S1 of S6

Supplementary Materials: Wing Geometry and Kinematic Parameters Optimization of Flapping Wing Hovering Flight

Xijun Ke and Weiping Zhang

S.I. Flapping Wing Morphological Parametrization

Items	Value	Units	Items	Value	Units	
$R_{ m eff}$	3.004	mm	$\rho_{wing} \ ^a$	1.2	mg/mm ³	
C_{aver}	0.8854	mm	<i>m</i> _{wing,orig} *, b	0.002237	mg	
$A_{ m w}$	2.66	mm^2	$M_{ m insect}$	1.8	mg	
AR	3.4	-	I _{xx,com,orig} *	0.000215	mg∙mm²	
$\chi_{ m r}$	0.3289	mm	$I_{zz, {\rm com, orig}}$ *	0.001129	mg∙mm²	
x _{com,orig} *	1.9202	mm	^z _{com,orig} *	-0.1498	mm	

Table S1. The morphological parameters of fruit fly wing.

* Calculated from the three dimensional CAD model constructed by original wing geometry data of fruit fly after translation operation [1]; ^a Referring to the data reported by Lehmann and Dickinson [2]; ^b This value is approximate to the data from Sun and Tang [3,4].

Table S2. Actual leading	ng-edge profiles	$(z_{le}(r))$ and t	railing-edge p	rofiles $(z_{tr}(r))$ for	fruit fly wing.
--------------------------	------------------	---------------------	----------------	---------------------------	-----------------

Actual Leading-Edge Profiles (y _{le} (r))								
polynomial coefficient	ao	a_1	<i>a</i> 2	аз	a 4	a 5	a 6	
value	-1.1879	5.674	-10.06	8.872	-4.04	0.9167	-0.08249	
$z_{\rm le}(r) = a_0 + a_1r + a_2^*r^2 + a_3^*r^3 + a_4^*r^4 + a_5^*r^5 + a_6^*r^6$								
Actual Trailing-Edge Profiles ($y_{tr}(r)$)								
polynomial coefficient	b_0	b_1	b_2	bз	b_4	b_5	b_6	
value	-0.6467	3.739	-8.769	7.258	-2.795	0.504	-0.0333	
$z_{\rm tr}(r) = b_0 + b_1^* r + b_2^* r^2 + b_3^* r^3 + b_4^* r^4 + b_5^* r^5 + b_6 r^6$								

S.II. Wing Geometry Parameters (WGP) Optimization Results and Sensitivity Analysis

S.A. WGP Optimization Result

Figure S1. The wingbeat motion (**a**), pitch and flapping power of single wing output (**b**,**c**) for the optimal wing geometry parameters (WGP) with 2D $C_{F,trans}(\alpha)$.

Figure S2. (**a**–**d**) Single-parameter sensitivity analyses for optimal WGP with 2D $C_{F,trans}(\alpha)$. The layout is identical to Figure 8.

S.III. Combined Optimization Results for WGP and Wing Kinematics Parameters (WKP) and Sensitivity Analysis

- 100 ard stro (a) **\$**(t) **W**(t) 80 Flapping angle and pitch angle (°) 60 40 20 -20 40 -60 -80 -100 (b) Pitch power output (μW) -20 P_{Z,trans} (c) P Z,rot Flapping power output (μW) add. . Z.inerti P Z,total -2 0.25 0.35 0.45 0.55 0.65 0.75 0.85 Normalized time 0.95 1.05 1.15 1.25
- S.A. Combined Optimization Result for WGP and WKP

Figure S3. The wingbeat motion (**a**), pitch and flapping power output of single wing (**b**,**c**) for the combined optimal WGP and wing kinematics parameters (WKP) with 2D $C_{F,trans}(\alpha)$.

Figure S4. (**a**–**j**) Single-parameter sensitivity analyses for the combined optimal WGP and WKP with 2D $C_{F,trans}(\alpha)$. The layout is identical to Figure 8.

Reference

- 1. Muijres, F.T.; Elzinga, M.J.; Melis, J.M.; Dickinson, M.H. Flies evade looming targets by executing rapid visually directed banked turns. *Science* **2014**, *344*, 172–177.
- 2. Lehmann, F.-O.; Dickinson, M.H. The changes in power requirements and muscle efficiency during elevated force production in the fruit fly drosophila melanogaster. *J. Exp. Biol.* **1997**, 200, 1133–1143.
- 3. Sun, M.; Tang, J. Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. *J. Exp. Biol.* **2002**, *205*, 55–70.
- 4. Sun, M.; Tang, J. Lift and power requirements of hovering flight in drosophila virilis. *J. Exp. Biol.* **2002**, 205, 2413–2427.