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Abstract: Two α-synuclein ligands, 3-methoxy-7-nitro-10H-phenothiazine (2a,  

Ki = 32.1 ± 1.3 nM) and 3-(2-fluoroethoxy)-7-nitro-10H-phenothiazine (2b,  

Ki = 49.0 ± 4.9 nM), were radiolabeled as potential PET imaging agents by respectively 

introducing 11C and 18F. The syntheses of [11C]2a and [18F]2b were accomplished in a good 

yield with high specific activity. Ex vivo biodistribution studies in rats revealed that both 

[11C]2a and [18F]2b crossed the blood-brain barrier (BBB) and demonstrated good brain 

uptake 5 min post-injection. MicroPET imaging of [11C]2a in a non-human primate (NHP) 

confirmed that the tracer was able to cross the BBB with rapid washout kinetics from brain 

regions of a healthy macaque. The initial studies suggested that further structural 

optimization of [11C]2a and [18F]2b is necessary in order to identify a highly specific 

positron emission tomography (PET) radioligand for in vivo imaging of α-synuclein 

aggregation in the central nervous system (CNS). 

Keywords: Lewy bodies; Parkinson’s disease; PET; phenothiazine;  

radiosynthesis; α-synuclein 
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Abbreviations: α-syn, α-synuclein; BBB, blood-brain barrier; calcd., calculated; CNS, central 

nervous system; DBU, 1,8-diazabicyclo[5.4.0]undec-7-ene; DCM, dichloromethane; DMF,  

N,N-dimethylformamide; DMSO, dimethyl sulfoxide; EOB, end of bombardment; [18F]FEOTs, 

[18F]fluoroethyltosylate; HPLC, high performance liquid chromatography; HRMS, high resolution 

mass spectrometry; LBs, Lewy bodies; LNs, Lewy neuritis; NHP, non-human primate; PD, 

Parkinson’s disease; PET, positron emission tomography; QC, quality control; RCY, radiochemical 

yield; SAR, structure-activity relationship; SD, Sprague Dawley; SUV, standardized uptake value; 

TAC, time-activity curve; VMAT2, vesicular monoamine transporter type 2. 

1. Introduction 

Although Parkinson’s disease (PD) is a degenerative neurological disorder characterized by motor 

symptoms, it is also known to be closely associated with dementia [1]. The primary neuropathologic 

change in PD, the degeneration of dopaminergic neurons, occurs in the substantia nigra, accompanied 

by Lewy bodies (LB) and Lewy neurites (LN). To date, the pathogenic mechanism of PD is not fully 

understood [2]. The diagnosis of PD is primarily based on the clinical symptoms, such as resting 

tremor, bradykinesia and rigidity. Because the current treatment for PD is to minimize the disease 

symptoms in the patients [1,3], a method of diagnosing PD at a very early stage would greatly help 

physicians to design the therapy accordingly.  

α-Synuclein (α-syn) is a presynaptic terminal protein that consists of 140 amino acids; the 

aggregation of α-syn is considered the pathological hallmark of PD. α-Syn plays an important role in 

the central nervous system (CNS) in synaptic vesicle recycling; it also regulates the synthesis, storage 

and release of neurotransmitters [4]. It is specifically upregulated in a discrete population of 

presynaptic terminals of the brain during acquisition-related synaptic rearrangement [5]. α-Syn 

naturally exists in a highly soluble, unfolded state [6,7]. However, in PD brains, insoluble aggregation 

of misfolded fibrillar α-syn occurs in LB and LN, which may cause synaptic dysfunction and neuronal 

cell death [8–11]. Positron emission tomography (PET) is a non-invasive imaging modality that can 

provide the functional information of a living subject at the molecular and cellular level. Current 

diagnostic PET radioligands for PD target either the dopaminergic system (pre-synaptic and  

post-synaptic dopamine activity) or vesicular monoamine transporter type 2 (VMAT2) [12,13]. 

