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Abstract: The present paper reviews some aspects concerned with the development of 

green technologies in the photopolymerization area: use of visible light sources (Xe and 

Hg-Xe lamps, diode lasers), soft irradiation conditions (household lamps: halogen lamp, 

fluorescence bulbs, LED bulbs), sunlight exposure, development of very efficient 

photoinitiating systems and use of renewable monomers. The drawbacks/breakthroughs 

encountered when going on the way of a greener approach are discussed. Examples of 

recent achievements are presented. 
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1. Introduction 

Photopolymerization reactions are commonly presented as belonging to a green technology 

characterized by low electrical power input and energy requirements, low temperature operation and 

no volatile organic compounds release (solvent-free systems) [1–18]. In industrial sectors, such as 

radiation curing, imaging, microelectronics, medicine or optics (with various and very different 

applications, e.g., in coatings, varnishes, paints, adhesives, graphic arts, printing plates, stereolithography, 

photoresists, laser direct imaging, computer-to-plate technology, holographic optical elements or tooth 
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repair), light-induced polymerization reactions have been very well-known for many years [19]. These 

reactions involve a polymerizable radical or cationic matrix and a more or less complex photoinitiating 

system (PIS) [19–26]. Mercury lamps are largely used as light sources together with doped Hg lamps 

or microwave powered lamps. The delivered lights in the 280–450 nm range often satisfactorily match 

the absorption of PIS. In the context of green chemistry, the avoidance of volatile organic compounds 

is also an important issue. 

Free radical photopolymerization (FRP) is undoubtedly the most popular compared to cationic 

photopolymerization (CP). A PIS contains at least a photoinitiator (PI) and/or a photosensitizer (PS): 

PI (or PS) has to absorb the light [19]. Upon excitation, in FRP, PI becomes excited (PI*) and 

generates (1–4) a radical, R, either directly through cleavage or in the presence of an 

electron/hydrogen donor. When PS is used and excited, the excitation has to move from PS* to PI by 

energy (2) or electron transfer (3): the same R is formed or new ion radicals are created, respectively. 

PI → PI* (h) → radicals R  (1)

PS → PS* (h) → PI* → R (2)

PS → PS* (h) → PS+ + PI− →→→ radicals (3)

R + radical monomer → polymer (4)

In CP (5–8), onium salts (e.g., the iodonium salt referred to here as Ph2I
+; several commercial 

derivatives that do not release benzene are known) are used as PI [19]. Their direct 

homolytic/heterolytic decomposition followed by hydrogen transfer reactions leads to a proton. Their 

photosensitized decomposition occurs according to energy (6) or electron transfer (7). 

PI (Ph2I
+) (h) → PI* →→→ H+ (5)

PS → PS* (h) → PI* →→→ H+ (6)

PS → PS* (h) → PS+ + PI− (e.g., Ph2I
●) (7)

H+ (or PS+) + cationic monomer → polymer (8)

In free radical promoted cationic polymerization (FRPCP) (9–11), a radical, R●, is produced from a 

radical source (RS) (a PI or a PS can play such a role) and then oxidized by Ph2I
+ to form Ph2I

● and a 

cation, R+, suitable for the ring opening reaction (ROP) of epoxides or the cationic polymerization of 

vinyl ethers (the Ph2I
● species readily decomposes into PhI and Ph●) [19]. 

PI → PI* (h) → R● (9)

R● + Ph2I
+ → R+ + Ph2I

● (→ R+ + PhI + Ph●) (10)

R+ + monomer → polymer (11)

The PI, PS and RS have to be selected to absorb the irradiation wavelengths [19]. In FRP, the 

selection of near UV/visible photosensitive systems for industrial applications is quite easy (and 

almost feasible on laboratory scale experiments at any UV-visible wavelength). In CP, as the PIs 

mainly absorb in the UV, the search and the design of suitable PS compounds as energy or electron 
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donors for visible light-induced polymerizations are necessary, but this appears as a rather complex 

task for the photocuring of coatings in industrial lines. Due to its versatility, FRPCP is certainly one of 

the most interesting and promising ways for a cationic polymerization under exposure at  > 350 nm 

(up to 700 nm), but the occurrence of efficient reactions (10 and 11) is not so trivial, and the oxygen 

quenching of the radicals is detrimental.  

