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Abstract: It is well-known that the reduction of noise levels is not strictly linked to the reduction
of noise annoyance. Even earthmoving machine manufacturers are facing the problem of customer
complaints concerning the noise quality of their machines with increasing frequency. Unfortunately,
all the studies geared to the understanding of the relationship between multidimensional
characteristics of noise signals and the auditory perception of annoyance require repeated sessions
of jury listening tests, which are time-consuming. In this respect, an annoyance prediction model
was developed for compact loaders to assess the annoyance sensation perceived by operators at
their workplaces without repeating the full sound quality assessment but using objective parameters
only. This paper aims at verifying the feasibility of the developed annoyance prediction model when
applied to other kinds of earthmoving machines. For this purpose, an experimental investigation was
performed on five earthmoving machines, different in type, dimension, and engine mechanical power,
and the annoyance predicted by the numerical model was compared to the annoyance given by
subjective listening tests. The results were evaluated by means of the squared value of the correlation
coefficient, R2, and they confirm the possible applicability of the model to other kinds of machines.
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1. Introduction

It has been proved that sound levels, sound pressure, or even sound power, although properly
weighted, are not able to assess the annoyance that a sound may generate [1]. This is true especially
for high sound pressure levels due both to the great difference between the A-weighting filter and the
equal loudness contour curve at these levels [2] and to the necessity of using parameters that account
for the time structure and the spectral variation of the signals, such as the psychoacoustics parameters.
Unfortunately, almost all legislation still refers to overall A-weighted levels (LAeq, LWA, LpA) aimed at
checking the compliance of the products.

For earthmoving machines, the Directive 2000/14/EC [3] imposes limitations on the A-weighted
sound power levels emitted by the machine while the Directive 2006/42/EC [4] requires information
on the airborne noise emissions, in terms of A-weighted sound pressure level at the workstation,
C-weighted peak instantaneous sound pressure value at the workstation, and A-weighted sound
power level emitted by the machine. As the reduction of the noise levels is not strictly linked to the
reduction of the annoyance, manufacturers are facing the problem of customers’ complaints concerning
the noise quality of the machines with increasing frequency.

In the last ten years, great efforts have been made by the authors to better understand the
relationship between the multidimensional characteristics of the noise signals at the operator station of
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compact loaders in different working conditions and the relevant auditory perception of annoyance [5].
Compact loaders, indeed, are critical as far as noise emission is concerned because the operator station
is located just above the engine compartment, which cannot be completely insulated from the outside
due to overheating problems. As a consequence, noise and vibration levels at the operator station are
extremely high, causing uncomfortable conditions for workers.

Moreover, compact loaders are widely used in dwelling areas for the activities of building
construction and renovation, and the study of the quality of their noise emissions may be valuable to
reduce their environmental noise impact.

Results of these studies showed that loudness and sharpness are the parameters primarily related
to the annoyance perception of these noise signals [6,7]. In particular, S5 (fifth sharpness percentile)
and N50 (fiftieth loudness percentile) were found to be closely related to the annoyance perception
when the machines were operating in dynamic conditions. As to the different perception occurring
with sounds having different loudness and/or sharpness values, subjective listening tests indicated
that the minimum differences which are subjectively perceived (just noticeable differences, JND) for the
loudness and sharpness of these machines are 0.8 sone and 0.04 acum, respectively. Results highlighted
also that the loudness JND becomes greater as the overall sound pressure level of the signal increases,
while the sharpness JND has very small variations related to the overall level [8].

All of these studies followed the “product sound quality” approach that, although very
powerful in relating the physical characteristics of the noise to the auditory perception of annoyance,
requires repeated sessions of jury listening tests, which are time-consuming [9–12]. In this respect,
an annoyance prediction model could be extremely valuable to assess the annoyance sensation
perceived by operators of earthmoving machines at their workplaces without repeating the full
sound quality assessment but using prior knowledge of these machines.

This approach has already been applied to many other products [13–16] as well as to construction
machines and some of their components [17].

The authors developed an annoyance prediction model able to evaluate the grade of annoyance
at the workplace of compact loaders using objective parameters only [18]. The model was developed
by multi-regression analysis based on a relevant database of binaural noise signals recorded at the
operator position. Results confirmed a very good correlation between the annoyance values predicted
by the model and the subjective ratings resulting from jury tests.

