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Abstract: Visual cryptography encrypts a secret image into two meaningless random images, called
shares, such that it can be decrypted by human vision without any calculations. However, there
would be problems in alignment when these two shares are staked by hand in practice. Therefore, this
paper presents the fault-tolerant schemes of stacking two shares that are acquired from secret image
encryption without pixel expansion. The main idea of these schemes is to combine several pixels as
a unit and then to encrypt each unit into a specific combination of pixels. Both theoretical analysis
and simulation results demonstrate the effectiveness and practicality of the proposed schemes.
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1. Introduction

In 1995, Naor and Shamir proposed visual cryptography (VC) (also called visual secret sharing
(VSS)), which is a way to encrypt one secret image, such that it can be decoded by human vision
without any calculation [1]. The concept is to encrypt a secret image S into two meaningless random
images G1 and G2, each called a share (also called sheet, shadow), of which one can be seen as a cipher
text, and the other is a key to it. Stacking them is the only way to restore the hidden secret. Random
grid-based VSS, invented by Kafri and Keren [2], received more attention in recent years, such as [3–9].
This method takes each pixel as a grid on the image and applies the concept of random variables to
encrypt images.

For VSS, the secret image can be visually reconstructed with shares, printed on transparencies
and stacked precisely on an overhead projector. A slight misalignment between the shares could
increase the difficulty of identification in image reconstruction. The smaller the size of the shares,
the more difficult it will be when you restore the secret image. Therefore, some literature studies
this misalignment problem (also called fault-tolerance), such as [8,10–15]. Nakajima and Yamaguchi
proposed an extended VSS scheme that can enhance the registration tolerance when stacked shares are
not aligned perfectly in 2004 [14]. It transfers the secret image into black and white values with the
half-tone technique and then encrypts into two random images. The difference from other methods is
that one of the random images is larger than the other in a diamond pattern, leading to a certain level
of fault tolerance when stacking the shares. In such a pixel expansion-based scheme, the size of the
shares and the restored image in their scheme will be 49-times the original secret image. This increases
the cost on data restoration and transmission and also makes its implementation inconvenient.

A (k, n)-threshold scheme means that the dealer encrypts secret S into n shares and delivers each
to one participant, such that any k (or more) participants can recover the secret by combining their
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shares, while less than k participants cannot. A (k, n)-threshold VSS scheme is a visual version of
the (k, n)-threshold scheme, i.e., stacking any k (or more) shares directly can reconstruct the secret
image S. In 2009, Yang et al. considered the misalignment problem in the VSS scheme and designed
a misalignment-tolerant VSS scheme based on the trade-off between the usage of big and small blocks
to address this misalignment problem [15], called the MTVSS scheme. It is not necessary to align the
transparencies precisely. Their scheme can solve the misalignment problem for the (k, n)-threshold
VSS scheme. They also propose a useful parameter, CI (correctness index), to represent the quality of
the restored image intuitively. However, that scheme also involves pixel expansion. Therefore, this
paper is based on Nakajima and Yamaguchi’s idea to design the (2, 2)-threshold visual secret sharing
scheme, such that the misalignment problem can be solved without pixel expansion. We shall use the
same parameter CI to compare the performance of our schemes to the MTVSS scheme.

The rest of this paper is organized as follows. Section 2 introduces the detailed techniques
mentioned above. Section 3 discusses the major findings. In particular, we design four VSS schemes
with analysis showing that they achieve better fault tolerance. Section 4 presents the fault tolerance
result of various proposed schemes by simulations. Finally, our conclusions are given in Section 5.

2. Experimental Section

2.1. Visual Cryptography Concepts

Different from previous secret sharing scheme techniques, when the shares are stacked, the
confidential content can be interpreted with human vision directly. That is, a VC scheme can restore
the secret without additional computation. Figure 1 shows the encryption and decryption process
model of a VC scheme.
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Figure 1. The visual cryptography (VC) encryption and decryption process model.