Unfortunately, such imaging strategies have difficulty in distinguishing PD from other parkinsonian 

syndromes that also result in the degeneration of nigrostriatal projections [14,15]. In addition, 

dopaminergic medications used for symptomatic treatment may alter striatal uptake of these agents, 

limiting their reliability for measuring disease progression [16]. In contrast, α-syn is a valuable 

imaging target for PD, because fibrillar α-syn deposition in LB and LN distinguishes PD from other 

disorders and is the defining feature for post-mortem pathologic diagnosis. Thus, a small molecular 

PET radiotracer with high affinity and selectivity to fibrillar α-syn protein could be used to quantify 

the level of α-syn aggregation non-invasively. This will not only improve the diagnostic accuracy of 

PD, but also provide a tool to improve the understanding of disease progression and monitor the 

therapeutic efficacy in clinical trials. 

Our group previously reported the syntheses of a class of tricyclic analogues and their in vitro 

binding affinities towards α-syn fibrils; several lead compounds were identified with moderate 
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affinities for α-syn fibrils (Ki < 70 nM) (Figure 1, 2a, 2b) [17]. Compounds 2a and 2b also displayed 

favorable binding selectivity to α-synuclein aggregation compared to Aβ and tau protein: for 2a,  

Ki-α-syn/Ki-Aβ > 3-fold and Ki-α-syn/Ki-tau > 4-fold; for 2b, Ki-α-syn/Ki-Aβ = 2.1-fold and  

Ki-α-syn/Ki-tau = 2.5-fold [18]. The radioiodinated ligand, [125I]1, was synthesized to establish a 

methodology for screening the α-syn fibril binding affinity of new ligands using a competition binding 

assay [18]. The affinities for 2a and 2b were determined using this [125I]1 assay, and the resulting Ki 

values (66.2 nM for 2a, 19.9 nM for 2b) were in the same range as the values obtained by the 

Thioflavin T assay. The 125I competition assay further confirmed the previously determined in vitro 

potency of 2a and 2b, which were developed as potential PET radioligands to be radiolabeled by 11C 

or 18F. In the current manuscript, we report the radiosyntheses of [11C]2a and [18F]2b and their 

validation in animal studies to determine whether [11C]2a and [18F]2b can penetrate the blood-brain 

barrier (BBB), have sufficient brain uptake and fast washout from the brain. Results of ex vivo 

biodistribution of [11C]2a and [18F]2b in Sprague-Dawley rats and microPET CNS imaging in a 

cynomolgus macaque of [11C]2a suggest that further structure-activity relationship (SAR) study is 

necessary for identifying a highly specific PET radioligand targeting α-syn aggregation. 

Figure 1. Potent tricyclic aromatic ring analogues. a Thioflavin T fluorescence assay; b 125I 

competitive binding assay; c 95% confidence intervals for Ki values are shown  

in parentheses. 
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2. Experimental Section  

2.1. Chemistry 

2.1.1. General 

All reagents and chemicals were purchased from Sigma-Aldrich Corporation (Milwaukee, WI, 

USA) and used without further purification, unless otherwise stated. The melting points of all 

intermediates and final compounds were determined on a Haake-Buchler melting point apparatus and 

are uncorrected. 1H and 13C NMR spectra were recorded on a Varian-400 MHz spectrometer (Varian 

Inc. Palo Alto, CA, USA), which is maintained by the Chemistry Department of Washington 

University in St. Louis, MO, USA. Spectra are referenced to the deuterium lock frequency of the 

spectrometer. The chemical shifts (in parts per million) of residual solvents were found to be at 7.26 

for CHCl3 and at 2.50 for dimethyl sulfoxide (DMSO).  
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Compound 4, the precursor for radiolabeling [11C]2a and [18F]2b, was synthesized according to 

Scheme 1 and the previously reported procedure [17] with necessary modification. 

Scheme 1. Synthesis of phenol Precursor 4. rt, room temperature. Reagents and conditions: 

a AcCl, DCM, rt, overnight; b BBr3 in DCM (1.0 M), DCM, −78 °C–rt, overnight. 