This paper aims at verifying the feasibility of the developed annoyance prediction model when
applied to other kinds of earthmoving machines. The basic idea guiding this study is that all
earthmoving machines (excavators, back-hoe loaders, dozers, etc.) have common dominant noise
sources: the internal combustion engine, the engine cooling system, and the hydraulic components.
Consequently, the noise signals in different working conditions should have the same temporal
and spectral characteristics irrespective of the type of machine. Then, the relationship between
physical/psychoacoustics descriptors and annoyance auditory perception elicited by the sound stimuli
should be the same. If this is confirmed, the annoyance prediction model developed for the compact
loaders could be applied to other kind of earthmoving machines.

The several experiments and analyses performed in order to validate this thesis are extensively
reported in the following sections.

2. The Annoyance Prediction Model for Compact Loaders

The annoyance prediction model was developed starting from measurements on 41 compact
loaders belonging to six families both in dynamic and stationary conditions in order to represent all
possible operations of such machines [18].

When the machine was in a stationary idle condition, the binaural signals were recorded by
means of a head and torso simulator placed in the operator station. When the machine was performing
a simulated work cycle (charging and discharging gravel or loam from a stockpile to another),
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the binaural signals were recorded by means of a binaural headphone with miniature microphones
placed at the entrance of the operator’s ear canals [19].

A total amount of 62 binaural noise signals were then available. The following acoustic and
psychoacoustic parameters were calculated for all these signals, using the Pulse Sound Quality software
(version 10, type 7698, Bruel & Kjaer, Nærum, Denmark): overall sound pressure levels, percentile
values of the sound pressure levels, overall and percentile values of loudness (N) and sharpness (S),
overall values of roughness (R), and fluctuation strength (Fl.St.).

This huge amount of sound stimuli was divided into nine groups; for each of them, the subjective
assessment of annoyance was obtained by means of subjective listening tests carried out according to
the paired comparison procedure [20].

Multiple regression analysis was then used for developing the prediction model as this technique
is the most commonly used for analyzing multiple dependence between variables [21,22]. Six groups
of noise stimuli were used in the development phase, while the remaining three groups were used for
validation purposes.

The set of predictor variables which led to the highest R2 (squared value of the correlation
coefficient between the subjective scores and the predicted values of annoyance) when applied to the
six groups of sound stimuli was (Peak, N50, S5), i.e., the sound pressure Peak level, in dB, the fiftieth
percentile of loudness in sone, N50, and the fifth percentile of sharpness in acum, S5.

The multiple regression equations obtained for the set of variables (Peak, N50, S5) for each group
of sound stimuli are listed in Table 1.

Table 1. Results of the multiple regression analysis for the predictor variables (Peak, N50, S5).

Noise Groups Multiple Regression Equation R2

Group 1 Y1 = −9.310 + 0.057 Peak + 0.184 N50 + 0.216 S5 0.79
Group 2 Y2 = −5.512 + 0.039 Peak + 0.296 N50 − 3.703 S5 0.99
Group 3 Y3 = −5.322 + 0.038 Peak + 0.057 N50 + 0.412 S5 0.89
Group 4 Y4 = −18.214 + 0.061 Peak + 0.018 N50 + 9.628 S5 1.00
Group 5 Y5 = −4.241 + 0.030 Peak + 0.046 N50 + 0.289 S5 0.96
Group 6 Y6 = 6.971 − 0.012 Peak + 0.312 N50 − 11.350 S5 0.89

For each noise group, this set of variables accounted for at least 89% of the variation in the
subjective scores, with the only exception of Noise Group 1.

Each regression equation was finally applied to the other five groups, and the predicted annoyance
values were calculated for each equation. The correlation between these predicted annoyance values
and the subjective ratings was evaluated for each noise group: the better the correlation, the higher the
R2 value. In such a way, the best annoyance prediction model was identified as the one that gave the
maximum sum of R2 over all the noise groups except for the one from which that model was issued.