The development of photopolymerization reactions towards a green technology can be found in  

five directions:  

(1) search for new PI or PS being able (i) to absorb the visible lights that are very often lost when 

employing conventional mercury lamps and PISs and/or (ii) to move the system towards a UV-free 

exposure (doped Hg lamps, Xe-Hg lamps, Xe lamps).  

(2) use of newly developed high intensity LED or laser diodes operating at well-defined near 

UV/visible wavelengths avoiding the use of Hg-based lamps and the presence of more energetic UV 

wavelengths (254, 313 nm). Today, in industrial applications, LED technology allows highly packed 

arrays operating at 365 or 395 nm, together with a low heat generation, low energy consumption, low 

cost and low maintenance; the development of laser diode arrangements ensures high intensity 

monochromatic irradiations from the blue to the red part of the spectrum.  

(3) development of PISs for soft irradiation conditions and use of low visible light intensity sources, 

e.g., household devices: halogen lamp, fluorescent bulbs and LED bulbs.  

(4) use of sunlight, which is a cheap and inexhaustible energy source (but strongly affected by the 

weather and location) that might be of interest for (i) particular outdoor applications (e.g., for paint 

drying) and (ii) the possibility of curing large dimensioned pieces or surfaces without requiring any 

irradiation device.  

(5) search of natural products or renewable monomers (the plant oil derivatives present attractive 

features, such as versatility, biodegradability and low cost).  

In a general way, the questions that have to be solved for getting a high polymerization efficiency 

concern the PISs and the starting monomers, as well as their adaptation to the available light sources. 

In the present paper, we will (i) discuss the drawbacks/breakthroughs encountered when going on the 

particular way of a greener approach for photopolymerization reactions, (ii) define the key points for 

the design of a high performance PIS in such conditions and (iii) show, as examples, some of our new 

or recent achievements using soft illumination conditions (e.g., household lamps and sunlight 

exposure; typically ~2–10 mW/cm2), visible light irradiation (400 nm <  < 800 nm), use of renewable 

monomers, etc.  

2. Drawbacks/Breakthroughs on the Way to Greener Photopolymerization Reactions 

2.1. The Photopolymerization Reactions 

In photopolymerization reactions [19], the matching of the PIS absorption spectrum with the 

emission spectrum of the light source, as well as the number of available incident photons, I0, is 

crucial. The absorption properties of PI, PS and PIS (ground state spectra and molar extinction 

coefficients, ε) play a decisive role, as the polymerization rate, Rp, is directly connected with the 

amount of light absorbed (Iabs): Iabs = I0 (1-10−cl) where I0, c and l stand for the incident light 



Appl. Sci. 2013, 3 493 

 

intensity, the molar extinction coefficient, the photoinitiator concentration and the sample thickness, 

respectively. The delivered flux of photons can be very high with Hg lamps (Hg arc lamp, doped Hg 

lamps, electrodeless Hg lamps; typically > 1–2 W/cm²), highly packed arrays of light emitting diodes 

(LED) at 365 or 395 nm (a few W/cm²), Hg-Xe or Xe lamps and quite low with household devices 

(halogen lamps, fluorescent bulbs and white or blue LED bulbs; <10 mW/cm²), diode lasers  

(10–100 mW/cm²) or sun (2 mW/cm²). Typical examples of emission spectra are given in Figure 1 for  

various sources.  

Figure 1. Emission spectra of various light sources: Hg-Xe lamp (A), Xe lamp (B), 

household lamps (C) (fluorescent bulb (FB) (a) and blue (b) or white (c) LED bulb), 

Halogen lamp (D). Laser diodes can operate, e.g., at 405, 457, 473, 532, 635 and 808 nm. 
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2.2. Reactions under High Intensity Sources Emitting Visible Lights 

The FRP in the radiation curing area is largely and easily achieved upon irradiation with UV,  

near UV/visible light high intensity sources (various Hg lamps and, more recently, LED arrays) under 

air [1–18], as many efficient (commercially or laboratory available) PISs can operate in the 280–450 nm 

wavelength range [19]. This is exemplified in Figure 2 for the photopolymerization of an  

epoxy-acrylate matrix under air upon exposure to a laboratory Xe-Hg lamp. On industrial lines for 

coating applications, the exposure time is obviously much shorter and the attained cure speeds are 

really high.  

The same holds true in CP as, in addition, oxygen inhibition does not occur. Fast curing speeds are 

reached under light exposure below 400 nm. 