In 1995, Naor and Shamir proposed visual cryptography, by introducing a simple and
perfectly-secure way that allows secret sharing without any cryptograph computation [1]. To decrypt
the secret message, the reader should photocopy each pattern on a separate transparency, align them
carefully and project the result with an overhead projector. This basic model can be extended into
a visual variant of the k out of n secret sharing problem. The grey level of this combined share is
proportional to the Hamming weight H(V) of the “or” m-vector V. A solution to the k out of n visual
secret sharing scheme consists of two collections of nˆ m Boolean matrices C0 and C1. To share a white
pixel, the dealer randomly chooses one of the matrices in C0, and to share a black pixel, the dealer
randomly chooses one of the matrices in C1, The chosen matrix defines the color of the m subpixels in
each one of the n transparencies. The solution is considered valid if the following three conditions
are met:
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1. For any S in C0, the “or” V of any k out of n rows satisfies H(V) ď d ´ a ˆ m.
2. For any S in C1, the “or” V of any k out of n rows satisfies H(V) ě d.
3. For any subset {i1, i2, . . . , iq} of {1, 2, . . . , n} with q < k, the two collections of q ˆ m matrices Dt

for t P {0, 1} obtained by restricting each n ˆ m matrix in Ct (where t = 0, 1) to row i1, i2, . . . , iq are
indistinguishable in the sense that they contain the same matrices with the same frequencies.

In the above conditions, parameter a means the relative difference between stacked shares that
come from a white pixel and a black pixel in the original picture. We would like a to be as large
as possible. This scheme is perfectly secure and very easy to implement. However, it causes pixel
expansion. That is, the size of the shares and the reconstructed image will be m-times the size of the
original secret image, and it deforms the secret image. Therefore, we have the following discussion.

2.2. Random Grid Encryption Algorithm

For understanding the following sections, we have to understand some important notations about
the random grid listed in this section in advance. In general, we define S as a secret image with a size
of w ˆ h pixels, where w and h are positive integers.

Definition 1. Let S(i, j) denote a pixel value of the secret image S at position (i, j), defined as:

Spi, jq “

#

0, if Spi, jq is white;
1, i f Spi, jq is black.

Actually, 1 is opaque and 0 is transparent when S is printed on a transparency. The opposite value
of S(i, j) is denoted as follows.

Spi, jq “

#

0, if Spi, jq “ 1;
1, if Spi, jq “ 0.

“ 1´ Spi, jq.

Definition 2. Transmittance (T) is defined as the proportion of white pixels to total pixels.

A secret image S is encrypted into two shares G1 and G2. Let ri be a pixel in Gi for i = 1, 2.
The resulting value of the overlapped pixels r1 and r2 will be r1 ‘ r2, where ‘ stands for the Boolean
“or” operation. All results when stacking any two pixels together are shown in Table 1.

Table 1. Results for stacking two different pixels together.

r1 r2 r1 ‘ r2

0 0 0
0 1 1
1 0 1
1 1 1

Kafri and Keren [2] proposed three different encryption algorithms (Algorithm KK1, KK2 and
KK3) for halftone images, in which the value of each pixel in a random grid is determined by flipping
a coin, i.e., the probability of getting a black or white pixel is the same. Therefore, the transmittance of
the random image is 1/2. These algorithms encrypt a secret image S of size w ˆ h into two shares G1

and G2 with the same size. We list these algorithms as follows, where Rand(0/1) is a function with
output zero or one randomly and with equal probability.
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Algorithm KK1:

Generate a w ˆ h random grid G1

For (i = 0; i < w; i++)
For (j = 0; j < h; j++)

If (S[i][j] == 0)
G2[i][j] = G1[i][j];

else
G2[i][j] = 1 ´ G1[i][j]G1 ris rjs;

Output (G1, G2)

Algorithm KK2:

Generate a w ˆ h random grid G1

For (i = 0; i < w; i++)
For (j = 0; j < h; j++)

If (S[i][j] == 0)
G2[i][j] = G1[i][j];

else
G2[i][j] = Rand(0/1);

Output (G1, G2)

Algorithm KK3:

Generate a w ˆ h random grid G1

For (i = 0; i < w; i++)
For (j = 0; j < h; j++)

If (S[i][j] == 0)
G2[i][j] = Rand(0/1);

else
G2[i][j] = 1 – G1[i][j]G1 ris rjs;

Output (G1, G2)

We shall focus on the idea of the Algorithm KK1 in this paper. The analysis of the transmittance
of the Algorithm KK1 is show in Table 2. We denote a white pixel by l and a black pixel by � in this
paper. Note that using the idea of the Algorithm KK2 or KK3 to construct the following schemes will
yield similar results.