According to this criterion, the regression equation referred to the Noise Group 3 gave the best
results, and it was chosen as the numerical prediction model able to assess noise annoyance at the
workplace of compact loaders:

Y3 = 5.322 + 0.038 Peak + 0.057 N50 + 0.412 S5 (1)

where Y3 indicates the predicted annoyance value.
The validation process performed on the remaining three groups of sound stimuli confirmed the

reliability of this model as an alternative and simpler way for manufacturers and customers to assess
the grade of annoyance at the workplace of any compact loader.
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3. Experimental Investigation on Different Kinds of Earthmoving Machines

3.1. Binaural Recordings and Objective Characterizations

Five brand new earthmoving machines, different in type, manufacturer, dimension, and engine
mechanical power, were selected for this test: two excavators, a back-hoe loader (used both during
loader and excavator operations), a dozer, and a skid steer loader. All the binaural recordings were
performed at the operator working station in an open area while the machine, in stationary idle
conditions, had the engine running at one of the rotational speeds corresponding to a typical operation
for that specific type of equipment. Table 2 reports the list of the machines and the codes used
hereinafter for their identification and the rotational speed values during the noise recordings.

Table 2. Earthmoving machines involved in the investigation.

Machine Type Identification Code Rotational Speed (rpm)

Skid steer loader A 2350
Dozer B 2350

Excavator C 2350
Back-hoe loader (operating as loader) D 2700

Excavator E 2450
Back-hoe loader (operating as excavator) F 1600

All the binaural measurements were performed at the operator station using the Cortex System
MK1 head and torso simulator (NCI, Neutrik Cortex Instruments GMBH, Regensburg, Germany).
The recordings corresponding to the left and right ears were then analyzed separately, and the same
physical and psychoacoustic parameters as in the previous studies were evaluated. Figure 1 shows
the 1/3 octave band sound pressure spectra of the six sound stimuli recorded at the right ear of the
dummy head. Similar spectra were also detected at the left ear.
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Figure 1. Sound pressure levels for all the six sound stimuli recorded at the right ear.

It is worth noting that all the noise signals except F have the first significant contribution at the
engine firing frequency (80 Hz or 100 Hz depending on the rotational speed) and further significant
noise contributions at higher frequencies. On the contrary, Signal F, which was recorded at 1600 rpm,
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still has the dominant contribution at the firing frequency (50 Hz), but this contribution is the only one
responsible for the overall level. This noise spectrum feature is unusual for these kinds of machines,
which generally have very similar frequency content due to the fact that most of the noise sources are
the same [17,23,24].

Referring to the overall energy content of the signals, Signal F has the highest overall level,
while A, D, B, E and C follow in decreasing order. Referring to the A-weighted overall level, A has the
highest level and B, D, E, F and C follow in decreasing order.

Table 3 reports the most representative acoustic and psychoacoustic parameters for all the six
sound stimuli.

Table 3. Acoustic and psychoacoustic parameters for the six sound stimuli.

Parameter A B C D E F

Peak (dB)
Left 106.0 103.0 100.0 105.0 101.0 106.0

Right 107.0 104.0 98.2 106.0 101.0 107.0

L (dB)
Left 96.7 91.4 88.0 94.3 91.0 101.0

Right 97.5 92.9 87.2 94.5 90.7 101.0

LA (dB(A))
Left 89.1 84.9 76.2 86.3 78.3 79.9

Right 89.9 88.4 74.6 87.1 79.8 79.7

N (sone)
Left 88.4 68.6 40.4 75.6 46.0 55.5

Right 92.9 78.2 37.2 78.8 47.7 55.7

N50 (sone)
Left 88.8 68.9 40.6 76.0 45.9 56.0

Right 93.4 78.6 37.3 79.2 47.8 56.0

S (acum)
Left 1.36 1.43 1.04 1.40 1.02 1.01

Right 1.38 1.43 1.12 1.42 1.04 1.07

S5 (acum)
Left 1.42 1.51 1.10 1.48 1.08 1.07

Right 1.45 1.51 1.18 1.50 1.09 1.12

R (asper) Left 1.63 1.34 1.78 1.40 1.53 1.55
Right 1.40 1.59 1.49 1.43 1.26 1.63

Fl.St. (vacil)
Left 0.30 0.32 0.29 0.29 0.31 0.32

Right 0.31 0.27 0.29 0.28 0.27 0.30

3.2. Listening Tests and Subjective Annoyance Scores

The six binaural noise recordings were organized in pairs, and all pairs were arranged in a
random sequence according to the digram-balanced Latin square design to avoid any sequence effect.
In addition, each sequence included at least the repetition of the first pair of the sound stimuli for
checking purposes.