The situation is more complicated in FRPCP, as the usual photoinitiating systems are naturally less 

efficient and sensitive to the presence of oxygen, but new PISs have led to promising developments 

(see below).  
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Going to longer wavelength exposures (450–700 nm) can also be achieved in FRP, CP and FRPCP 

using appropriate conventional PISs, provided that relatively high intensity light sources and viscous 

media are used. A real progress, however, has been realized in recent works and many PISs that meet 

this challenge (even with low intensity lights and low viscosity media) have been proposed in the last 

five years (see, e.g., [19,27–76] and references therein).  

Figure 2. Polymerization kinetic of an epoxy-acrylate (Ebecryl 605 from Cytec) upon  

Hg-Xe lamp exposure (60 mW/cm²); photoinitiator: 2-2'-dimethoxy-2-phenylacetophenone. 

Under air; the polymerization only starts with the irradiation. 
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2.3. The Oxygen Inhibition 

In FRP and FRPCP, a well-known drawback [19] concerns the oxygen inhibition (12–14), which is due 

to the excited triplet state quenching (3PI or 3PS) by O2 and the scavenging of the initiating R and 

propagating RMn
 radicals by O2 (a nearly diffusion controlled reaction; highly stable peroxyl radicals 

are formed). The polymerization starts in the film as soon as oxygen is consumed. The practical effects 

of this phenomenon strongly depend on the experimental conditions. In highly viscous or thick 

samples (e.g., epoxy acrylate matrices), the re-oxygenation process is slow, which leads to an efficient 

polymerization after an inhibition period. The top layer in contact with air is easily polymerized, 

provided that a high PI concentration and a high light intensity are used: this is easily feasible in thin 

samples; it might be more complicated in thick samples. On the opposite, in very low viscosity media 

(e.g., di- or tri-functional monomers, such as trimethylol-propane triacrylate (TMPTA) or  

3,4-epoxycyclohexane)methyl 3,4-epoxycyclohexylcarboxylate (EPOX), the re-oxygenation remains 

efficient, thereby reducing the monomer conversions. In addition, when the light intensity is 

attenuated, the oxygen inhibition has a dramatic effect on the polymerization profile, due to (i) the 

lowering of the initial O2 consumption process and, as a consequence, (ii) the decrease of the initiating 

radical concentration (as a higher amount of these radicals are trapped by O2). As is known, decreasing 

the oxygen inhibition effect can be achieved through various strategies (see a review in [19]). The 

recent introduction of a novel approach has led to successful results (see below). 
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PI → 1PI* (h) → 3PI* → R → → → RMn
 (12)

3PI* + O2 → quenching (13)

R (RMn
) + O2 → R-O2

 (RMn-O2
) (14)

2.4. The Soft Irradiation Conditions 

The above mentioned considerations explain why the FRP is difficult when using visible light and 

low intensity sources under air. For example, the development of sunlight photosensitive formulations 

(see, e.g., [77–85] and references therein; see also the patent literature aiming at industrial 

applications) for the drying of paints for crack-bridging applications, anti-soiling properties, the 

manufacture of interpenetrating polymer networks (IPN) usable as protective coatings and glues, the 

fabrication of glass fiber reinforced composites, hard and rigidified four layer glass cloth laminate, 

clearcoats and polymer–clay composites has been realized in the past, but these systems, except some of 

them (e.g., those described in [79,80,84]) suffer from oxygen inhibition and a relatively  

low photosensitivity. 

As stated above, except some colored systems (e.g., the ferrocenium salts), the usually employed 

cationic PIs (onium salts) for CP absorb in the UV. Even in academic laboratories, efficient 

photosensitization reactions of cationic PISs upon visible light is rather limited, as the possible 

efficient electron donor/onium salt couples are in a very limited number, despite careful research [19].  

In FRPCP, the main problem concerns the choice of PIs, leading to an efficient R+ initiating cation 

(3): few examples were known; most systems operated in the near UV; the efficiency/reactivity was not so 

high [86–95]. Interesting systems have been shown to work under sunlight, but in laminated conditions 

[96–98], they have, however, opened up promising perspectives. Through the very recent development 

of efficient visible light sensitive systems, FRPCP has known a substantial progress (see below).  

