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Abstract: 1,1,1,2,3,3,3-Heptafluoropropane (R227ea) is a good refrigerant that reduces greenhouse
effects and ozone depletion. In practical applications, we usually have to know the compressed
liquid densities at different temperatures and pressures. However, the measurement requires a series
of complex apparatus and operations, wasting too much manpower and resources. To solve these
problems, here, Song and Mason equation, support vector machine (SVM), and artificial neural
networks (ANNs) were used to develop theoretical and machine learning models, respectively, in
order to predict the compressed liquid densities of R227ea with only the inputs of temperatures and
pressures. Results show that compared with the Song and Mason equation, appropriate machine
learning models trained with precise experimental samples have better predicted results, with
lower root mean square errors (RMSEs) (e.g., the RMSE of the SVM trained with data provided by
Fedele et al. [1] is 0.11, while the RMSE of the Song and Mason equation is 196.26). Compared to
advanced conventional measurements, knowledge-based machine learning models are proved to be
more time-saving and user-friendly.

Keywords: 1,1,1,2,3,3,3-heptafluoropropane; R227ea; Song and Mason equation; machine learning;
support vector machine; artificial neural networks

1. Introduction

The increasing problems of greenhouse effect and ozone depletion have drawn people’s great
attentions during the past decades [2–5]. In the field of heating, ventilation, air conditioning, and
refrigeration (HVAC and R) [6–8], scientists started to use 1,1,1,2,3,3,3-heptafluoropropane (R227ea) [9–11]
as a substitute in order to replace other refrigerants that are harmful to the ozone (like R114, R12,
and R12B1), because R227ea has a zero ozone depletion potential (ODP) [12]. Other applications of
R227ea include the production of rigid polyurethane foams and aerosol sprays [11,13]. R227ea has
been shown to be crucial in industrial fields and scientific research.
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In practical applications, the use of R227ea requires the exact values of the compressed liquid
densities under certain values of temperatures and pressures. However, due to the complexity and
uncertainty of the density measurement of R227ea, precise values of the density are usually difficult
to acquire. To solve this problem, molecular dynamic (MD) simulation methods [14–16] have been
used for predicting related thermophysical properties of refrigerants. Nevertheless, these simulation
methods have high requirements for computers and require long computational times. Additionally,
they need accurate forms of potential energy functions. Motivated by these issues, here, as a typical
case study, we aim at finding out alternative modeling methods to help acquire precise values of the
densities of R227ea.

Acquiring the density by theoretical conclusion is an alternative approach to replace the MD
methods. Equation of state is one of the most popular descriptions of theoretical studies that illustrates
the relationship between temperature, pressure, and volume for substances. Based on the recognition
that the structure of a liquid is determined primarily by the inner repulsive forces, the Song and Mason
equation [17] was developed in the 1990s based on the statistical-mechanics perturbation theories [18,19]
and proved to be available in calculating the densities of various refrigerants recently [20]. However,
limitations of the theoretical methods are also apparent. Firstly, the calculated results of refrigerants
are not precise enough. Secondly, previous studies only discussed the single result with a given temperature
and pressure [20], neglecting the overall change regulation of the density with the changes of
temperature and pressure. To find out a better approach that can precisely acquire the density values
of R227ea, here, we first illustrate the three-dimensional change regulation of the density of R227ea
with the changes of temperature and pressure using the Song and Mason equation, and also use
novel machine learning techniques [21–23] to predict the densities of R227ea based on three groups of
previous experimental data [1,24,25]. To define the best machine learning methods for the prediction
of the densities of R227ea, different models should be evaluated respectively, which is a necessary
comparison process in environmental science. In this case study, support vector machine (SVM) and
artificial neural networks (ANNs) were developed, respectively, in order to find out the best model for
density prediction. ANNs are powerful non-linear fitting methods that developed during decades,
which have good prediction results in many environmental related fields [26–30]. However, although
ANNs usually give effective prediction performances, there is a risk of over-fitting phenomenon [26] if
the best number of hidden nodes are not defined, which also indicates that the data size for model
training should be large enough. Additionally, the training of ANNs may require relatively long
training times if the numbers of hidden nodes are high or the data size is large. Alternatively, SVM,
a new machine learning technique developed during these years, has been proved to be effective
in numerical predictions for environmental fields [26,27]. The SVM is usually considered to have
better generalization performance, leading to better predicted results in many scientific cases [26].
Furthermore, a proper training of SVM has fewer requirements to the data size, ensuring that it can
be used for dealing with many complicated issues. Despite the advantages of ANNs and SVM, for
the prediction of compressed liquid density of R227ea, it is hard to define the best models without
studies. Therefore, here, ANNs (with different numbers of hidden nodes) and SVM were developed
respectively. Comparisons were made among different methodologies in order to find the best models
for practical applications.