 

2.1.2. 1-(3-Methoxy-7-nitro-10H-phenothiazin-10-yl)ethanone (3) 

Acetyl chloride (360 mg, 4.59 mmol) was added into the solution of Compound 2a (420 mg,  

1.53 mmol) in dichloromethane (10 mL). The reaction mixture was stirred overnight at room 

temperature (rt). The solvent and excess acetyl chloride was removed under reduced pressure. The 

residue was dissolved in ethyl acetate and washed with water and saturated sodium chloride solution. 

The organic extract was dried over anhydrous Na2SO4 and purified by silica gel column 

chromatography using ethyl acetate/hexane (1/2, v/v) as the mobile phase to yield Compound 3 as a 

yellow solid (267 mg, 55%). 1H NMR (CDCl3): δ 2.23 (s, 3H), 3.83 (s, 3H), 6.90 (d, J = 9.0 Hz, 1H), 

6.98 (s, 1H), 7.32 (d, J = 8.7 Hz, 1H), 7.72 (d, J = 8.7 Hz, 1H), 8.18 (d, J = 8.7 Hz, 1H), 8.29 (s, 1H). 
13C NMR (CDCl3): δ 22.9, 55.7, 112.7, 114.0, 122.0, 122.9, 127.4, 127.9, 130.7, 133.2, 134.3, 144.7, 

145.6, 158.5, 169.2. Combustion elemental analysis (anal.) calculated (calcd.) for C15H12N2O4S: C, 

56.95; H, 3.82; N, 8.86. Found: C, 56.72; H, 3.89; N, 8.70. mp 155.9–156.8 °C. 

2.1.3. 1-(3-Hydroxy-7-nitro-10H-phenothiazin-10-yl)ethanone (4) 

A solution of BBr3 in dichloromethane (1.0 M, 4.2 mL) was added dropwise to a solution of 

Compound 3 (267.3 mg, 0.84 mmol) in dichloromethane (15 mL) at −78 °C. The reaction solution was 

stirred overnight at rt. The solvent was removed under reduced pressure. The residue was partitioned 

between ethyl acetate and water. The organic extract was dried over anhydrous Na2SO4 and purified by 

silica gel column chromatography using ethyl acetate/CH2Cl2 (1/10, v/v) as the mobile phase to yield 

Compound 4 as a yellow solid (207.4 mg, 81%). 1H NMR (DMSO-d6): δ 2.15 (s, 3H), 6.82 (d,  

J = 9.0 Hz, 1H), 6.93 (s, 1H), 7.47 (d, J = 9.0 Hz, 1H), 7.82 (d, J = 9.0 Hz, 1H), 8.22 (d, J = 9.0 Hz, 

1H), 8.39 (s, 1H), 10.00 (br s, 1H). 13C NMR (DMSO-d6): δ 23.0, 114.3, 115.3, 122.6, 123.2, 128.4, 

128.5, 129.3, 132.3, 134.2, 145.1, 145.6, 156.7, 169.1. High resolution mass spectrometry (HRMS, 

ESI): m/z calcd. for C14H10N2O4S [M + 1] 303.0440. Found: 303.0435. Purity: 98% (HPLC 

confirmed). mp 202.3–205.1 °C. 
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2.2. Radiochemistry 

2.2.1. Radiosynthesis of [11C]2a 

2.2.1.1. Production of [11C]CH3I 

Briefly, [11C]CH3I was produced from [11C]CO2 using a GE PETtrace MeI Microlab (GE 

Healthcare, Fairfield, CT, USA). Up to 51.8 GBq of [11C]CO2 is produced from Washington 

University’s Japan Steel Works BC-16/8 cyclotron by irradiating a gas target of 0.2% O2 in N2 for  

15–30 min with a 40 µA beam of 16 MeV protons. The GE PETtrace MeI Microlab coverts the 

[11C]CO2 to [11C]CH4 using a nickel catalyst (Shimalite-Ni, Shimadzu, Japan P.N.221-27719) in the 

presence of hydrogen gas at 360 °C; it is further converted to [11C]CH3I by reacting with iodine held in 

a column in the gas phase at 690 °C. Approximately 12 min after the end of bombardment (EOB), 

several hundred millicuries of [11C]CH3I was delivered as a gas to the hot cell, where the 

radiosynthesis was accomplished. 

