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Abstract: Layered double hydroxides (LDHs), luminescent π-conjugated anionic polymer and
montmorillonite (MMT) were orderly assembled into luminescent multilayer films via layer-by-layer
self-assembly method. The electronic microenvironment (EME), the structure of which is like a
traditional capacitor, can be constructed by exfoliated LDHs or MMT nanosheets. In addition, the
rigid inorganic laminated configuration can offer stable surroundings between the interlayers. As a
result, we conclude that EME can extend the luminescent lifespans of multilayer films substantially,
due to affecting relaxation times of π-conjugated anionic polymer. Consequently, because of the
remarkable impact on better photoemission behaviors of luminescent π-conjugated anionic polymer,
EME assembled by LDHs or MMT nanosheets have had high hopes attached to them. They are
expected to have the potential for designing, constructing, and investigating novel light-emitting
thin films.

Keywords: thin films; luminescent; multilayers

1. Introduction

Nowadays, layered materials, due to their unique nanostructure and specific low-dimensional
qualities, have been widely used for designing, constructing and investigating novel ordered
layer-structure functional materials [1–4]. Kotov et al. successfully fabricated stiff and ultrastrong
nanocomposites by assembling alternately with montmorillonite (MMT) nanosheets and polyvinyl
alcohol (PVA) aqueous solution, which upsurges a target for preparation nanocomposite materials
via layer-by-layer self-assembly method (LBL method) [5–7]. As successful exfoliation of layered
double hydroxides (LDHs), positively-charged LDHs nanosheets have been widely used as building
blocks [8–15].

Recently, our group has successfully verified that an electronic microenvironment (EME) can
enhance the multilayer films’ lifetimes containing cationic chromophores about 40-fold as long as
those of the original powders [16]. Exfoliated LDHs and MMT nanosheets constructed a nano-system
via LBL method, and then EME can be formed by the oppositely-charged rigid inorganic nanosheets
between the interlayers, as shown in Figure 1. The nano-system structure is like a traditional capacitor’s
structure, in which the positive LDHs nanosheets are used as positive plates of capacitors and negative
MMT nanosheets are as negative plates of capacitors. Between the interlayers, the EME can be
provided. At the same time, we also confirm that the ferromagnetic effect, which is formed by
transition metal-bearing LDHs nanosheets, is fairly conducive to enhancing the lifetimes of multilayer
films, and better photoemission behavior is obtained thanked to the double coupling effects of EME

Appl. Sci. 2016, 6, 272; doi:10.3390/app6100272 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/journal/applsci


Appl. Sci. 2016, 6, 272 2 of 8

and magnetic field [17,18]. However, the novel concept has only been clarified in several nano-systems,
but the questions of whether EME’s effect is endowed with universality for all chromophores, and
whether it can also be solely beneficial to the lifetimes of multilayer films containing the anionic
luminescent polymer except nanosheets’ ferromagnetic effect, need to be clearly explored imminently.
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Figure 1. The sketch map of APPV in electronic microenvironment (EME) between the montmorillonite
(MMT) and layered double hydroxides (LDHs) monolayers. (a) MgAl-LDHs monolayer; (b) MMT
monolayer; (c) Poly [5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene] (APPV). In this figure,
the pink stands for aluminum element, green stands for magnesium element, yellow stands for
silicon element.

In this work, anionic luminescent π-conjugated polymer was intercalated into the different
inorganic nanosheets for fabricating multilayer films, in which optically-inert PVA was used as
bonder. A preconceived nano-scaled architecture assembled by oppositely-charged nanosheets
can form EME between the interlayer, and then the multilayer films exhibit remarkable
luminescent properties with ultralong lifespans. This work provides fascinating possibilities for
the development of the next generation of optoelectrical, optomagnetic devices based on the inorganic
oppositely-charged nanosheets.

2. Materials and Methods

Poly [5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene] (APPV, 0.25 wt % in H2O) was
provided by Sigma Chemical Co. Ltd. (Beijing, China) Mg(NO3)2·6H2O, Al(NO3)3·9H2O were
supplied by Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China) NaOH, H2O2 (30%), H2SO4

(95%–98%) were provided by Beijing Chemical Reagent Company (Beijing, China). Na-montmorillonite
(MMT) was manufactured by Zhejiang Feng Hong New Materials Co. Ltd. (Huzhou, China), and
polyvinyl alcohol (PVA, DP = 1750 ± 50) was supplied from Tianjin Fuchen Chemical Reagent Plant
(Tianjin, China).