2.5. The Development of New Photosensitive Systems 

It clearly appeared that the development of PIS should proceed through new concepts, ensuring  

an increase of their photochemical/chemical reactivity. In this direction, a noticeable improvement  

was noted with the introduction of the silyl chemistry into PISs [99,100]. The silane (e.g.,  

tris-(trimethylsilyl)silane (TTMSS)) becomes a magic additive, which renders more feasible the 

photopolymerization reactions in aerated conditions. In a silane containing PIS for FRP, initiating silyl 

radicals are generated: (i) they consume oxygen (15); (ii) scavenge the peroxyls  

(16 and 17) and (iii) regenerate new silyls. As a consequence, the oxygen inhibition is reduced, and the 

total amount of interesting R3Si increases, so that oxygen becomes a mediator in the initiating radical 

production.  

R3Si + O2 → R3Si-O2
 (15)

R3Si-O2
 + R3Si-H  R3Si-O2H + R3Si (16)

RMn-O2
 + R3Si-H  RMn-O2H + R3Si (17)
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The same holds true in FRPCP, which is usually affected by the presence of oxygen. In a silane 

containing PIS, the oxygen inhibition is dramatically decreased as resulting from (15–17). Moreover, 

the addition of the iodonium salt allows an oxidation of the silyl radical (18): a R+ cation is formed and 

can serve as a very efficient initiating species (19). In such PIS, an interesting feature relates to the 

possibility of forming the same cationic species, R+, whatever the starting absorbing radical source 

(RS) (contrary to reaction 10, where the nature of the cation is dependent on the starting PI). RS can be 

a usual PI or PS (but also any other compound) being able to form silyls by cleavage of, e.g., a C–Si or 

a Si–Si bond (20), and an electron/proton transfer with, e.g., ketones or dyes (21).  

R3Si + Ph2I
+ → R3Si+ + Ph2I

● (18)

R3Si+ + monomer → Polymer (19)

RS (h) → R3Si + counter radical (20)

RS + R3SiH (h) → R3Si + RSH (21)

Therefore, the novel introduction of this silyl chemistry opens a new way to cure coatings under 

UV and visible lights. Interestingly, this also allows photocuring under soft conditions (visible light 

using exposure to Xe lamps, household halogen lamps, diode lasers (405, 457, 532, 635 nm), LED 

bulbs and sun; low intensity sources), under air, using relatively low viscosity matrices [101]. Figure 3 

shows the role of the silane in the typical FRP and FRPCP of aerated curable formulations under near 

UV/visible lights. The germyl [102] and boryl [103] chemistries can play a similar role. In the same 

way, N-vinyl carbazole (NVK) was recently advantageously introduced into a formulation instead of 

the silane [104]; NVK is a cheap and efficient alternative to tris(trimethylsilyl)silane. Using other PISs 

and monomers (e.g., divinyl ethers), higher final conversions can be reached.  

Figure 3. Photopolymerization kinetics of (A) an acrylate monomer (trimethylol-propane 

triacrylate (TMPTA) from Cytec) using a phosphine oxide as the photoinitiator in the  

absence (1) or in the presence (2) of tris-(trimethylsilyl)silane (TTMSS) (3% w/w); (B) an 

epoxy monomer ((3,4-epoxycyclohexane)methyl 3,4-epoxycyclohexylcarboxylate 

(EPOX), Uvacure 1500 from Cytec) using an hydroxyl alkyl acetophenone/iodonium salt 

(1%/1% w/w) as the photoinitiating system in the absence (1) or in the presence (2) of 

TTMSS (3% w/w); under air; Xe lamp exposure. 
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The current efforts result in an amazing series of proposals of new PISs [27–76]. For example, we 

have recently introduced PISs ([51–76,99–107]) exhibiting really novel absorption properties (red-shift 

absorptions, multicolor absorptions, enhanced molar extinction coefficients, ε): e.g., colored 

substituted or functionalized ketones [60], modified organometallic derivatives [70–72,108–117] 

(ruthenium-, iridium-, platinum-, zirconium- and zinc-based complexes, titanocene derivatives…), 

various series of dye-based skeletons [61–63,65–68,74–76] (e.g., phenylenediamine, polystilbene, 

polyazine, violanthrone, acridinedione, 2,7-di-tert-butyldimethyldihydropyrene, bodipy, boranyl, 

thiophene, perylene bis-dicarboximide, hydrocarbons, pyrromethene, pyridinium salt…), di- and  

tri-functional architectures of photo initiators [64], light harvesting compounds [57,58] (where a strong 

molecular orbital coupling occurs, leading to ε huge values) and push-pull and multicolor 

photoinitiators (novel chromophores; donor--acceptor arrangements; unusual broad absorptions from 

the blue to the red wavelengths…). 