Scheme 2. Synthesis of [11C]2a and [18F]2b. DMF, N,N-dimethylformamide;  

[18F]FEOTs, [18F]fluoroethyltosylate; DMSO, dimethyl sulfoxide; DBU,  

1,8-diazabicyclo[5.4.0]undec-7-ene. Reagents and conditions: a [11C]CH3I/DMF, NaOH, 

90 °C, 5 min; b DBU, 7 min; c [18F]F−, Kryptofix 2.2.2, K2CO3, CH3CN, 110 °C, 10 min;  

d [18F]FEOTs, Cs2CO3, DMSO, 90 °C, 15 min; e DBU, 15 min. 

 

2.2.1.2. Radiosynthesis of [11C]2a  

Approximately 1.2 mg of Precursor 4 was placed in the reaction vessel, and 0.20 mL of DMF was 

added, followed by 3.0 µL of 5 N NaOH. The mixture was thoroughly mixed on a vortex for 30 s. A 

stream of [11C]CH3I in helium was bubbled for 3 min into the reaction vessel. The sealed vessel was 

heated at 90 °C for 5 min, at which point the vessel was removed from heat and  

20 µL 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in 50 µL DMF was added via syringe. The reaction 

mixture was heated at 90 °C for 7 min (Scheme 2); then, the reaction was quenched by adding 1.7 mL 

of the HPLC mobile phase, which was composed of acetonitrile/0.1 M ammonium formate buffer 

(60/40, v/v) and pH = 4.5. The diluted solution was purified by high performance liquid 



Appl. Sci. 2014, 4 71 

 

 

chromatography (HPLC) by injection on a Phenomenex Luna C18 reverse phase column  

(9.4 × 250 mm) using the mobile phase described above. The radiolabeled product was eluted using a 

flow rate of 4.0 mL/min, and the UV wavelength was set as 254 nm. Under these conditions, the 

retention time of Precursor 4 was ~7 min; the retention time of [11C]2a was ~16 min. [11C]2a was 

collected in a vial containing 50 mL Milli-Q water, which was then passed through a Sep-Pak Plus  

C18  cartridge (Waters, Milford, MA, USA). The trapped product was eluted with ethanol (0.6 mL) 

followed by 5.4 mL 0.9% saline. After sterile filtration, the final product was ready for quality control 

(QC) analysis and animal studies. QC was performed on a Phenomenex Prodigy C18 reverse phase 

analytic HPLC column (250 mm × 4.6 mm, 5 µA) and UV detection at a 254 nm wavelength. The 

mobile phase was acetonitrile/0.1 M ammonium formate buffer (80/20, v/v) using a 1.5 mL/min flow 

rate. Under these conditions, the retention time of [11C]2a was 4.82 min. The radioactive dose was 

authenticated by co-injection with the cold standard Compound 2a. Radiochemical purity was >99%; 

the chemical purity was >95%; the labeling yield was 35%–45% (n = 4, decay corrected to EOB), and 

the specific activity was >363 GBq/µmol (decay corrected to EOB, n = 4). 

2.2.2. Radiosynthesis of [18F]2b 

2.2.2.1. Production of [18F]fluoride 

[18F]Fluoride is produced by a 18O(p, n)18F reaction through proton irradiation of enriched 18O water 

(95%) using Washington University’s RDS-111 cyclotron (Siemens/CTI Molecular Imaging, 

Knoxville, TN, USA). [18F]Fluoride is first passed through an ion-exchange resin and then eluted with  

0.02 M potassium carbonate (K2CO3) solution.  

2.2.2.2. 2-[18F]Fluoroethyltosylate 

A sample of approximately 5.55 GBq [18F]/fluoride was added to a reaction vessel containing 