2. Experimental Section

2.1. Theoretical Equation of State

Based on statistical-mechanical perturbation theories [18,19], Song and Mason [17] developed
a theoretical equation of state to analyze convex-molecular fluids, which is shown in Equation (1):

P
ρkBT

“ 1` B2pTqρ` αpTqρrGpηq ´ 1s (1)



Appl. Sci. 2016, 6, 25 3 of 12

where T is the temperature (K), P is the pressure (bar), ρ is the molar density (kg¨m´3), kB is the
Boltzmann constant, B2(T) is the second virial coefficient, α(T) is the contribution of the repulsive
forces to the second virial coefficient, Gpηq is the average pair distribution function at contact for
equivalent hard convex bodies [20], η is the packing fraction. To the convex bodies, Gpηq can be
adopted as follows [17,20]:

Gpηq “
1´ γ1η ` γ2η2

p1´ ηq3
(2)

where γ1 and γ2 are values to reproduce the precise third and fourth virial coefficients, which can be
estimated as [17,20]:

γ1 “ 3´
1` 6γ` 3γ2

1` 3γ
(3)

and

γ2 “ 3´
2` 2.64γ` 7γ2

1` 3γ
(4)

In terms of η, it holds that

η “
bpTqρ
1` 3γ

(5)

where b is the van der Waals convolume, which can be shown with α [17,20]:

bpTq “ αpTq ` T
dαpTq

dT
(6)

B2(T), α(T) and b(T) can be described in with the temperature of normal boiling point (Tnb) and
the density at normal boiling point (ρnb) [17,20]:

B2pTqρnb “ 1.033´ 3.0069p
Tnb
T
q ´ 10.588p

Tnb
T
q

2
` 13.096p

Tnb
T
q

3
´ 9.8968p

Tnb
T
q

4
(7)

and

αpTqρnb “ a1

"

exp
„

´c1p
T

Tnb
q

*

` a2

#

1´ exp

«

´c2

ˆ

T
Tnb

˙´0.25
ff+

(8)

and

bpTqρnb “ a1

„

1´ c1

ˆ

T
Tnb

˙

exp
„

´c1

ˆ

T
Tnb

˙

` a2

#

1´

«

1` 0.25c2

ˆ

Tnb
T

˙0.25
ff

exp

«

´c2

ˆ

T
Tnb

˙´0.25
ff+

(9)

where α1 = ´0.086, α2 = 2.3988, c1 “ 0.5624, and c2 “ 1.4267.
Now that we have Equations (1)–(9) above, the last values we should know are γ, Tnb, and ρnb.

γ can be obtained from fitting the experimental results, and Tnb and ρnb can be obtained from standard
experimental data. According to previous studies, for R227ea, γ is 0.760 [20], Tnb is 256.65 K [31] and
ρnb is 1535.0 kg¨m´3 [31]. Now we can only input the values of T (K) and P (bar) to Equation (1) and
the calculated density of R227ea can be acquired.

2.2. Support Vector Machine (SVM)

SVM is a powerful machine learning method based on statistical learning theory. On the basis of
the limited information of samples, SVM has an extraordinary ability of optimization for improving
generalization. The main principle of SVM is to find the optimal hyperplane, a plane that separates
all samples with the maximum margin [32,33]. The plane helps improve the predictive ability of
the model and reduce the error which occurs occasionally when predicting and classifying. Figure 1
shows the main structure of a SVM [34,35]. The letter “K” represents kernels [36]. As we can see from
Figure 1, it is a small subset extracted from the training data by relevant algorithm that consists of the
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SVM. For practical applications, choosing appropriate kernels and parameters are important for us to
acquire better prediction accuracies. However, there is still no existing standard for scientists to choose
these parameters. In most cases, the comparison of experimental results, the experiences from copious
calculating, and the use of cross-validation that is available in software packages can help us address
this problem [34,37,38].
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Figure 1. Main structure of a support vector machine (SVM) [35].

