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Abstract: The task of control of unmanned helicopters is rather complicated in the presence 

of parametric uncertainties and measurement noises. This paper presents an adaptive model 

feedback control algorithm for an unmanned helicopter stability augmentation system. The 

proposed algorithm can achieve a guaranteed model reference tracking performance and 

speed up the convergence rates of adjustable parameters, even when the plant parameters 

vary rapidly. Moreover, the model feedback strategy in the algorithm further contributes to 

the improvement in the control quality of the stability augmentation system in the case of low 

signal to noise ratios, mainly because the model feedback path is noise free. The effectiveness 

and superiority of the proposed algorithm are demonstrated through a series of tests. 
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1. Introduction 

It is essential that the flight control system of an unmanned helicopter (UH) should be endowed with 

well-suited automatic capabilities to carry out flight missions. However, the flight performance of an 

UH is intimately dependent on the stability and control characteristics of the UH [1,2]. Unlike some 

mechanical systems with desirable structural properties, UH is normally an inherently unstable system 

without stability augmentation control strategy. Furthermore, some of the aerodynamic parameters vary 
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with flight environments or system conditions, with the result that it is very difficult to design the 

stability augmentation system for an UH using the conventional control methods [3]. 

UH is also a complicated nonlinear dynamic system described by nonlinear differential equations. 

However, for simplicity in the design of controllers for an UH, the linearized models are normally 

derived from nonlinear differential equations if the UH operates around an operating point. Many linear 

control techniques for application to UH flight control systems have been proposed in literature, among 

which single-input, single-output (SISO) feedback control methods are by far the most common choices 

with few dependencies on dynamic models. In [4], a SISO PD control law is adopted and further 

optimized for both hovering and forward flight of the CMU-R50 UH. In [5], a SISO PID control law is 

implemented for automatic hovering of the Ursa Major 3 UH. The above SISO methods have the 

advantages of conceptual and computational simplicity. However they may decrease the stability and 

control qualities of UHs without considering parametric uncertainties and cross-couplings among axes. 

Therefore, in order to improve the flight performance, a lot of research effort has been devoted to the 

design of advanced stability augmentation systems. Previous research reported in the literature includes 

gain scheduling [6], linear-quadratic regulation (LQR) or linear-quadratic Gaussian (LQG) approach [7], 

decentralized decoupled model predictive approach [8] and intelligent control methods like neural 

network [9] and fuzzy logic approach [10], etc. Several flight control systems using H∞ control methods, 

which can provide the robust stability and performance for the systems subject to uncertainties and 

disturbances, have been designed for mini UHs. In [11], a H∞ loop shaping technique is utilized for the 

stability augmentation system of Bell-205 helicopter. Mixed-norm optimization and weighted H∞ mixed 

sensitivity optimization methods are respectively designed to improve the stability and maneuverability 

characteristics of UHs [12,13]. Although these methods have achieved acceptable flight performance, 

they still rely heavily on the plant model. More importantly, the above-mentioned methods fail to 

consider the adverse effects of parametric uncertainties and measurement noises on the flying qualities. 

Some existing adaptive techniques can accommodate the parametric uncertainties more effectively 

without considering measurement noises [14–18]. A novel modified model reference adaptive control 

(MRAC) strategy is developed with added noise [19]. However, this method only reduces the noise 

disturbance using a low-pass filter. Usually in practical use, those existing adaptive control methods can 

hardly minimize the adverse effect of measurement noises on the flying qualities. The NASA Marshall 

Space Flight Center has developed an adaptive augmenting control (AAC) algorithm for launch vehicles 

by adapting a well tuned classical control algorithm to unexpected environments or variations in vehicle 

dynamics. The AAC algorithm has been successfully tested in a relevant environment. However it needs 

to be further evaluated by the flight tests [20]. 

The essential parameter regulation schemes can reduce the complexity of a high performance control 

system design problem in the presence of parametric uncertainties and measurement noises. On this 

basis, this study aims to develop an adaptive model feedback control algorithm for a prototype unmanned 

helicopter stability augmentation system. The proposed adaptive algorithm can achieve a guaranteed 

model reference tracking performance and speed up the convergence rates of adjustable parameters, even 

when the plant parameters vary rapidly. Moreover, the model feedback control strategy in the algorithm 

can further improve the control quality of the stability augmentation system because the model feedback 

path is noise free. The experimental setups and the actual flight test results using the proposed algorithm 

are shown and the results are discussed. 
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This paper describes the control problem for the prototype UH stability augmentation system in 

Section 2. The adaptive model feedback control algorithm for the prototype UH stability augmentation 

system is presented in Section 3, and Section 4 provides the improvement of the algorithm. The flight 

test results are shown in Section 5. Finally, conclusions are drawn in Section 6. 