Kryptofix 222 (6.5–7.0 mg). The syringe was washed with 2 × 0.4 mL of ethanol. The resulting 

solution was evaporated under nitrogen flow with a bath temperature of 110 °C. Acetonitrile  

(3 × 1.0 mL) was added to the mixture, and water was azeotropically removed by evaporation. After 

all the water was removed, 5.0–5.5 mg of 1,2-ethylene ditosylate was dissolved in acetonitrile  

(200 μL), and the solution was transferred into the reaction vessel containing [18F]fluoride/Kryptofix 

222/K2CO3. The reaction vessel was capped and the reaction mixture briefly mixed and then subjected 

to heating in an oil bath that was preheated to 110 °C for 10 min (Scheme 2).  

After heating for 10 min, the reaction mixture was diluted with 3.0 mL of the HPLC mobile phase 

(50/50 acetonitrile/0.1 M ammonium formate buffer, pH = 6.5) and passed through an alumina neutral 

Sep-Pak Plus cartridge (Waters Corporation, Milford, MA, USA). The crude product was then loaded 

onto an Agilent SB-C18 semi-preparative HPLC column (250 mm × 10 mm) with a UV detector set at 

254 nm. The HPLC system used a 5 mL injection loop. At a 4.0 mL/min flow rate, the retention time 

of the product was 9.5–10 min. The retention time of the precursor was 23–24 min. The radioactivity 

peak observed on HPLC was collected and diluted with 50 mL sterile water and the diluted collection 

went through a C-18 Sep-Pak Plus cartridge to trap the 2-[18F]fluoroethyl tosylate on the Sep-Pak. The 

trapped product was eluted with diethyl ether (2.5 mL). 
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2.2.2.3. Radiosynthesis of [18F]2b 

The eluted solution formed two phases: the top ether phase was transferred out, and the bottom 

aqueous phase was extracted with another 1-mL aliquot of ether. The combined ether extracts were 

passed through a set of two sodium sulfate Sep-Pak Plus dry cartridges into a reaction vessel. After 

ether was evaporated with a nitrogen stream at 25 °C, 1.0 mg of Precursor 4 was dissolved in 200 µL 

DMSO and was transferred to a vial containing 1–2 mg Cs2CO3. After vortexing for 1 min, the Cs2CO3 

saturated solution was added to the reaction vessel containing the dried radioactive [18F]/F−. The tube 

was capped and briefly vortexed and then kept at 90 °C for 15 min. Ten microliters of  

1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in 50 µL DMSO was added via syringe. The reaction 

mixture was heated at 90 °C for 15 min. The mixture was subsequently diluted with 3 mL of the HPLC 

mobile phase (50/50 acetonitrile/0.1 M formate buffer, pH = 4.5) and purified using a Semi-Prep 

HPLC system for purification. The HPLC system contains a 5-mL injection loop, an Agilent SB C-18 

column, a UV detector at 254 nm and a radioactivity detector. At a 4.0 mL/min flow rate, the retention 

time of the product was 19–21 min, whereas the retention time of the precursor was 8–9 min. After the 

HPLC collection and being diluted with 50 mL sterile water, the product was trapped on a C18  

Sep-Pak Plus cartridge. The product was eluted with ethanol (0.6 mL) followed by 5.4 mL 0.9% saline. 

After sterile filtration, the final product was ready for quality control (QC) analysis and animal studies. 

An aliquot was assayed by analytical HPLC (Grace Altima C18 column, 250 × 4.6 mm), UV at  

276 nm, mobile phase of acetonitrile/0.1 M ammonium formate buffer (71/29, v/v), pH = 4.5. Under 

these conditions, the retention time for [18F]2b was approximately 4.9 min at a flow rate of  

1.5 mL/min. The sample was authenticated by co-injecting with the cold standard 2b solution. The 

radiochemical purity was >98%; the chemical purity was >95%; the labeling yield was 55%–65%  

(n = 4, decay corrected), and the specific activity was >200 GBq/µmol (decay corrected to EOB, n = 4).  