2.3. Artificial Neural Networks (ANNs)

ANNs [39–41] are machine learning algorithms with the functions of estimation and approximation
based on inputs, which are inspired from the biological neural networks of human brains. Being different
from networks with only one or two layers of single direction logic, they use algorithms in control
determining and function organizing. The interconnected networks usually consist of neurons that
can calculate values from inputs and adapt to different circumstances. Thus, ANNs have powerful
capacities in numeric prediction and pattern recognition, which have obtained wide popularity
in inferring a function from observation, especially when the object is too complicated to be dealt
with by human brains. Figure 2 presents a schematic structure of an ANN for the prediction of compressed
liquid density of R227ea, which contains the input layer, hidden layer, and output layer. The input layer
consists of two nodes, representing the inputted temperature and pressure, respectively. The output
layer is made up of the neuron that represents the density of R227ea.
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Figure 2. Schematic structure of an artificial neural network (ANN) for the prediction of compressed
liquid densities of 1,1,1,2,3,3,3-heptafluoropropane (R227ea).

3. Results and Discussion

3.1. Model Development

3.1.1. Theoretical Model of the Song and Mason Equation

With the Equations (1)–(9) and related constants, the three-dimensional calculated surface of
the compressed liquid density of R227ea can be obtained (Figure 3). To make sufficient comparisons
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between theoretical calculated values and experimental values, previous experimental results provided
by Fedele et al. (with 300 experimental data groups) [1], Ihmels et al. (with 261 experimental data
groups) [24], and Klomfar et al. (with 83 experimental data groups) [25], were used for making
comparisons in Figure 3. It can be seen that though the experimental data is close to the calculated
theoretical surface, the theoretical surface does not highly coincide with all the experimental data.
We can see that experimental results provided by Fedele et al. [1] and Ihmels et al. [24] are generally
higher than the calculated surface, while the experimental results provided by Klomfar et al. [25] have
both higher and lower values than the calculated surface. The root mean square errors (RMSEs) of
the theoretical calculated results with the three experimental results are 196.26, 372.54, and 158.54,
respectively, which are relatively high and not acceptable to practical applications. However, it
should be mentioned that the tendency of the surface is in good agreement with the tendency of the
experimental data provided by Fedele et al. [1] and Ihmels et al. [24]. Interestingly, it is obvious to find
that when the temperature is close to 100 K, the density would become increasingly high, which has
not been reported by experimental results so far.
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Figure 3. Theoretical calculated surface and experimental densities of R227ea. The surface represents
the theoretical calculated results by Equations (1)–(9); black points represent the experimental results
from Fedele et al. [1]; red crosses represent the experimental results from Ihmels et al. [24]; blue asterisks
represent the experimental results from Klomfar et al. [25].

3.1.2. Machine Learning Models

To develop predictive models via machine learning, we should first define the independent
variables and the dependent variable. With the experimental fact during the practical measurements,
the temperature and pressure of R227ea are easy to obtain. Here, we define the temperature (K) and
pressure (bar) of the determinant as the independent variables, while the density (kg¨m´3) is set as
the dependent variable. With the design that users can only input the values of the temperature and
pressure to a developed model, we let the machine learning models in our study “learn” the existing
data and make precise predictions. The experimental data of Fedele et al. [1], Ihmels et al. [24], and
Klomfar et al. [25] were used for model developments respectively. In each model, 80% of the data
were set as the training set, while 20% of the data were set as the testing set. The SVMs were developed
by Matlab software (Libsvm package [42]) and the ANNs were developed by NeuralTools® software
(trial version, Palisade Corporation, NY, USA). General regression neural network (GRNN) [43–45]
and multilayer feed-forward neural networks (MLFNs) [46–48] were chosen as the learning algorithms
of ANNs. Numbers of nodes in the hidden layer of MLFNs were set from 2 to 35. In this case study,
the number of hidden layer was set as one. Trials of all ANNs were set as 10,000. All these settings of
ANNs were set directly in the NeuralTools® software. Linear regression models were also developed
for comparisons. To measure the performance of the model and make suitable comparisons, RMSE (for
testing), training time, and prediction accuracy (under the tolerance of 30%) were used as indicators
that evaluate the models. Model results using experimental data from Fedele et al. [1], Ihmels et al. [24],
and Klomfar et al. [25] are shown in Tables 1–4 respectively. Error analysis results are shown in Figure 4.
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networks (MLFNs). Bars represent the RMSEs; black dashed lines represent the RMSEs of general
regression neural network (GRNN) and support vector machine (SVM). (a) Machine learning models
for data provided by Fedele et al. [1]; (b) machine learning models for data provided by Ihmels et al. [24];
(c) machine learning models for data provided by Klomfar et al. [25]; and (d) machine learning models
for data provided by all the three experimental reports [1,24,25].