2.6. The Photoredox Catalysis 

The further introduction of the silyl chemistry into photoredox cycles (as those known in organic 

synthesis purposes using photocatalysts (PC) [108–117]) has recently led to interesting possibilities of 

FRP and FRPCP reactions under soft conditions in aerated media [75,76,105–107]. Novel PIs working 

as PCs through an oxidation cycle (metal complexes or organic metal-free compounds) in combination 

with a silane and an iodonium salt have been designed (22–25); they allow successful excitations of 

cationic or radical matrices up to 635 nm under air. Other systems involving a PC, an amine AH and 

an alkyl halide R-Br operate through a reduction cycle (26 and 27). When PC stands for a PI that is 

regenerated in these PISs, the photoinitiator becomes a photoinitiator catalyst (PIC). 

PC + Ph2I
+ (h) → PC●+ + Ph + Ph-I (22)

Ph + R3Si-H → Ph-H + R3Si (23)

R3Si + Ph2I
+ → R3Si+ + Ph + Ph-I (24)

PC●+ + R3Si → PC + R3Si+ (25)

PC + AH → PC− + AH+ (eventually → PC-H + AH
(-H)) (26)

PC●− + R-Br → PC + R● + Br− (27)

2.7. Renewable Monomers and Oligomers 

Renewable monomers/oligomers have been proposed and studied; e.g., (i) acrylates: acrylated 

vegetable oils [118], natural or naturally derived products (photocrosslinkable polylactides [119],  

ε-caprolactone [120,121], poly (lactide-co-ethylene oxide-co-fumarate) [122], poly(caprolactone-co-

lactic acid) [123], methacrylate based gelatine derivatives [124], acrylate modified starch [125] and 

itaconic acid based photocurable polyesters [126]; (ii) epoxides: epoxidized sunflower [127,128], 

epoxidized soybean oil (ESO), linseed oil, vernonia oil or castor oil (see in [129]), limonene dioxide 

(LDO) [130] (limonene is a liquid terpene found in various volatile oils, such as cardamom, nutmeg 

and turpentine; LDO can be formed through oxidation of limonene by peracids), epoxidized natural 

rubbers [131], vegetable oils [132] and epoxidized fatty acid (EFA); or (iii) resins based on vegetable  
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oil [133,134], soybean [135], rosin ester [136], tung [137] and palm stearin [138,139] and castor oil. 

The photopolymerization of such monomers is more or less efficient as a function of the chemical 

structure, the multifunctional character or the irradiation conditions. Some typical renewable monomer 

compounds are shown in Scheme 1. 

Scheme 1. Investigated Renewable Monomers. 

 

3. Greener Photopolymerization Reactions: Attained Performance in Recent Laboratory  

Scale Experiments 

3.1. 3a/ Soft or Eco-Friendly Photopolymerization of Synthetic Monomers  

In this part, we will show some examples (extracted from our own work [51–76]), which illustrate 

today’s green character of the photopolymerization reactions of synthetic monomers (other experiments 

using renewable monomers will be presented below with more details). TMPTA (trimethylol propane 

acrylate) and EPOX ((3,4-epoxycyclohexane)methyl 3,4-epoxycyclohexylcarboxylate) will be used as 

representative low viscosity monomers. Divinyl ethers (e.g., triethylene glycol divinyl ether (DVE-3)) 

can also be photopolymerized. All the formed coatings are tack-free. 

3.1.1. Design of New PIS Allowing a UV-Free Exposure and Ensuring the Use of Visible Light  

Figure 4 shows some polymerization profiles of EPOX using typical visible light absorbing PISs. A 

Xe lamp ensures fast CP and FRPCP processes. The FRP of acrylates is also feasible under such 

irradiation conditions. Therefore, visible photons can be successfully used and Hg lamps avoided. The 

recent development of di-and tri-functional architectures of PIs, light harvesting PIs and push-pull and 

multicolor PIs opens a route towards highly absorbing PIs in the 400–800 nm range [57,58,64,73].  