2.3. Biodistribution Studies 

All animal experiments were conducted in compliance with the Guidelines for the Care and Use of 

Research Animals under protocols approved by Washington University’s Animal Studies Committee. 

For the biodistribution studies, 11.1–13.0 MBq of [11C]2a in 200–250 µL or 1.67–1.85 MBq of [18F]2b 

in 200–250 µL of saline containing 10% ethanol was injected via the tail vein into mature male 

Sprague-Dawley rats (175–240 g) under 2%–3% isoflurane/oxygen anesthesia. Group of rats (n = 4) 

were used for each time point. At 5, 30, 60 min (and 120 min for [18F]2b) post injection, the rats were 

anesthetized and euthanized. The whole brain was quickly removed and dissected into segments 

consisting of brain stem, thalamus, striatum, hippocampus, cortex and cerebellum. The remainder of 

the brain was also collected to determine total brain uptake. At the same time, samples of blood, heart, 

lung, muscle, fat, pancreas, spleen, kidney, liver (and bone for [18F]2b) were removed and counted in a 

Beckman Gamma 8000 well counter with a standard dilution of the injectate. Tissues were weighed, 

and the percent injected dose (%ID)/gram for each tissue was calculated.  
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2.4. MicroPET Brain Imaging Studies of [11C]2a in Cynomolgus Macaque 

Following the initial evaluation in rats, the washout kinetics and ability of [11C]2a to cross the 

blood-brain barrier in a non-human primate (NHP) was determined on an adult male cynomolgus 

macaque (6−8 kg) using a microPET Focus 220 scanner (Concorde/CTI/Siemens Microsystems, 

Knoxville, TN). Before each scan (n = 2), the animal was fasted for 12 h and then initially anesthetized 

with ketamine (10 mg/kg) and glycopyrrolate (0.13 mg/kg) intramuscularly. Upon arrival at the 

scanner, the monkey was intubated, and a percutaneous catheter placed for tracer injection. The head 

was positioned supine in the adjustable head holder with the brain in the center of the field of view. 

Anesthesia was maintained at 0.75%−2.0% isoflurane/oxygen and the core temperature maintained at  

37 °C. A 10-min transmission scan was performed to confirm positioning; this was followed by a  

45-min transmission scan for attenuation correction. Subsequently, a 2-h dynamic emission scan was 

acquired after venous injection of 300−370 MBq of [11C]2a. 

3. Results and Discussions 

3.1. Chemistry 

Compounds 2a and 2b possess a methoxy and fluoroethoxy group, respectively, enabling 

radiolabeling through O-alkylation of the corresponding phenol precursor. However, to avoid 

undesired N-alkylation product, the acetyl protected Compound 4 was used as the precursor for the 

radiosyntheses. As shown in Scheme 1, the synthesis of 4 was accomplished by a two-step strategy 

starting from 2a following our previous procedure [17]. N-acetylation of 2a was achieved using acetyl 

chloride. Removing the O-methyl group of 3 with boron tribromide afforded the phenol Precursor 4, 

which was used in the radiosyntheses of 2a and 2b. Due to the reaction scale difference, the yields for 

certain reactions differ slightly from our previous report. 

3.2. Radiochemistry 

The radiosynthesis of [11C]2a was accomplished by a two-step approach. The reaction of the phenol 

Precursor 4 with [11C]CH3I was performed in DMF in the presence of NaOH [19–21], and the N-acetyl 

group of the 11C-labeled intermediate was removed by DBU following the literature procedure [22], as 

outlined in Scheme 2. [11C]2a was obtained in approximately 35%–45% overall radiochemical yield 

(RCY) after HPLC purification (n = 4). The radiochemical purity of [11C]2a was >99% and chemical 

purity was >95%. [11C]2a was identified by co-eluting with the solution of standard 2a. The entire 

synthetic procedure, including the production of [11C]CH3I, radiosynthesis, HPLC purification and 

formulation of the radiotracer for animal studies, was completed within 50–60 min. [11C]2a was 

obtained in a specific activity of >363 GBq/µmol at EOB (n = 4).  