Table 1. Prediction models using experimental data by Fedele et al. [1].

Model Type RMSE (for Testing) Training Time Prediction Accuracy

Linear Regression 10.90 0:00:01 85.0%
SVM 0.11 0:00:01 100%

GRNN 1.62 0:00:01 100%
MLFN 2 Nodes 1.13 0:03:46 100%
MLFN 3 Nodes 0.40 0:04:52 100%
MLFN 4 Nodes 0.25 0:06:33 100%
MLFN 5 Nodes 0.37 0:07:25 100%
MLFN 6 Nodes 0.59 0:10:38 100%
MLFN 7 Nodes 0.47 0:13:14 100%
MLFN 8 Nodes 0.32 0:14:10 100%

. . . . . . . . . . . .
MLFN 29 Nodes 0.13 2:00:00 100%
MLFN 30 Nodes 0.16 2:00:00 100%
MLFN 31 Nodes 0.10 2:00:00 100%
MLFN 32 Nodes 0.15 2:00:00 100%
MLFN 33 Nodes 0.13 2:00:00 100%
MLFN 34 Nodes 0.12 2:00:00 100%
MLFN 35 Nodes 0.13 2:00:00 100%

Root mean square error (RMSE); Support vector machine (SVM); General regression neural network (GRNN);
Multilayer feed-forward neural network (MLFN).
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Table 2. Prediction models using experimental data by Ihmels et al. [24].

Model Type RMSE (for Testing) Training Time Prediction Accuracy

Linear Regression 86.33 0:00:01 63.4%
SVM 6.09 0:00:01 100%

GRNN 14.77 0:00:02 96.2%
MLFN 2 Nodes 35.41 0:02:18 82.7%
MLFN 3 Nodes 16.84 0:02:55 96.2%
MLFN 4 Nodes 12.14 0:03:38 96.2%
MLFN 5 Nodes 10.67 0:04:33 96.2%
MLFN 6 Nodes 8.35 0:04:54 98.1%
MLFN 7 Nodes 14.77 0:06:06 96.2%
MLFN 8 Nodes 13.06 3:19:52 96.2%

. . . . . . . . . . . .
MLFN 29 Nodes 25.46 0:31:00 90.4%
MLFN 30 Nodes 24.25 0:34:31 90.4%
MLFN 31 Nodes 21.23 0:42:16 90.4%
MLFN 32 Nodes 13.40 3:38:17 96.2%
MLFN 33 Nodes 24.84 0:47:06 90.4%
MLFN 34 Nodes 20.65 0:53:14 90.4%
MLFN 35 Nodes 22.46 0:58:16 90.4%

Table 3. Prediction models using experimental data by Klomfar et al. [25].

Model Type RMSE (for Testing) Training Time Prediction Accuracy

Linear Regression 15.87 0:00:01 94.1%
SVM 13.93 0:00:01 94.1%

GRNN 9.53 0:00:01 100%
MLFN 2 Nodes 2.72 0:01:13 100%
MLFN 3 Nodes 5.10 0:01:19 100%
MLFN 4 Nodes 14.05 0:01:36 94.1%
MLFN 5 Nodes 2.77 0:02:25 100%
MLFN 6 Nodes 2.85 0:02:31 100%
MLFN 7 Nodes 15.72 0:03:15 94.1%
MLFN 8 Nodes 3.46 0:03:40 100%

. . . . . . . . . . . .
MLFN 29 Nodes 68.34 0:15:03 82.4%
MLFN 30 Nodes 47.09 0:17:58 82.4%
MLFN 31 Nodes 52.60 0:22:01 82.4%
MLFN 32 Nodes 40.03 0:27:46 82.4%
MLFN 33 Nodes 20.69 0:39:27 94.1%
MLFN 34 Nodes 352.01 0:56:26 11.8%
MLFN 35 Nodes 145.61 5:01:57 11.8%

Table 1 and Figure 4a show that the prediction results of machine learning models are generally
acceptable, with lower RMSEs than that of linear regression. The SVM and MLFN with 31 nodes
(MLFN-31) have the lowest RMSEs (0.11 and 0.10 respectively) and both having the prediction accuracy
of 100% (under the tolerance of 30%). However, in our machines, the MLFN-31 requires 2 h for model
training, while the SVM only needs about one second, which is also the shortest training time among
the results in Table 1. Therefore, the SVM can be defined as the most suitable model for the prediction
using the data provided by Fedele et al. [1].