UV-vis absorption spectra were recorded by double beam Persee UV-vis spectrophotometer
(TU-1901, Beijing, China). Fluorescence spectra was performed on a fluorescence spectrophotometer
(F-4600, Hitachi, Tokyo, Japan). X-ray diffraction pattern was recorded by Rigaku X-ray Diffractometer
(XRD, RIGAKU D/Max-2550 with Cu Kα radiation, Tokyo, Japan) under the conditions: 40 kV, 30 mA.
The morphology of the sample was investigated by Hitachi S-4300 Scanning Electron Microscope
(SEM, Tokyo, Japan). The fluorescence decay was tested by using Edinburgh Instruments’ steady and
transient time-resolved fluorescence spectrometer, and the 375 nm pulse laser radiation was used as
the excitation source (FLS-920, Livingston, UK).

An aqueous mixed nitrate solution (50 mL) dissolved Mg(NO3)2·6H2O (0.4 mol), Al(NO3)3·9H2O
(0.2 mol) was prepared, and then mixed with the solution of NaOH (50 mL, 2.4 mol/L) with vigorous
stirring at 80 ◦C for 24 h under N2 gas, and then solid were centrifuged and dried at 60 ◦C.
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0.1 g MgAl-LDHs was mixed with 100 mL formamide, and flake by a mechanical shaker for
2 days. One gram of MMT was added to 1 L deionized water an unremittingly stirred for 28 days.
Then, centrifuge this turbid liquid at 10,000 rpm for 10 min in order to obtain a solution with exfoliated
MMT nanosheets. Quartz slides were cleaned in H2SO4 and H2O2 solution for 30 min. PVA aqueous
solution (1 wt %) acted as the bonder to connect the different components, and then 0.025 wt %
APPV aqueous solution was mixed with isopyknic PVA aqueous solution to form APPV@PVA
solution. (MMT/APPV@PVA/MgAl-LDHs/APPV@PVA)n (marked as MALA(n)-films) were obtained
by repeating as follow: (i) steeping the substrate into MMT solution for 5 min, and then thoroughly
cleaning it; (ii) steeping it into APPV@PVA solution for 5 min, and cleaning it; (iii) steeping it into
MgAl-LDHs suspension for 5 min, and cleaning it; (iv) steeping it into APPV@PVA solution for 5 min,
then cleaning it. (MMT/APPV@PVA)n (recorded as MA(n)-films) were obtained by depositing the
MMT suspension, APPV@PVA solution in turn for each 5 min, respectively.

3. Results

Figure 2a shows the UV-vis absorption spectra and photoluminescence spectra of MA(n)-films
with varying numbers of layers (n = 4, 8, 12, 16, 24, 32), and the inset of left figure indicates the intensities
of absorption peaks increase linearly at 293.5 nm and 452.5 nm when the layers grow, displaying a
well-organized growth in assembly process of those thin films. Under 375 nm excitation, these thin films
give a green emission band peak at 572.0 nm (Figure 2b). Meanwhile, the intensities of fluorescence
peaks also increase gradually as the deposition cycles increase, which shows that the films grow
stepwise. Moreover, as shown in Figure 2c about small angle XRD peaks, the intensities of multilayer
films increase with the deposition cycles, and the films have well-organized structure in the vertical
direction with a period of ca. 4.18 nm. At the same time, MA(n)-films are extremely regular and smooth
in the SEM image (Figure 2d). Surprisingly, the luminescent lifetimes of MA(n)-films range from 1.32 ns
to 1.41 ns, nearly 2.2 times as long as poly [5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene]
(APPV) solution (0.6 ns), about 1.0 times longer than those of (LDHs/APPV)n’ (marked as LA(n)-films,
0.66–0.81 ns) [15]. Negative-charged MMT nanosheets can provide isolation effect and electrostatic
repulsion for the anionic APPV, thus leading to the APPV stacking more orderly and suppressing the
formation of aggregates.