The radiosynthesis of [18F]2b was achieved using a three-step reaction. The radioactive 

intermediate, [18F]fluoroethyltosylate ([18F]FEOTs), was first synthesized through a typical 

fluorination of the di-tosylate substrate [23–27]. Treatment of ethylene glycol ditosylate using 

[18F]fluoride, potassium carbonate and Kryptofix 222 gave [18F]FEOTs in good yield (60%–70%, 

decay corrected) after HPLC purification. The intermediate was reacted with the precursor, followed 
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by DBU hydrolysis to afford a sufficient dose of [18F]2b with the labeling yield of 55%–65% after 

HPLC purification (n = 4, decay corrected to EOB). The radiochemical purity of [18F]2b was >98%, 

and the chemical purity was >95%. [18F]2b was identified by co-eluting with the solution of standard 

2b. The entire synthetic procedure, including the drying of [18F]F−, the radiosynthesis, HPLC 

purification and formulation of the radiotracer for in vivo studies, was completed in 3 h. Radiotracer 

[18F]2b was obtained in a specific activity of >200 GBq/µmol (decay corrected to EOB, n = 4).  

Table 1. Biodistribution of [11C]2a and [18F]2b in male Sprague-Dawley rats (%ID/gram). 

Radioligand Organ 5 min 30 min 60 min 120 min 

[11C]2a 

blood 0.506 ± 0.040 0.369 ± 0.031 0.300 ± 0.015  
heart 0.758 ± 0.052 0.377 ± 0.046 0.245 ± 0.010  
lung 1.149 ± 0.058 0.740 ± 0.038 0.485 ± 0.036  

muscle 0.271 ± 0.005 0.325 ± 0.030 0.199 ± 0.016  
fat 0.155 ± 0.023 0.241 ± 0.042 0.293 ± 0.076  

pancreas 1.007 ± 0.262 0.506 ± 0.066 0.522 ± 0.036  
spleen 0.659 ± 0.049 0.400 ± 0.052 0.386 ± 0.027  
kidney 1.362 ± 0.054 0.807 ± 0.086 0.559 ± 0.053  
liver 2.198 ± 0.111 1.349 ± 0.116 1.116 ± 0.024  
brain 0.953 ± 0.115 0.287 ± 0.046 0.158 ± 0.013  

[18F]2b 

blood 0.553 ± 0.047 0.589 ± 0.016 0.606 ± 0.035 0.585 ± 0.046 
heart 0.757 ± 0.033 0.505 ± 0.015 0.466 ± 0.040 0.410 ± 0.030 
lung 0.833 ± 0.053 0.561 ± 0.021 0.491 ± 0.030 0.436 ± 0.018 

muscle 0.430 ± 0.031 0.451 ± 0.018 0.376 ± 0.019 0.315 ± 0.015 
fat 0.255 ± 0.037 0.425 ± 0.023 0.371 ± 0.067 0.293 ± 0.048 

pancreas 1.004 ± 0.147 0.546 ± 0.068 0.409 ± 0.029 0.330 ± 0.021 
spleen 0.672 ± 0.064 0.509 ± 0.022 0.446 ± 0.038 0.398 ± 0.019 
kidney 1.070 ± 0.058 0.988 ± 0.090 0.678 ± 0.032 0.659 ± 0.027 
liver 1.626 ± 0.221 0.847 ± 0.027 0.561 ± 0.028 0.467 ± 0.023 
bone 0.340 ± 0.027 0.309 ± 0.020 0.407 ± 0.043 0.644 ± 0.071 
brain 0.758 ± 0.013 0.465 ± 0.018 0.410 ± 0.030 0.359 ± 0.016 

3.3. Biodistribution in Rats 

The radioactivity distribution in various organs after the injection of [11C]2a and [18F]2b in rats is 

summarized in Table 1. Both radiotracers displayed homogeneous distribution in the brain regions as 

shown in Figure 2A,B. For [11C]2a, the total brain uptake (%ID/gram) of radioactivity at five, 30 and  