The RMSEs shown in Table 2 and Figure 4b are comparatively higher than those in Table 1.
Additionally, in Table 2, the RMSEs and training times of ANNs are comparatively higher than those
of the SVM (RMSE: 6.09; training time: 0:00:01). The linear regression has the highest RMSE when
testing (86.33). It can be apparently seen that the SVM is the most suitable model for the prediction
using the data provided by Ihmels et al. [24].
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In Table 3 and Figure 4c, the RMSE of the SVM is relatively higher than those of GRNN and
MLFNs with low numbers of nodes. The MLFN with two nodes (MLFN-2) has the lowest RMSE (2.72)
and a comparatively good prediction accuracy (100%, under the tolerance of 30%) among all models in
Table 3 and, also, the training time of the MLFN-2 is comparatively short (0:01:13). Interestingly, when
the numbers of nodes increase to 34 and 35, their corresponding prediction accuracies decrease to only
11.8%. This is because of the over-fitting phenomenon during the training of ANNs when the number
of hidden nodes is relatively too high. Therefore, we can define that the MLFN-2 is the most suitable
model for the prediction using the data provided by Klomfar et al. [25].

Table 4. Prediction models using experimental data by all the three experiment reports [1,24,25].

Model Type RMSE (for Testing) Training Time Prediction Accuracy

Linear Regression 96.42 0:00:01 93.0%
SVM 15.79 0:00:02 99.2%

GRNN 92.33 0:00:02 93.0%
MLFN 2 Nodes 39.70 0:06:50 96.1%
MLFN 3 Nodes 25.03 0:08:36 97.7%
MLFN 4 Nodes 22.65 0:10:06 99.2%
MLFN 5 Nodes 73.84 0:13:49 93.0%
MLFN 6 Nodes 23.64 0:17:26 99.2%
MLFN 7 Nodes 65.74 0:14:39 93.8%
MLFN 8 Nodes 55.32 0:16:18 93.8%

. . . . . . . . . . . .
MLFN 29 Nodes 164.54 0:52:29 89.1%
MLFN 30 Nodes 136.96 0:37:38 89.8%
MLFN 31 Nodes 168.13 0:41:35 89.1%
MLFN 32 Nodes 88.25 0:50:43 93.0%
MLFN 33 Nodes 143.65 2:30:12 89.8%
MLFN 34 Nodes 163.78 1:00:17 89.1%
MLFN 35 Nodes 166.92 0:44:16 89.1%

Table 4 and Figure 4d show that the SVM has the lowest RMSE (15.79), shortest training time
(2 s), and highest prediction accuracy (99.2%). However, it is significant that the best predicted result
presented in Table 4 and Figure 4d has a higher RMSE than those in Tables 1–3. A possible explanation of this
phenomenon is that experimental details in different experiments may generate different deviations
when acquiring the compressed liquid density of R227ea because the three groups of data come from
three different research groups in different years [1,24,25]. Therefore, the combination of three groups
of experimental data may generate additional noise, leading to deviations in training processes and,
hence, the tested results have higher RMSEs. However, it should be noted that although the results of
the best model here have higher RMSE than those in Tables 1–3 these testing results are still acceptable
and it is also far more precise than the RMSEs generated by the theoretical equation of state.