3.1.2. Use of Newly Developed LEDs and Laser Diodes Avoiding Hg-Based Lamps  

Excellent conversion vs. time curves can be recorded upon excitation with a laboratory LED device 

at 365 nm (Figure 5) [64]. Commercial highly packed LED systems lead to the cure speeds attained 

with Hg lamps. According to the usual absorption spectra of PIs in the UV, many PIs work in these 

conditions [19]. A smaller number of systems can operate at 395 nm. Recently developed PISs 

operating in the near-UV/visible range (e.g., [57,58]) noticeably extend the scope of the existing 

structures and should be efficient upon a 395 nm LED irradiation. 
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Figure 4. Photopolymerization profiles of 3,4-epoxycyclohexane)methyl 3,4-

epoxycyclohexylcarboxylate (EPOX) under air upon Xenon lamp exposure  

(~60 mW/cm2) in the presence of (1) bis(acyl)phosphine oxide (BAPO)/iodonium salt 

(1%/1% w/w); (2) BAPO/iodonium salt/TTMSS (1%/1%/3% w/w); (3) BAPO/iodonium 

salt/tetraphenyldisilane (1%/1%/3% w/w). Instead of BAPO, more colored structures, such 

as titanocenes and other dyes, can be used. 
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Figure 5. Photopolymerization profiles of EPOX under air upon 365 nm LED exposure 

(~50 mW/cm2) in the presence of (a) triazine-pyrene/TTMSS/iodonium salt (1%/3%/2% 

w/w); (b) pyrene/(TTMSS/iodonium salt (1%/3%/2% w/w); (c) iodonium salt (2% w/w). 
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Laser diodes also lead to efficient FRP, CP and FRPCP [51–76]. New PIS exhibit an absorption that 

satisfactorily matches the emission of the sources from the blue to the red: this is exemplified in  

Figure 6, where three kinds of PI can be used with four examples of LED bulbs; TMPTA, as well as 

EPOX can be polymerized. Laser diode arrays obviously allow faster curing speeds. 
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Figure 6. (A) Polymerization profiles of TMPTA upon Xe-Hg lamp irradiation ( > 390 nm) 

in laminated conditions in the presence of (1) Napht (0.5% w/w);  

(2) Napht/Ethyl-dimethylaminobenzoate (EDB) (0.5%/4.5% w/w); (3) Napht/EDB/phenacyl 

bromide (0.5%/4.5%/3% w/w). (B) Compared polymerization profiles of EPOX under air 

upon a red LED bulb irradiation in the presence of: (1) Pent/Ph2I
+ (0.5%/ 2% w/w) and  

(2) Pent/TTMSS/Ph2I
+ (0.5%/3%/ 2% w/w). Insert: emission spectra of the used LED bulbs 

(2–12 mW/cm²); different photoinitiators recently proposed [75,76]. 
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3.1.3. Development of PISs for Soft Irradiation Conditions  

Household devices, such as halogen lamps, fluorescent bulbs and LED bulbs, deliver low intensity 

visible light and are used in organic synthesis. They have been recently introduced for the 

photopolymerization of low viscosity monomers under air [51–76] (see, again, the polymerization 

profiles under a red LED bulb exposure in Figure 6). Today, many PIS allow FRP, CP and FRPCP in 

these irradiations conditions: e.g., Figure 7 shows an efficient polymerization of EPOX under halogen 

lamp exposure. It is obvious that all the work on the design of PISs carried out in this area should be 

very helpful for potential and promising applications with more energetic light sources in both 

laboratory scale devices and industrial lines. 
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Metal-based, as well as metal-free photoinitiator catalysts operating on the basis on a photoredox 

catalysis can efficiently initiate a radical or a cationic photopolymerization or a radical/cationic hybrid 

curing [75,76,105]. Figure 8 shows the achieved performance when using a Ru complex as a 

photocatalyst for the FRPCP of EPOX under a household fluorescent bulb exposure. Ir-, Pt- or  

Zn-based complexes also lead to interesting results under soft visible irradiation; interpenetrated 

radical/cationic networks can be formed (see, e.g., [51–76,105]).  