Table 2. The transmittance of the Algorithm KK1.

S Probability G1 G2 G1‘ G2 T(G1‘ G2)

l
1/2 l l l

1/21/2 � � �

�
1/2 l � �

01/2 � l �

2.3. The Concept of Fault Tolerance

Naor and Shamir proposed an extended visual secret sharing scheme [1] in 1995. When they
encrypt the secret image, each pixel on the secret image will be expanded into m subpixels. Nakajima
and Yamaguchi proposed an extended visual secret sharing scheme to show that the fault tolerance
mechanism can be achieved [14]. They encrypted the secret image into two expanded shares. Each pixel
in the secret image will produce a diamond-like 7 ˆ 7 subpixel pattern in the two shares (one is small
and the other is big), as shown in Figure 2. Note that their scheme dealed with gray level image, so
there is the gray color in Figure 2. Even though there is a slight deviation when stacking, the primary
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color (black or white) still can be restored. Their design will allow some space for fault tolerance.
However, due to the expansion, the size of the restored image will be 49-times the original secret image.
Hence, this paper will focus on designing shift-tolerant VSS schemes for black/white secret images
without pixel expansion.
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3. Proposed Scheme

The main concept of our algorithm is as follows. First, taking n ˆ n pixels as a unit, the image is
divided into several units. In the first generated share, each unit is randomly chosen from the patterns
we designed. For the generation of the second share, the number of black and white pixels in each unit
on the original secret image needs to be counted individually. This will be used to select the suitable
pattern according to the pattern of the first share for the same unit. Run the steps sequentially and
repeatedly until the second share is generated. Taking the idea of Nakajima and Yamaguchi’s scheme
as a reference [14], we design the special patterns for the main encryption scheme and apply them to
the Algorithm KK1 [2]. We design the fault-tolerant VSS schemes by taking n ˆ n pixels as a unit, for
n = 3, 4, 5 or 6. The final design of the patterns for encryption schemes when n is 3, 4, 5 and 6 is shown
in Tables 3–6 respectively.

In the following, we analyze the transmittance when two shares are not stacked correctly. Because
the pattern of each unit is symmetric, the analysis results are all equal when two units are stacked by
shifting one pixel to the right, left, up or down. Here, we only show the result for the n = 4 case where
G1 shifts one pixel right. All combinations for such a case when the pixel in the secret image is white
or black are shown in Tables 7 and 8 respectively. The way of stacking has been shown as Figure 3,
where the red square represents the stacked position of the unit in G1.

Table 3. The designed patterns for n = 3.

Image G1 G2 Stack Image G1 G2 Stack

l
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In Tables 7 and 8 each little square represents a pixel, and the red square is the area of the unit in
G1 that has been stacked with G2 with one pixel shift. In this case, the ration of the number of white
pixels to the total pixels of the stacked unit when the pixel in the secret image is white is (32 + 36 + 8 +
4)/256 = 80/256 = 5/16. Similarly, when the pixel in the secret image is black, this ratio is (16 + 12 +
8 + 12)/256 = 48/256 = 3/16. In summary, Table 9 gives the transmittance analysis for stacking two
units for n = 3, 4, 5 or 6. In a perfect stacking, the resulting transmittance for a white secret pixel is 1/2,
and because the design of the pattern for a black pixel is accordingly complementary, the resulting
transmittance for the black secret pixel is zero. We also analyze the stacking results with different
shifts: a one-pixel shift when n is three or four and up to a two-pixel shift when n is five or six. Besides,
we also calculate the results for a one-pixel diagonal shift, that is a one-pixel right shift plus a one-pixel
down shift. All of the results show that there are differences between the transmittance for the black
and white pixels of the stacked image. When the transmittance for a white pixel of a secret image
differs from that for a black pixel of a secret image, the original secret image can be recognized. Hence,
the following theorem can be concluded.

Theorem 1. The proposed schemes are the fault-tolerant VSS schemes.