3.2. Evaluation of Models

3.2.1. Comparison between Machine Learning Models and the Equation of State

To make comparisons among machine learning models and the theoretical model, we should first
compare the RMSEs of different models (Table 5). Results show that the best machine learning models
we have chosen in the four experimental groups are all apparently more precise than those results
calculated by the Song and Mason equation, with lower RMSEs. The predicted values in the testing
sets are generally highly close to their actual values in all the four machine learning models (Figure 5).
It should be noted that experimental results provided by Fedele et al. [1] are generally more precise than
the other two groups of experimental results [24,25], according to the generalized Tait equation [1,49].
Additionally, the testing RMSE of the SVM for the data provided by Fedele et al. [1] is the lowest during
Table 5. One possible reason is that data provided by Fedele et al. [1] may have less experimental errors
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due to a well-developed measurement method, leading to better training effects, which indicates that
data provided by Fedele et al. [1] is a good sample for training in practical predictions.
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(a) The SVM for data provided by Fedele et al. [1]; (b) the SVM for data provided by Ihmels et al. [24];
(c) the MLFN-2 for data provided by Klomfar et al. [25]; and (d) the SVM for data provided by all the
three experimental reports [1,24,25].

Table 5. RMSEs of different models.

Item RMSE in Training RMSE in Testing

SVM for data provided by Fedele et al. [1] N/A 0.11
SVM for data provided by Ihmels et al. [24] N/A 6.09

MLFN-2 for data provided by Klomfar et al. [25] 11.81 2.72
SVM for all data [1,24,25] N/A 15.79

Theoretical calculation for data provided by Fedele et al. [1] N/A 196.26
Theoretical calculation for data provided by Ihmels et al. [24] N/A 372.54
Theoretical calculation for data provided by Klomfar et al. [25] N/A 158.54

3.2.2. Comparison between Conventional Measurement Methods and Machine Learning

Advanced conventional approach for measuring the compressed liquid density of R227ea requires
a series of apparatus connecting to be an entire system (Figure 6) [1]. However, the measurement
requires time and a series of complex operations, which constraints its applicability. Additionally, the
purchase and installation of the apparatus of conventional methods require too much manpower and
resources, which indicates that it can only be used for acquiring extremely precise values. In contrast,
machine learning models can make precise predictions based on the trained data set and give robust
responses with a large number of trained data. Users can only input the new measured data of temperature
and pressure and the precise predicted results can be automatically outputted by an appropriate
machine learning model. Once the models are developed, new predicted data can be acquired in
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a very quick way, saving time and manpower. More importantly, it only needs a decent computer and
no other apparatus is required anymore.
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Figure 6. Apparatus scheme of density measuring for R227ea [1]. VTD represents the vibrating tube
densimeter; PM represents the frequency meter; DAC represents the data acquisition and control;
MT represents the temperature measurement sensor; M represents the multi-meter; LTB represents
the liquid thermostatic bath; HR represents the heating resistance; SB represents the sample bottle;
PG represents the pressure gauge; VP represents the vacuum pump; SP represents the syringe pump;
NC represents the cylinder.

4. Conclusions

This study is a case study on the prediction of compressed liquid density of refrigerants, using
R227ea as a typical example. To precisely acquire the densities of R227ea under different temperatures
and pressures, existing measurements require complex apparatus and operations, wasting too much
manpower and resources. Therefore, finding a method to predict the compressed liquid density
directly is a good way to estimate the numerical values without tedious experiments. To provide
a convenient methodology for predictions, a comparative study among different possible models is
necessary [26,27,34,35]. Here, we used the Song and Mason equation, SVM, and ANNs to develop
theoretical and machine learning models, respectively, for predicting the compressed liquid densities
of R227ea. Results show that, compared to the Song and Mason equation, machine learning methods
can better generate precise predicted results based on the experimental data. The SVMs are shown to
be the best models for predicting the experimental results given by Fedele et al. [1], Ihmels et al. [24],
and the combination of all the three experimental results [1,24,25]. The MLFN-2 is shown to be the best
model for predicting the experimental results reported by Klomfar et al. [25]. It is also recommended
that practical predictions can refer to the model developed with the training of experimental results
reported by Fedele et al. [1] due to its more precise experimental results using advanced apparatus.
Once a proper model is defined after model training and error analysis (such as the SVM for data
provided by Fedele et al. in this case study), we can only input the easily-measured temperature and
pressure, and then acquire the compressed liquid density of R227ea directly. Compared to experimental
methods, machine learning can “put things right once and for all” with proper experimental data for
model training. This study successfully shows that, in practical applications, users can only acquire the
temperature and pressure of the measured R227ea and the density can be outputted by the developed
appropriate model without additional operations. It should be noted that the target of this study is
not to replace the traditional experimental works, but to give an alternative method for scientists and
technicians to estimate the values as precise as possible in a limited time.
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