In order to confirm EME’s effect, referred to in our present work on the anionic chromophores,
MALA(n)-films were fabricated via a similar method to the present work [15]. Figure 3a shows the
UV-vis absorption spectra of MALA(n)-films, which grow in a stable step with the layer number.
The peak of absorption at 293.5 nm and 452.5 nm are absorption of phenylene ring and π-π*
transition of APPV. The emission band peak is seen at 578.0 nm as yellow in color, and the emission
intensity also increases consistently with the layer number (Figure 3b). Compared to the MA(n)-films,
the luminescent peak occurs during a red-shift. When introducing the rigid oppositely-charged
inorganic nanosheets, isolation effect and EME can affect either intermolecular interaction or entangled
main-chain. Firstly, they can have an impact on intramolecular phenyl-phenyl stack structure, which
give rise to emerge a decrease in electronic π*-π transition energy (red shift in luminescent band) and the
increase in oscillator strength. Secondly, they can also make the entangled main-chain loosen and flatten.
As a result, energy-trapping sites with lower electronic transition energies are more easily formed.
Moreover, small angle XRD and SEM images show that multilayer films are regular and uniform with
a period of ca. 6.74 nm (Figure 3c,d). Importantly, the lifetimes of MALA(n)-films (1.47–1.59 ns) are
about 1.50 times longer than APPV solution (0.60 ns), are also prolonged to nearly 2.0-fold combined
with LA(n)-films’ (0.66–0.81 ns), and with an increasing than MA(n)-films (1.32–1.41 ns). The dominant
factor is that LDHs and MMT inorganic nonosheets can assemble EME in this nano-architecture, which
can affect the vibration of backbone and extend the relaxation time, finally prolonging lifetimes [19,20].
Above all, EME is helpful to improve photoemission behaviors of multilayer films. When introducing
MgAl-LDHs and MMT nanosheets into the nano-system, lifetimes of chromophores can be prolonged
by a large margin.
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The quantum yield (QY) of MALA(n)-films (n = 8, 16, 24) are 0.001363%, 0.001319%, 0.001598%,
and the QY of MA(n)-films (n = 8, 16, 24) are 0.001990%, 0.002032%, 0.002143%. The first reason for
the so low QY values is the imbalance of hole/electron injection and transport because the emissive
polymer conduct holes are used in preference to electrons [21,22]. Due to the easily trapped excitons
and constant nonradiative decay, there is the presence of defects in the polymer, so this is the second
reason [23,24]. The third reason for the low QY is because of interchain interactions such as aggregation
and excimer formation, leading to a quenching process when adding the polyvinyl alcohol as a
binder [25,26]. Finally, we introduce the negative nanosheets which repulse the anionic APPV, leading
to a reduction in the concentration of APPV, which affects the weaker intensity of luminescence and
the lower QY.

1 

 

 

Figure 2. Characterization of (MMT/APPV@PVA)n (MA(n) films) (a) UV-vis absorption spectra
(the inset shows the absorbance at 293.5 nm and 452.5 nm increasing linear relationship; (b) fluorescence
spectra; (c) Small angle X-ray Diffractometer (XRD) patterns; (d) Scanning Electron Microscope (SEM)
images of the thin films surface, and the inset show the thin films’ cross sections; (e) Fluorescence
decay profiles.
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Figure 3. Characterization of (MMT/APPV@PVA/MgAl-LDHs/APPV@PVA)n (MALA(n) films).
(a) UV-vis absorption spectra (the inset shows the absorbance at 293.5 nm and 452.5 nm increasing
linear relationship; (b) fluorescence spectra; (c) Small angle XRD patterns; (d) SEM images of the thin
films surface, and the inset show the thin films’ cross sections; (e) Fluorescence decay profiles.

4. Discussion

A battery of novel luminescent thin films containing anionic APPV based on MgAl-LDHs and
MMT nanosheets were successfully assembled via LBL method. Significantly, APPV were intercalated
into EME which was built by oppositely-charged inorganic layer, and EME, which can affect the
vibration of backbone and extend the relaxation time, was verified to process the ability to enhance
the lifetimes.Figure 4 illustrates the comparison of APPV’s luminescent lifetimes under different
microenvironments, and the black, red, blue and bottle green dots stand for the lifetimes of APPV,
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LA(n)-films, MA(n)-films and MALA(n)-films, respectively. Due to the rigid structure of MgAl-LDHs,
the headmost step is formed. In the nano-system, rigid inorganic nanosshets can promote APPV
dispersion better and eliminate their stacking interaction. The second step is due to MMT nanosheets’
ability to provide isolation effect and electrostatic repulsion for the anionic APPV, thus leading to the
APPV stacking in a more orderly way and suppressing the formation of aggregates. The crucial reason
for the last noteworthy step is that EME can be formed by oppositely-charged inorganic nanosheets,
which can definitely affect relaxation times of π-conjugated anionic polymer. Above all, it is obviously
confirmed that EME in the nano-system can be beneficial for the lifetimes of chromophores between
the interlayers.
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Figure 4. The comparison of APPV’s lifetimes in the different states under the different environments.
The black, red, blue and bottle green dots represent the lifetime of APPV, LA(n)-films, MA(n)-films and
MALA(n)-films, respectively. The folds stand for the different kinds of multilayer films’ luminescent
lifetimes compared with the pristine APPV solution.

5. Conclusions

To sum up, this work successfully assembled MgAl-LDHs and MMT to form an electronic
microenvironment and designed the π-conjugated anionic polymer in the rigid microenvironment.
Significantly, the multilayer films with ultra-prolonged lifetime were obtained, and EME is testified to
be solely capable of improving the luminescent properties. According to our present work, not only
can cationic chromophores be affected with better optical behavior but anionic chromophores are also
effected by EME. Therefore, EME has a broad scope of application to a series of chromophores that is
expected to develop in the next generation of novel luminescent multilayer films.
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