60 min post injection were 0.953 ± 0.115, 0.287 ± 0.046 and 0.158 ± 0.014 respectively; in the 

peripheral tissues, liver had the highest uptake among the tissues analyzed; the uptake (%ID/gram) in 

liver reached 2.198 ± 0.111 at 5 min and 1.116 ± 0.024 at 60 min. For [18F]2b, the total brain uptake 

(%ID/gram) at five, 30, 60 and 120 min was 0.758 ± 0.013, 0.465 ± 0.018, 0.410 ± 0.030 and  

0.359 ± 0.016, respectively; At 5 min post-injection, this compound also has a high liver uptake: 

(%ID/gram) of 1.626 ± 0.221. However, after 30 min, the kidney has retained the highest radioactivity 

of all tissues that were analyzed. The bone uptake (%ID/gram) was very stable and no defluorination 

was observed for [18F]2b. More importantly, the ex vivo rat biodistribution data revealed that both 

compounds readily crossed the BBB and entered the brain. Both tracers exhibit high initial brain 
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uptake and appropriate washout kinetics in the brain of normal rats. Rapid clearance of the 

radioactivity for both [11C]2a and [18F]2b was observed from brain, as well as other organs, such as 

lung, pancreas, spleen, kidney and liver. However, [11C]2a showed faster wash-out kinetics than 

[18F]2b, as shown in Figure 2. [11C]2a was chosen for subsequent microPET evaluation in an NHP. 

Figure 2. Regional radioactivity uptake in male Sprague Dawley (SD) rat brain (n = 4). 

(A) Regional brain uptake of [11C]2a; (B) regional brain uptake of [18F]2b. Cb, cerebellum; 

Ctx, cortex; Str, striatum; Thal, thalamus; Hippo, hippocampus. 

 

3.4. MicroPET Studies in NHP 

The representative summed images from zero to 120 min were co-registered with MRI images to 

accurately identify the regions of interest (Figure 3). The time-activity curve (TAC) revealed high 

initial uptake of [11C]2a in the brain, which peaked at 3 min post-injection; then, the radioactivity was 

quickly washed out from all brain regions. The summed image revealed a homogeneous distribution of 

radioactivity in the brain of the normal cynomolgus macaque. The microPET studies suggested that 

[11C]2a was able to cross the BBB and had a fast washout kinetics from the brain regions. The 

macaque used in the studies was a healthy young adult, and the distribution of the α-syn radioligand 

throughout the brain regions was homogeneous. Higher expression of α-syn protein in particular 

regions should not be observed in healthy subjects; thus, homogeneous distribution of the radioactivity 

in the macaque brain was expected. Nevertheless, PET studies of [11C]2a performed on an NHP model 
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bearing the over-expression of α-syn aggregation will directly determine the in vivo specificity of  

the radiotracer.  

Figure 3. In vivo microPET brain imaging studies of [11C]2a in cynomolgus macaque. (A) 

PET image (left), co-registered with MRI (middle), MRI image (right);  

(B) time-activity curves. SUV, standardized uptake value. 

 

4. Conclusions 

In summary, two α-syn ligands, [11C]2a and [18F]2b, were successfully radiosynthesized by  

O-alkylation of the desalkyl precursor. The biodistribution studies of [11C]2a and [18F]2b were 

conducted in male Sprague-Dawley rats and showed that both tracers were able to cross the BBB with 

high initial uptake. At 5 min post-injection, the uptake (%ID/gram) reached 0.953 ± 0.115 for [11C]2a 

and 0.758 ± 0.013 for [18F]2b. Both [11C]2a and [18F]2b displayed a homogeneous distribution 

throughout the brain of healthy adult male rats with rapid washout kinetics. In vivo microPET imaging 

in a healthy cynomolgus macaque confirmed that [11C]2a was able to enter the brain, had 

homogeneous distribution and rapid washout kinetics. Further structural optimization of [11C]2a and 

[18F]2b may lead to a highly specific radioligand for imaging α-syn aggregation in vivo.  
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