2. The Control Problem for the Prototype UH Stability Augmentation System 

The prototype UH, with net weight 180 Kg and height 1.9 m, is a vertical takeoff and landing aircraft 

which includes two coaxial rotors and a fuselage with toroidal portion, as shown in Figure 1. A duct is 

formed through the fuselage. A propeller assembly is mounted to the top portion of the fuselage with a 

main rotor, 4.4 m in diameter, above the fuselage. A ducted rotor assembly in fuselage is used to 

compensate the propeller antitorque as well as providing some fraction of lift. The coaxial rotors, main 

and ducted, rotate at 800 rpm in the opposite directions with the main rotor providing about 70% of lift, 

drag, and pitch and roll movements of UH and the ducted rotor providing about 30% of lift and  

yaw movement. 

 

Figure 1. The prototype unmanned helicopter. 

The stability augmentation system design for the prototype UH is a challenging task because the UH 

dynamics are highly nonlinear and subject to parametric uncertainties. In addition, the plant parameters 

change with the flight environments (e.g., the aerodynamic constants) or the system conditions (e.g., lift 

curve slopes). The adaptive control strategy is adopted to solve the above problems in this study. 

By assuming that the fuselage is a rigid body and the main rotor speed is constant, we can describe 

the nonlinear kinematic equations associated with the six degrees of freedom (6-DOF) as an equivalent 

block in the following manner: 

( , , )f= Θ
  X X U  (1) 

where [ ], , , , , , , ,u v w q p r
Τ

=
       θ φ ψX  and [ ], , ,

e a r c

Τ
=
   

δ δ δ δU  represent the state vector and the control vector, 

respectively; Θ represents the unsteady aerodynamic parameters set, which is difficult and expensive to 
measure and is, therefore, not available in most cases. Of the state variables in ,

 
X U  , here , ,u v w

  
 are 

forward velocity, lateral velocity and vertical velocity, respectively; , ,
  θ φ ψ  are pitch angle, roll angle and 

yaw angle, respectively; , ,q p r
    are pitch rate, roll rate and yaw rate, respectively; , , ,

e a r c

   
δ δ δ δ  are pitch 

cyclic, roll cyclic, ducted rotor collective and main rotor collective, respectively. 

One common method to solve the control problem for the nonlinear system in Equation (1) is through 

linearization. The linearized model about a trim condition of the nonlinear dynamics is then represented as 
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= +X AX BU  (2) 

where [ , , , , , , , , ]e u v w q p r Τ= − =


θ φ ψX X X  and [ , , , ]e a r c
Τ= − =


δ δ δ δeU U U  are the increments at a 

specified trim condition; A  and B  are the system matrix and the control-input matrix, respectively. 
Accordingly, eX  and eU  are respectively the trim state and the trim input with respect to hovering, 

lifting or forward flight, which must satisfy the equation 

( , , ) 0e ef Θ =X U  (3) 

Note that eX  and eU , obtained by solving Equation (3), are unknown as well. Therefore, we define 

0 0,e ex u= + = +X X E U U E  (4) 

0X  and 0U  can also be regarded as the estimates of eX  and eU , respectively. Equation (2) can then be 

rewritten as: 

+ +X = AX BU Ε  (5) 

where 0 0,− −
 

X = X X U = U U  and x u= +Ε AE BE . Ε  is equivalent to an unknown input disturbance 

at the trim condition. 

To avoid repetition, the present study is only focused on the stability augmentation system of the 

longitudinal axis to demonstrate the proposed adaptive algorithm, which, without loss of generality, can 

apply to other axes. Thus, referring to Equation (5), the linearized model of the longitudinal axis can be 

denoted by: 

e a r c

q q q q q qq q q q q q q q
u v w q p r e a r c tq M u M v M w M M M M q M p M r M M M M Mψθ φ δ δ δ δθ φ ψ δ δ δ δ= + + + + + + + + + + + + +            

 
(6) 

where , , , , , , , , , , ,
e a r

q q q q q q q q q q q q
u v w q p rM M M M M M M M M M M M           

θ φ ψ δ δ δ  and 
c

qM 
δ  represent the unknown  

time-varying aerodynamic parameters; q
tM   is the corresponding component of the vector Ε . 

