maximum longitudinal field in
the focal plane. With a horizontal input polarization (0 and 180◦), the output beam has an azimuthal
polarization (TE01 mode), without a longitudinal field in the focal plane. Figure 9(b) shows the electron
signal measured by the PMT while shifting gradually from a TE01 mode with a purely transverse electric
field to a TM01 mode with a dominant longitudinal electric field. It is observed that the signal peaks
when the effective mode approaches the ideal TM01 mode, where the longitudinal electric field is the
strongest. On the other hand, no signal is observed with the TE01 or TEM00 mode (when removing the
PSC). This is consistent with the RPLB acceleration scheme described in Section 3 where the electrons
are accelerated along the propagation axis by the longitudinal electric field.

Figure 9. Experimental observation of direct longitudinal electron acceleration in
tightly-focused RPLPs. (a) Electron beam profile averaged over 104 shots as observed by
the camera (the circular shadow is the projected small aperture of the reflecting mirror); (b)
Electron signal measurement from the photomultiplier tube while moving gradually from the
TE01 mode (0◦ and 180◦) to the TM01 mode (90◦). The normalized longitudinal electric field
intensity is also indicated; (c)–(d) Electron spectrum measurement through the magnetic coil
(average of 104 shots); (c) Signal with the magnetic coil residual field of 2mT; (d) Signal with
a magnetic field of 10mT. Both measurements confirm the production of 23-keV electrons.
Figure adapted from [20].
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The electron energy measurement was obtained by deflecting the electron beam with the help of a
magnetic coil. The calibrated magnetic field map of the coil allows us to evaluate the electron beam
energy to be approximately 23 keV [Figure 9(c)–(d)]. The width of the energy distribution is estimated
to be under 10% of the mean value of the energy. Electron energy losses from collisions within the gas
chamber is estimated to be 0.02 keV/cm in the 15 to 25 keV range. Therefore, the influence of collisions
on the overall structure of the electron energy spectrum is negligible.

A Faraday cup was used to measure about 1.2 × 106 electrons per laser shot (∼ 0.2 pC per electron
pulse). A linear dependence between the number of charges per shot and the pressure is observed
between 50 mTorr and 1 Torr. This suggests that electron pulses with considerably more charges could
be produced at higher pressures, or with solid-density targets. However, it should be noted that in these
conditions space-charge effects and scattering will also be more important.

Finally, it should be stressed that the experimental set-up did not allow to resolve the temporal profile
of the electron jets. However, the polarization sensitivity measured in Figure 9(b) indicates that electron
emission follows the intensity of the longitudinal field. For a 23-keV electron bunch where vz/c ' 0.3,
we can thus expect a duration in the 20 fs range, close to the beam waist. We recall that non-relativistic
electron pulses will broaden considerably during propagation due to velocity dispersion and space-charge
effects.

6. Discussion and Conclusions

In summary, we have presented a broad overview of longitudinal electron acceleration in radially
polarized laser beams and pulses. The potential of this acceleration scheme has been emphasized by
several authors within the last 20 years. However, it is only until the recent developments in high-power
infrared laser sources at the ALLS facility that direct acceleration of electrons at rest by the longitudinal
electric component has been experimentally confirmed. The theoretical background presented here
suggests that experiments were conducted just at the threshold for producing attosecond electron pulses.

The main limitation of the first ALLS experiment was the conversion efficiency of the fundamental
Gaussian mode to the radially polarized mode. The actual mode converter limited the amount of energy
per pulse to half a mJ. For the next set of experiments, few-mJ RPLPs with only 2 to 3 optical cycles
will be produced. Avenues to produce RPLPs on the 200 TW beamline are also considered. These
improvements will surely bring the future electron acceleration experiments into the sub-cycle regime.