Table 9. The transmittance analysis for stacking two resulting units.

3 ˆ 3 Stack Shift 1 pixel

l 1/2 7/36
� 0 11/36

4 ˆ 4 Stack Shift 1

l 1/2 5/16
� 0 3/16

5 ˆ 5 Stack Shift 1 Shift 2

l 1/2 31/100 26/100
� 0 19/100 23/100

6 ˆ 6 Stack Shift 1 Shift 2 Shift 3

l 1/2 50/144 42/144 38/144
� 0 25/144 36/144 33/144

Diagonal Shift 4 ˆ 4 5 ˆ 5 6 ˆ 6

l 381/2048 721/3200 1189/4608
� 173/2048 465/3200 422/4608

4. Experimental Results

In this section, we evaluate the proposed schemes by simulation, and the experimental results are
shown in Figures 4–7 for n = 3, 4, 5 and 6, respectively. The secret image we used in the experiment
is a halftone image with 300 ˆ 300 pixels. Because there is no pixel expansion, the size of two shares
is also 300 ˆ 300 pixels after encryption. Information on the restored image can be identified clearly
after stacking these two generated shares perfectly or with a 1-, 2- or 3-pixel shift. It shows that the
proposed schemes are effective and that our analysis is valid.

In [15], Yang et al. defined dx as the horizontal deviation (unit: pixel) and CI to measure the
difference between the reconstructed images for a given deviation and no deviation. The correctness
indices for black and white secret pixels, denoted as CI(B) and CI(W), respectively, are obtained by
comparing the secret pixels between the reconstructed images of a deviation dx and no deviation;
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then, the CI is calculated as the average of all CI(B) and CI(W). For two shares G1 and G2, using the
parameter transmittance TB(G1 ‘ G2) and TW(G1‘ G2) for the black and white pixels of the secret
image, we have:

CIpBq “ 1´ 2TBpG1‘G2q, CIpWq “ 2TWpG1‘G2q and CI “ pCIpBq ` CIpWqq{2
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In the following, we compare the value CI of our schemes to the MTVSS scheme. In Figure 8,
we use the result of the MTVSS scheme when α = 2, which means that the pixel expansion of the
shares is four-times the secret image. It is not difficult to see that our results are similar to that of
PB = 1 in the MTVSS scheme when n is four and five and better when n is six. Figure 9 compares
our schemes to the MTVSS scheme for shifting the same percentage of the shares (dx/α). We use the
result of the MTVSS scheme when PB = 1 (the best performance among different PBs) for different
values of α. One can see that our results are better than the MTVSS scheme when n is bigger than three.
In conclusion, both the theoretical analysis and simulation results demonstrate the effectiveness and
practicality of our proposed schemes. In Table 10, we list some capabilities of our scheme compared to
some previous works.

Table 10. Comparison of our scheme with the previous works.

Schemes Capability Nakajima and Yamaguchi 2004 [14] Yang et al., 2009 [15] Our Scheme

Fault-tolerant Yes Yes Yes
Without pixel expansion No No Yes

By random grid No No Yes
Flexible No Yes Yes

(k, n)-threshold VSS scheme No Yes No

5. Conclusions

This paper presents the design of a (2, 2)-threshold visual secret sharing scheme that is
fault-tolerant without pixel expansion; the original information can be identified even when we
stack the two resulting shares imperfectly. As we know, this paper is the first one to discuss the
VSS scheme that can solve the misalignment problem without pixel expansion. That will make the
implementation more likely to be realized. For n = 3, the swapping of black and white can be expected
in the analysis when we stack the shares with one pixel shift (as shown in Table 9). As for recognizing
the graph, the original information still can be identified in this situation. On the other hand, for the
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purpose of restoring the original image, there will be some space for improvement. In addition, we
also expect further study for designing the encryption scheme when n is seven or more. However, the
incurred distortion of the graph will be more severe. This challenge will be further studied. Besides,
we shall also work on designing a (k, n)-threshold VSS scheme that addresses the misalignment
problem without pixel expansion and improving the existing algorithms with a larger transmittance
gap between the black and white areas of the resulting stacked image, so that the restored image could
be recognized more easily.
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