Given the corresponding wind tunnel test data, the effect of , ,θ φ ψ  and rδ  on q  is negligible and can 

therefore be ignored, the linearized model of longitudinal axis can then be simplified as follows: 

e a c

q q q q q q q q q q
u v w q p r e a c tq M u M v M w M q M p M r M M M M= + + + + + + + + +          δ δ δδ δ δ  (7) 

Overall, the complexity of the stability augmentation system design originates mainly from the 

parametric uncertainties together with measurement noises. 

3. Design of the Stability Augmentation System Based on an Adaptive Model Feedback  

Control Algorithm 

3.1. Theorem 1 

Consider the plant of the form of Equation (7), with 0q
qM <  and 0

e

qM >
δ . Assume that 

a c m em

q q q q q q q q q q
e u v w p r a c t q m emk u k v k w k p k r k k k k q k= + + + + + + + + +         

δ δ δδ δ δ δ  (8) 

where 
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( )= , =m m

m m e em em e

q qq q q q q
q q qk k k k k k k−

     
δ δ δ δ  (9) 

and where , , , , , , , ,
e a c

q q q q q q q q q
u v w q p rk k k k k k k k k        

δ δ δ  and q
tk   are adjustable parameters; mq  is the output of the ideal 

decoupled model given by: 

m m

m em

q q
m q m emq k q k= +  δ δ  (10) 

m

m

q
qk   and m

em

qk δ  denote the model parameters determined according to ADS-33, emδ  the manipulated input. 

Thus, q  asymptotically converge to mq  as the adaptive laws are given by: 

( )
( )

( )
( )

0,

,

,

,

and

e e

q q
q q q

q
ei

q

q
t t

k e q k

k e

k e

k e

 = − + <


= − +


= +


= +

 















δ δ

χ χ

ρ κ

ρ κ δ

ρ κ χ

ρ κ

 (11) 

where , ,
eq δ χρ ρ ρ  and tρ  are greater than zero; χ  represents , , , , , au v w p r δ  and cδ , respectively; the 

tracking error is defined as: 

me q q= −  (12) 

the time-varying parameter κ  should satisfy the following constraint: 

( ) ( )sgn sgn q
qe k e= − κ  (13) 

the generalized input is denoted by: 

m em

q q
ei q m emk q k= + 

δδ δ  (14) 

3.2. Proof 

Substituting Equation (14) into Equation (8) yields 

a c

q q q q q q q q
e u v w p r a c t eik u k v k w k p k r k k k= + + + + + + + +       

δ δδ δ δ δ  (15) 

Again the generalized plant shown in Equation (16) is derived by substituting Equation (15) into 

Equation (7). 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
e a c

q q q q q q q q q q
q ei u v w p r a c tq M q M M u M v M w M p M r M M M= + + + + + + + + +          δ δ δδ δ δ  (16) 

where ˆ
e

q q q qM M M k• • •= +   
δ . 

Similarly, we have 

e

q q
m q m eiq k q k= +  δ δ  (17) 

Then, substituting Equations (16) and (17) into Equation (12) yields: 

ei a c

q
q q ei u v w p r a c te k e b q b b u b v b w b p b r b b b= + + + + + + + + + + δ δ δδ δ δ  (18) 

where 
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,

,

,

ei e e

e

q q
q q q

q q

q q q

b k M

b k M

b M k M• • •

 = −
 = −


= − −

 

 

  

δ δ δ

δ

 (19) 

Furthermore, the adaptive laws are chosen so that certain stability conditions based on Lyapunov 

theory are satisfied. Consider the Lyapunov function candidate 

2 2 2 2 2 2 2 2 2 2 2

ei ei a a c cq q u u v v w w p p r r t tV e b b b b b b b b b b= + + + + + + + + + +δ δ δ δ δ δλ λ λ λ λ λ λ λ λ λ  (20) 

where , , , , , , , ,
ei a cq u v w p rδ δ δλ λ λ λ λ λ λ λ λ  and tλ  are greater than zero. We can therefore conclude that V  

is negative definite as 

0,

,

,

q
q

t t

k

b e

b e

 <
 = − −


= − −






χ χλ κχ χ

λ κ

 (21) 

in which χ  represents , , , , , , ,ei aq u v w p rδ δ  and cδ , respectively. From Equations (19) and (21), we can 

easily deduce the adaptive laws given by Equation (11). 