Thirty-five normal-hearing subjects (28 males and 7 females) were involved in the listening test.
Fifty-eight percent of the subjects were aged less than 29 years, with 32% less than 50 and only 10% over
50. The group included experts of earthmoving machines (i.e., design engineers), experts of subjective
listening tests, and scientists in acoustics. No earthmoving machine operators were included. The noise
stimuli were presented to the subjects in a quiet environment through high-quality electrostatic
headphones with a flat response in the 40–40,000 Hz frequency range after being modified to account
for the transfer function of the headphones used for playing back. Each listening session started with
a learning phase, during which the experimenter provided the instructions needed to understand
the correct procedure for the test. The subjects had to choose, within the pair, the stimulus they
considered more annoying. The rating was given by each subject after listening to each pair of sound
stimuli as many times as necessary in order to increase the concentration and reduce the probability of
inconsistent responses.

According to a procedure defined in Kendall and Babington Smith [20], the consistency for each
subject and the agreement among the subjects were evaluated in order to guarantee the control of
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the variance due to the emotional state of the judging individuals [25]. Three subjects (2 males and
1 female <29 years) did not satisfy these consistency tests, and their ratings were not used in the data
analysis. The subjective responses were then arranged in matrices whose overall value is shown in
Table 4.

Table 4. Overall matrix of the sound stimuli as to the subjective annoyance score (SAS).

Machine A B C D E F
Subjective Annoyance Score

Sum Rank %

A - 22 32 24 31 21 130 1 81.3
B 10 - 32 10 31 12 95 4 59.4
C 0 0 - 0 5 0 5 6 3.1
D 8 22 32 - 31 13 106 3 66.3
E 1 1 27 1 - 0 30 5 18.8
F 11 20 32 19 32 - 114 2 71.3

The number reported in each cell represents how many times the sound indicated on the left hand
side of the row was judged more annoying than that heading the correspondent column. The subjective
annoyance score (SAS) of the sound stimuli is shown in the last three columns in terms of (1) the overall
value for each sound stimulus, with respect to all the others (Sum); (2) the ranking of the subjective
scores (Rank); (3) the percentage value (%) normalized to the maximum score (160) that each stimulus
could have obtained.

On the basis of the subjective judgements, the noise stimulus of Machine C (excavator at 2350 rpm)
turned out to be the less annoying signal, while the signal of Machine A (skid steer loader) the most
annoying. This result is in full agreement with the results of previous studies that showed the relevance
of the overall energy level and the energy content in the 400–5000 frequency range on the auditory
perception of annoyance [7].

On the contrary, the subjective annoyance score obtained by Signal F (back-hoe loader operating
as excavator at 1600 rpm) seems only to partially fit the previous results. This stimulus was ranked
second as regards the annoyance score. As reported in Table 3, it has the highest Peak level but all the
other acoustic and psychoacoustic descriptors are lower than those of B or D signals that were judged
less annoying. Probably such a high subjective annoyance judgement could be due to two combining
features: the very high overall energy content of this signal and the very high tonal component at low
frequency (50 Hz) without any other significant noise component at higher frequency.

4. The Applicability of the Prediction Model to Different Kinds of Earthmoving Machines

In order to verify whether the annoyance prediction model is able to assess the annoyance
conditions at the work position of any kind of earthmoving machines, all six regression equations
reported in Table 1 (those originally used to develop the model for compact loaders) were considered.
For each equation, Y represents the predicted annoyance value that must be calculated using the
objective parameters of the six noise stimuli.

These equations were applied to the six sound stimuli recorded from the different kinds of
earthmoving machines listed in Table 2. The calculation was repeated for the left and the right noise
stimuli, separately. As similar results were found for both, only those of the right noise stimulus will
be presented hereinafter.