Figure 7. Compared polymerization profiles of EPOX under air upon halogen lamp 

irradiation (~12 mW/cm²) in the presence of: (1) BAPO/Ph2I
+ (1%/2% w/w);  

(2) NVK/Ph2I
+ (1%/2% w/w); and (3) BAPO/N-vinylcarbazole (NVK)/Ph2I

+ (1%/3%/2% 

w/w). Other PIs, such as bodipy, boranyl, violanthrone, pyrromethene dyes, etc., can 

operate [61–63,65–68,74,75]. 
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Figure 8. IR spectra recorded in the course of a photopolymerization of EPOX; initiating 

system: Ru(bpy)2+/Ph2I
+/(TTMSS (0.2%/2%/3% w/w) upon fluorescence bulb irradiation 

(~5–12 mW/cm²). A final conversion of 60% is obtained after 4 min.  
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3.1.4. Use of Sunlight Irradiation 

Sun is the lowest intensity source used in this paper (2 mW/cm²). Efficient photopolymerization 

reactions still appear as relatively extremely hard. The FRP was mainly restricted to complex paint 
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formulations (see the patent literature) or acrylates dispersed in a solid matrix [80,92]. On the opposite 

side, CP and FRPCP were reported as possible [96–98].  

Recently, the FRP of a viscous matrix under air (e.g., an epoxy-acrylate having a viscosity of 

~14,000 cP) has been carried out using efficient PISs based on silyl radical chemistry (50% conversion 

within 20 s and a final conversion of 75% at t = 8 mn using a bis(acyl)phosphine oxide (BAPO) and a 

silane) [77]. CP and FRPCP now appear as relatively easily feasible (see e.g., Figure 9); once again, 

the use of a three-component photoinitiating system based on a photoinitiator, an iodonium salt and a 

silane (or N-vinylcarbazole) allows an efficient curing of a usual difunctional epoxide matrix under air 

(see, e.g., in [51–76]).  

Figure 9. Compared polymerization profiles of EPOX under air upon sunlight  

(Mulhouse-France, 2 mW/cm²); in the presence of: (1) BAPO/Ph2I
+ (1%/2% w/w); (2) 

NVK/Ph2I
+ (1%/2% w/w); and (3) BAPO/NVK/Ph2I

+ (1%/3%/2% w/w).  
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3.2. 3b-Photopolymerization of Renewable Monomers 

Some typical examples of photopolymerization profiles of renewable epoxy resins upon visible 

light exposure (Xe lamp) are displayed in Figure 10 (see also Table 1). Among the different 

compounds depicted in Scheme 1, LDO is the most reactive monomer. This is in agreement with the 

cyclohexyl epoxy structure, where the ring opening process is highly favorable [19]. The 

polymerization is slower with ESO, ELO (epoxidized linseed oil) and EFA, but quite good final monomer 

conversions can be reached (40%–60%; Figure 10B) using a combination of the photoinitiator with an 

iodonium salt and a silane; moreover, tack-free coatings are formed. In any case, a decrease of the 

band at ~790 cm−1 (due to the epoxy ring) is monitored, whereas an increase of the IR absorption band 

of the polyether network is observed in the 1050–1150 cm−1 range. The photoinitiating system is 

important for getting a high reactivity, as exemplified by Figures 10A and 11, where different 

photoinitiating systems lead to very different polymerization profiles. Photoinitiating systems based on 

bis-acylphosphine-oxides (BAPO) are very efficient (Table 2). 

Extremely soft irradiation conditions can also be used. Figure 12 shows the epoxide consumption 

and the formation of the polyether network under a household fluorescent bulb or sunlight exposure 

under air. In outdoor conditions, tack-free coatings are obtained with LDO, ELO and ESO (Table 2). 
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As before, the polymerization profiles of these monomers are also clearly improved by the presence of 

a silane, i.e., for ELO, a tack-free coating is obtained within only 9 min in the presence of a silane 

(TTMSS) vs. 50 min in the absence of the silane.  

Figure 10. Photopolymerization kinetics of (A) an epoxy monomer, limonene dioxide 

(LDO) using different photoinitiating systems: (a) benzophenone-sulfonyl ketone 

(BPSK)/Ph2I
+/TTMSS (1%/2%/3% w/w); (b) BAPO/Ph2I

+/TTMSS (1%/2%/3% w/w); (c) 

3,3-carbonylbis-(7-methoxycoumarin)/Ph2I
+/TTMSS (1%/2%/3% w/w); (B) different 

epoxy monomers: (a) LDO; (b) epoxidized soybean oil (ESO); (c) epoxidized fatty acid 

(EFA); (d) ELO using an initiating systems: BPSK/Ph2I
+/TTMSS (1%/2%/3% w/w). 