3.3. Remarks 

i. The direct addition of an external feedback term like a q⋅  to eδ  is necessary without any 

modification of the adaptive laws if q
qM   cannot satisfy 0q

qM <  at a certain flight condition, where a  is 

used to guarantee the stability of the plant, that is, 0
e

q q
qM M a+ < 

δ  in this case. 

ii. In consideration of the adverse effect of measurement noises, the variance of the noise component 
of eδ  can be reduced while using the proposed adaptive algorithm, mainly because the model feedback 

path is noise free, which can result in the improvement in the control quality of the stability augmentation 

system, especially in the case of low signal to noise ratios (SNR). 

iii. Compared to the model reference adaptive control (MRAC) method, the additional time-varying 

parameter κ  in the proposed algorithm can contribute to the convergence rates of adjustable parameters 

when the plant parameters vary rapidly. 

4. The Improvement and Application of the Adaptive Laws 

The adaptive laws are difficult to apply in practice because q  is non-measurable in most cases. 

According to linear system theory, Equation (18) can be rewritten as follows: 

f f f f f f f f fei a c

q
q q eif u v w p r af cf te k e b q b b u b v b w b p b r b b b t= + + + + + + + + + + δ δ δδ δ δ  (22) 

where , , , , , , , , ,f f f f f f feif af cfe q u v w p rδ δ δ  and ft  are respectively served as the outputs of an arbitrarily 

chosen filter ( )
f

G s  in response to , , , , , , , , ,ei a ce q u v w p rδ δ δ  and ( )1 t . The adaptive laws, derived by 

using the similar Lyapunov function described in Equation (20), are rewritten as: 
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( )
( )

( )
( )

0,

,

,

,

andf f f

f fe e

f f f

f f

q q
q q q

q
eif

q

q
t t

k e q k

k e

k e

k e

 = − + <

 = − +


= +


= +

 















δ δ

χ χ

ρ κ

ρ κ δ

ρ κ χ

ρ κ

 (23) 

where fκ  satisfies the following constraint: 

( ) ( )sgn sgnf f f

q
qe k e= − κ  (24) 

The improved adaptive laws are therefore subject to a certain form of the filter. Assume that the filter 

transfer function is given by: 

( ) 1

1f
G s

Ts
=

+
, (25) 

where T  is the time constant. In this case, Equation (24) can be written as: 

( ) ( )1
sgn sgnf f f

q
qe e k e

T
 = − − 
 

κ  (26) 

which indicates that fκ  is available. Figure 2 shows the schematic diagram of the adaptive stability 

augmentation system with model feedback. Note that the proper choice of fκ  can speed up the 

convergence of adjustable parameters. 

u

q

uk 

cδ

c

qkδ


( )1 t

q

tk 

u
cδ

mq

q
eiδ

m

q
qk 

em

qkδ
emδ

e

qkδ
 q

qk 

eiδ q

e

f
e

f f
eκ +

f f
eκ +

 

Figure 2. The schematic diagram of the adaptive stability augmentation system. 

Note that 
m

q
qk   and 

em

qk 
δ  are completely dominant over other adjustable parameters in Equation (8), 

however the noise component of mq  can be ignored on the basis of the assumption that the manipulated input 

emδ  is noise free. For eδ , the adaptive model feedback strategy can therefore lead to a marked loss in noises. 
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5. Flight Tests 

In this section, the performance of the proposed algorithm is demonstrated for the stability 

augmentation system of the longitudinal axis. All pre-chosen parameters are given as follows: 
(1) The model parameters: 1.5m

m

q
qk = −  and 2.25m

em

qkδ = ; 

(2) The initial values of adjustable parameters: ( ) ( ) ( ) ( ) ( ) ( ) ( )0 , 0 , 0 , 0 , 0 , 0 , 0
a c

q q q q q q q
u v w q rk k k k k k k      

δ δ  

and ( )0q
tk   are assumed to equal zero, and ( ) ( )0 0, 0 1.0

e

q q
pk k= = 

δ ; 

(3) The time constant of the filter: 0.02T = ; 

(4) The parameters of the adaptive control laws: 50• =ρ ; ( )1
2.0f f f

q
qe e k e

T
 = − −  

κ ; 0.2a = − . 