Figure 2 shows the predicted values of annoyance plotted against the observed values (subjective
scores) for each equation. The match of the data (predicted vs. subjectively judged) was assessed by
means of the squared value of the correlation coefficient (R2): the better the correlation, the higher the
R2 value.

At first glance, all these results seem to be a kind of “compromise solution” as the R2 values are
all lower than 0.8. However, a more careful analysis shows that all these numerical prediction models
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lead to an incorrect assessment of annoyance for Stimulus F. This signal was ranked second as to the
annoyance score given by the subjects, while all numerical predictions lead to lower annoyance values.

It is worth emphasizing that the frequency content of this signal is very unusual for earthmoving
machines, as it has an unbalanced weight between the noise contributions at low (combustion process
at 50 Hz) and medium-high (hydraulic and engine cooling systems at 400–4000 Hz) frequencies.
This peculiarity could suggest considering Stimulus F as an “outlier” and to exclude it from the
data set.
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Figure 2. Comparison of the predicted and observed values of annoyance with different numerical
regression models.

Figure 3 shows the regression curves and the R2 values calculated with and without Stimulus
F. This quantifies how good the relationship is between the annoyance calculated by means of a
prediction model and that assessed by means of subjective evaluations. This is repeated for each of the
equations in Table 1 (Y1, Y2, Y3, Y4, Y5, Y6).

Results show that all the regression equations lead to an R2 value higher than 0.87 when the
Signal F is not included in the data set. In particular, Y3 and Y5 both have very high values almost
equal to 1 (R2 = 0.997). On the basis of these considerations and results, it turns out that the annoyance
prediction model developed for compact loaders (Y3, see Equation (1)) offered a good assessment of
noise annoyance at the workplace for other kinds of earth moving machines. Its validity should be
further assessed with a larger number of machines.
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Figure 3. Comparison between the regressions obtained with and without Stimulus F, for each
prediction model (a) Y1; (b) Y2; (c) Y3; (d) Y4; (e) Y5; (f) Y6.

Figure 4 shows a comparison between the annoyance values predicted by equation Y3 and those
obtained by subjective listening tests for all six stimuli. In order to make this comparison more
understandable, the subjective annoyance values were previously normalized so that the predicted
and the subjective results for the most annoying stimulus were the same. This graph shows that the
prediction model leads to results in agreement with those obtained by subjective listening tests except
for Stimulus F. In addition, the predicted annoyance values are slightly higher than the subjective ones.
However, with the limitations due to the small number of machines under test, these results were
considered satisfactory.
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listening tests.



Appl. Sci. 2016, 6, 363 9 of 10

5. Conclusions

This paper reports the results of a study aimed at verifying the feasibility of an annoyance
prediction model developed for compact loaders when applied to other kinds of earth moving
machines. For this purpose, six binaural noise signals were recorded at the workplace of five brand
new earthmoving machines, different in type, manufacturer, dimension, and engine mechanical power:
two excavators, a back-hoe loader (used both during loader and excavator operations), a dozer, and a
skid steer loader.

The subjective annoyance scores of these noise stimuli were obtained by means of subjective
listening tests performed according to the paired comparison procedure with more than 30 subjects.
All the regression equations originally used to develop the model for compact loaders were then
applied to these new binaural noise stimuli in order to obtain the annoyance predicted values.
The match between the predicted annoyance and the subjective annoyance was finally assessed
by means of the squared value of the correlation coefficient (R2): the better the correlation, the higher
the R2 value.

Results showed that the regression equations led to quite low R2 values (from 0.49 to 0.79).
However, considering that Stimulus F has a frequency content very unusual for earth moving machines
(a very high pick at low frequency and no significant contributions in the medium-high frequency
range), it was considered as an “outlier” and excluded from the data set. This exclusion led to R2 values
higher than 0.87.

The regression equation chosen as numerical prediction model to assess noise annoyance at
the workplace of compact loaders had the highest R2 value (R2 = 0.997). This model offered a good
assessment of noise annoyance at the workplace and for other kinds of earth moving machines.
It intrinsically reflected the main results of the sound quality approach although it was based on
objective parameters only. Its validity should be further assessed with a larger number of machines.
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