Xenon lamp exposure ( > 400 nm; (~60 mW/cm²)); under air; BPSK is a  

benzophenone-sulfonyl ketone difunctional photoinitiator [19]. 
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Figure 11. Photopolymerization profile of ELO using an initiating system: 

BAPO/Ph2I
+/TTMSS (1%/2%/3% w/w) upon Xenon lamp exposure; under air.  
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As the polymerization efficiency in the presence of EPOX, LDO or ESO in the same experimental 

conditions are relatively close, it is obvious that renewable monomers can be successfully used in 

photocurable formulations operating in a large range of excitation wavelengths delivered by 

polychromatic (Xe lamps, household lamps) and (quasi) monochromatic (LED and laser diodes) light 

sources and sun. Some high performance PISs developed in the last year (see, e.g., the 2012 and 2013 
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references in [57–76]) should ensure a faster formation of tack-free coatings upon sunlight exposure 

under air: work is under progress. 

Table 1. Polymerization rates and final conversions of different renewable epoxides using 

BAPO/Ph2I
+ (1%/2% w/w) as the photoinitiating system in the absence (a) or in the 

presence (b) of tris(trimethylsilyl)silane (TTMSS) (3% w/w); under air; Xenon lamp 

irradiation (λ > 400 nm). 

Monomers Rp/[M0] 
c (s−1)  Conversion  

LDO a 0.016 71.4% 

ESO a 0.002 21.5% 

ELO a 0.0002 7.0% 

EFA a 0.001 9.0% 

LDO b 0.05  81.4% 

ESO b 0.006  43.1% 

ELO b 0.0006  29.7% 

EFA b 0.001  29.0% 
a in absence of silane; b in presence of silane; c [M0] is the initial monomer concentration. 

Figure 12. IR spectra recorded in the course of a photopolymerization of ELO; initiating 

system: BPSK/Ph2I
+/TTMSS (1%/2%/3% w/w): (A) fluorescent bulb irradiation (from  

t = 0 to 30 min) and (B) sunlight exposure (from t = 0 to 30 min); under air. 
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Table 2. Irradiation times to get tack-free coatings using BAPO/Ph2I
+ (1%/2% w/w) in the 

absence (a) or in the presence (b) of tris(trimethylsilyl)silane (TTMSS) (3% w/w) upon 

sunlight exposure; under air.  

Monomer  Tackfree  

LDO a 48 min 

ESO a * 

ELO a 50 min 

EFA a * 

LDO b 12 min 

ESO b 45 min 

ELO b 9 min 

EFA b * 
a in absence of silane; b in presence of silane; *: no tack-free coating after 1 h. 



Appl. Sci. 2013, 3 505 

 

4. Conclusions 

This paper has reviewed some aspects concerned with the development of green technologies in the 

photopolymerization area. Interesting visible light irradiation sources (Xe lamps, diode lasers, LEDs, 

household lamps and, obviously, sun) today allow large possibilities of excitation from the near-UV to 

the near-infra-red. The development of very efficient PISs sensitive in the blue-to-red wavelength 

range for radical and cationic polymerization reactions undoubtedly opens new opportunities of 

polymerization reactions. Working in the absence of UV lights under air is on the right path today. 

Harmful Hg lamps can be avoided. Applications where (i) low light intensities are available (e.g., with 

sunlight) or required or (ii) quite low viscosity monomers (particular acrylates or cationic monomers) 

or thin films have to be employed become possible. Using sunlight, which has been a dream for a long 

time, might be within reach. The photopolymerization of renewable monomers is quite feasible. 

However, such monomers have to be designed as a function of the applications and the desired final 

material properties.  

Many new additional works have to likely be proposed, for example, in the radiation curing area. It 

seems difficult today to find renewable acrylates exhibiting a performance close to that of the usual 

synthetic di- and tri-functional monomer/oligomers. The situation is different with the renewable 

epoxides, i.e., the compared performance of LDO and artificial epoxides are close in terms of 

polymerization rates and conversions, and the fabrication of glass fiber-reinforced composites with 

epoxidized vegetable oils has already been reported. Important questions may appear, e.g., about the 

physical/mechanical/surface, etc., properties of the cured material when starting from a conventional 

synthetic monomer or a modified natural raw compound. All the work described here was conducted 

in organic media: the use of water-borne formulations is noticeably less developed and the 

investigation of the photopolymerization of water-reducible, as well as water-based dispersions upon 

visible light exposure under air might also deserve to be carried out.  

In the different topics discussed throughout this paper, much has been done, but much still remains 

to be done. The efforts deployed during the last thirty years to develop green aspects of the 

photopolymerization area begin to change, however, what was a challenge into a reality.  
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