The proposed algorithm is first implemented in a numerical simulation based on the nonlinear 

helicopter model. It is then applied to the prototype UH to evaluate the flight performance of the stability 

augmentation system. 

5.1. Task 1: Numerical Simulation 

(a) (b) 

(c) (d) 

Figure 3. Numerical simulation results of the proposed algorithm. (a) mq  and q ; (b) e ;  

(c) θ ; (d) Adjustable parameters. 

The numerical simulation test, shown in Figure 3, is conducted using the nonlinear dynamics model 

of the prototype unmanned helicopter, together with a simplified closed-form trim calculation. The 

manipulated input signal is generated from a joystick device. Various moderately aggressive maneuvers 

are conducted during the simulation to evaluate the performance of the proposed algorithm at different 

operate points of the flight envelope. A comparison is made between the output of the plant and that of 

the model, as shown in Figure 3a,b, which demonstrates that the tracking error can rapidly approach zero 
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in 0.9 s and remain in a bounded range. We can therefore conclude that the proposed adaptive algorithm 

achieves a guaranteed model reference tracking performance and has a good convergence property. The 

tracking error remains in a bounded range even though the adjustable parameters vary rapidly during the 

test. However the conventional MRAC approach is not applicable to the case where the variations of the 

plant parameters are significant. 

5.2. Task 2: Flight Tests 

(a) (b) 

(c) (d) 

      

(e) (f) 

Figure 4. Flight test results of the proposed algorithm. (a) mq  and q ; (b) e ; (c) θ ; (d) 

Adjustable parameters; (e) eδ ; (f) The ground track view of trajectory. 

The flight tests are conducted to compare the performance of the proposed algorithm with that of the 

conventional PID while those two approaches applies to the prototype unmanned helicopter stability 

augmentation system, respectively. For a fair comparison, the attitude and position controllers remain 

unchanged. Our control software system, which runs on a DSP-based hardware platform with a control 

period of 10 ms, can provide reliable support for high precision timer and synchronization operations. 
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The sensors (including an AHRS unit and a DGPS unit) are used to provide the information related to 

the flight status, such as the angles, angular rates, velocity and position. During flight, Wi-Fi and  

serial-based data links provide a link to the ground station computer that allows monitoring the real-time 

flight information and uploading remote control commands such as way points. Testing of the proposed 

adaptive algorithm begins with hover, followed by simple way-point navigation due to the limitations of 

the test conditions such as flight safety. In consideration of measurement noises of the sensors, the results 

from these flight tests are provided in Figures 4 and 5. 

The performance of the adaptive stability augmentation system is first evaluated at low speeds where 

a square pattern is flown, as shown in Figure 4. The noisy tracking error, shown in Figure 4b, is also 

within an acceptable range. Moreover, the model feedback strategy in the proposed algorithm contributes 
to the restricted variation of the control signal eδ  shown in Figure 4e, which explicitly improves the 

external command position tracking performance, and implicitly demonstrates the improvement in the 

control quality of the stability augmentation system. 

(a) (b) 

(c) (d) 

Figure 5. Flight test results of the PID controller. (a) q ; (b) θ ; (c) eδ ; (d) The ground track 

view of trajectory. 

By comparison with the above-mentioned results, the flight test results of the conventional PID 

controller implemented through the widely used Pixhawk autopilot module, shown in Figure 5, appear 
to deteriorate. For instance, the variation of the control signal eδ , together with the external command 

position tracking errors, increases when the prototype UH is commanded to perform the same flight mission. 

Based on the flight test results, we can conclude that the proposed adaptive model feedback control 

algorithm is able to adapt to rapidly changing flight conditions and effectively enhance the performance 
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of the prototype UH stability augmentation system in the presence of parametric uncertainties and 

measurement noises, which results in the improvement in flying qualities. More significantly, most 

existing designs would require accurate models at each point, while the proposed design does not. 

6. Conclusions 

This paper presents the adaptive model feedback control algorithm for the prototype UH stability 

augmentation system in the presence of parametric uncertainties and measurement noises. The proposed 

adaptive algorithm is able to achieve a guaranteed model reference tracking performance and speed up 

the convergence rates of adjustable parameters, even when the plant parameters vary rapidly. Moreover, 

the model feedback strategy in the proposed algorithm further contributes to the improvement in the 

control quality of the stability augmentation system in the case of low SNR. The flight test results have 

shown that the proposed algorithm can considerably improve the flying qualities of the prototype UH. 
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