It was shown that the static analysis presented in Section 3 provides good physical insight into
the process of longitudinal electron acceleration in RPLBs. However, it does not provide accurate
predictions. Dynamical analyses, like that presented in Section 4, are essential for a good understanding
of the conditions in which experiments are done. The next generation of numerical analyses will
have to take into account tight focusing, ultrashort pulse duration, ionization dynamics, and particle
correlations. This can be done to a good extent with particle-in-cell codes (see, for example [19]).
However, we emphasize the fact that modelling light-matter interaction processes in high-pressure gases
and solid-density targets may require special numerical tools to correctly predict the dynamics [82].
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In conclusion, attosecond electron diffraction is likely to be achieved at the INRS in a near future.
Improvements to both theory and experimental procedures are still needed. Measuring and characterizing
attosecond electron pulses remains, probably, the biggest challenge.
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Appendix

A. Challenges for Producing High-Power Radially Polarized Laser Beams

In laser resonators, rotational polarization symmetry is usually broken by the introduction of an optical
component that is not perpendicular to the beam path, like an output mirror placed at the Brewster
angle [83]. Nevertheless, if the surfaces of the optical elements inside the resonator are perpendicular
to the cavity axis, the radially and azimuthally polarized transverse modes survive. Although the
discrimination against the fundamental (Gaussian) and high-order modes generally leaves both the TM01

and TE01 modes, a laser cavity can be made to selectively oscillate in only one of the two by introducing
a birefringent [84–86] or diffractive element [87]. Outside the cavity, the complementary TM01 and
TE01 modes can be converted into each other by rotating the transverse electric field component by
90o [84,85,88]. Amplification of radially polarized laser beams is also possible using specially cut
Ti:sapphire crystals [89]. This offers the possibility to create dedicated ultrafast and ultra-intense laser
systems tailored to specific needs.

For applications that rely on existing commercial lasers or ultra-intense laser facilities, the challenge
is to develop methods to convert a linearly or circularly polarized output into radially polarized
radiation with maximum conversion efficiency. The simplest approach is based on a Mach-Zehnder
interferometer [90,91]. Phase masks and diffractive phase elements can also be used for better conversion
efficiency [92–94]. Special polarization converters can achieve > 99% mode purity [27,95]. The beams
obtained then are in good agreement with the most rigorous calculations [25,28]. However, not all these
techniques are practical at the high laser intensities required for electron acceleration. Nonlinear effects,
dispersion, and phase stability are important issues for potential applications of RPLBs in ultrafast
science. To the best of our knowledge, these questions are not fully addressed in the literature.

B. Modelling Tightly Focused Ultrafast Laser Beams in Vacuum

The work of Lax et al. was one of the first to propose a systematic method to deal with the nonparaxial
propagation of laser beams [32]. Following this seminal work, similar perturbative methods have also
been developed for spatial corrections of various types of beams [33,96,97]. The same approach was
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used in the temporal domain to solve the paraxial wave equation for ultrafast pulses [98]. Ultimately,
a unification of these perturbative methods was proposed to deal with tightly focused ultrafast laser
beams in a complete spatio-temporal treatment [30]. Despite its historical importance, the use of
the perturbative approach is limited as it gives open-form solutions in terms of infinite series whose
convergence must be ensured.

Closed-form solutions can generally be obtained via integral (spectral) methods: by direct Fourier and
Hankel transforms [55,99,100] or through angular spectrum decomposition [47,57,101]. Very elegant
solutions were also obtained using the complex source-point model [25,31]. Extending those formalisms
to include both ultrashort duration and strong focusing requires extra care [77]. Final solutions should
be compared against other methods, or submitted to extensive numerical tests (see, for example [102]).
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68. Wong, L.J.; Kärtner, F.X. Direct acceleration of an electron in infinite vacuum by a pulsed
radially-polarized laser beam. Opt. Express 2010, 18, 25035–25051.

69. Scully, M.O.; Zubairy, M.S. Simple laser accelerator: Optics and particle dynamics. Phys. Rev. A
1991, 44, 2656–2663.

70. Singh, K.P.; Kumar, M. Electron acceleration by a radially polarized laser pulse during ionization
of low density gases. Phys. Rev. ST Accel. Beams 2011, 14, 30401.

71. The idea was initially proposed by Moore et al. [103] and by Hu and Starace [104] for
ponderomotive acceleration in Gaussian beams.

72. Bochkarev, S.G.; Popov, K.I.; Bychenkov, V.Y. Vacuum electron acceleration by a tightly focused,
radially polarized, relativistically strong laser pulse. Plasma Phys. Rep. 2011, 37, 603–614.



Appl. Sci. 2013, 3 92
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