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Abstract: Endowing machines with sensing capabilities similar to those of humans is a prevalent quest
in engineering and computer science. In the pursuit of making computers sense their surroundings, a
huge effort has been conducted to allow machines and computers to acquire, process, analyze and
understand their environment in a human-like way. Focusing on the sense of hearing, the ability of
computers to sense their acoustic environment as humans do goes by the name of machine hearing.
To achieve this ambitious aim, the representation of the audio signal is of paramount importance. In
this paper, we present an up-to-date review of the most relevant audio feature extraction techniques
developed to analyze the most usual audio signals: speech, music and environmental sounds. Besides
revisiting classic approaches for completeness, we include the latest advances in the field based
on new domains of analysis together with novel bio-inspired proposals. These approaches are
described following a taxonomy that organizes them according to their physical or perceptual basis,
being subsequently divided depending on the domain of computation (time, frequency, wavelet,
image-based, cepstral, or other domains). The description of the approaches is accompanied with
recent examples of their application to machine hearing related problems.

Keywords: audio feature extraction; machine hearing; audio analysis; music; speech;
environmental sound

PACS: 43.60.Lq; 43.60.-c; 43.50.Rq; 43.64.-q

1. Introduction

Endowing machines with sensing capabilities similar to those of humans (such as vision, hearing,
touch, smell and taste) is a long pursued goal in several engineering and computer science disciplines.
Ideally, we would like machines and computers to be aware of their immediate surroundings as
human beings are. This way, they would be able to produce the most appropriate response for a given
operational environment, taking one step forward towards full and natural human–machine interaction
(e.g., making fully autonomous robots aware of their environment), improve the accessibility of people
with special needs (e.g., through the design of hearing aids with environment recognition capabilities),
or even as a means for substituting humans beings in different tasks (e.g., autonomous driving, in
potentially hazardous situations, etc.).

One of the main avenues of human perception is hearing. Therefore, in the quest for making
computers sense their environment in a human-like way, sensing the acoustic environment in broad
sense is a key task. However, the acoustic surroundings of a particular point in space can be extremely
complex to decode for machines, be it due to the presence of simultaneous sound sources of highly
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diverse nature (from a natural or artificial origin), or due to many other causes such as the presence of
high background noise, or the existence of a long distance to the sound source, to name a few.

This challenging problem goes by the name of machine hearing, as defined by Lyon [1]. Machine
hearing is the ability of computers to hear as humans do, e.g., by distinguishing speech from music and
background noises, pulling the two former out for special treatment due to their origin. Moreover, it
includes the ability to analyze environmental sounds to discern the direction of arrival of sound events
(e.g., a car pass-by), besides detecting which of them are usual or unusual in that specific context (e.g.,
a gun shot in the street), together with the recognition of acoustic objects such as actions, events, places,
instruments or speakers. Therefore, an ideal hearing machine will face a wide variety of hearable
sounds, and should be able to deal successfully with all of them. To further illustrate the complexity of
the scope of the problem, Figure 1 presents a general sound classification scheme, which was firstly
proposed by Gerhard [2] and more recently used in the works by Temko [3] and Dennis [4].

Sound

Hearable sound

Non-hearable sound

Environmental sounds

Speech

Music

Noise

Natural sounds

Artificial sounds

Figure 1. General sound classification scheme (adapted from [4]).

As the reader may have deduced, machine hearing is an extremely complex and daunting task
given the wide diversity of possible audio inputs and application scenarios. For this reason, it is
typically subdivided into smaller subproblems, and most research efforts are focused on solving
simpler, more specific tasks. Such simplification can be achieved from different perspectives. One of
these perspectives has to do with the nature of the audio signal of interest. Indeed, devising a generic
machine hearing system capable of dealing successfully with different types of sounds regardless of
their nature is a truly challenging endeavor. In contrast, it becomes easier to develop systems capable
of accomplishing a specific task but limited to signals of a particular nature, as the system design can
be adapted and optimized to take into account the signal characteristics.

For instance, we can focus on speech signals, that is, the sounds produced through the human
vocal tract that entail some linguistic content. Speech has a set of very distinctive traits that make it
different from other types of sounds, ranging from its characteristic spectral distribution to its phonetic
structure. In this case, the literature contains plenty of works dealing with speech-sensing related
topics such as speech detection (Bach et al. [5]), speaker recognition and identification (Kinnunen and
Li [6]), and speech recognition (Pieraccini [7]), to name a few.

As in the case of speech, music also is a structured sound that has a set of specific and
distinguishing traits (such as repeated stationary pattern structures as melody and rhythm) that
make it rather unique, being generated by humans with some aesthetic intent. Following an analogous
pathway to that of speech, music is another type of sound that has received attention from researchers
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in the development of machine hearing systems, including those targeting specific tasks such as
artist and song identification (Wang [8]), genre classification (Wang et al. [9]), instrument recognition
(Benetos et al. [10], Liu and Wan [11]), mood classification (Lu et al. [12]) or music annotation and
recommendation (Fu [13]).

Thus, speech and music, which up to now have been by far the most extensively studied types of
sound sources in the context of machine hearing, present several particular rather unique characteristics.
In contrast, other kind of sound sources coming from our environment (e.g., traffic noise, sounds from
animals in the nature, etc.) do not exhibit such particularities, or at least not in such in a clear way.
Nevertheless, these non-speech nor music related sounds (hereafter denoted as environmental sounds)
should be also detectable and recognizable by hearing machines as individual events (Chu et al. [14])
or as acoustic scenes (Valero and Alías [15]) (the latter can also be found in the literature denoted as
soundscapes, as in the work by Schafer [16]).

Regardless of its specific goal, any machine hearing system requires performing an in-depth
analysis of the incoming audio signal, aiming at making the most of its particular characteristics. This
analysis starts with the extraction of appropriate parameters of the audio signal that inform about its
most significant traits, a process that usually goes by the name of audio feature extraction.

Logically, extracting the right features from an audio signal is a key issue to guarantee the
success of machine hearing applications. Indeed, the extracted features should provide a compact yet
descriptive vision of the parametrized signal, highlighting those signal characteristics that are most
useful to accomplish the task at hand, be it detection, identification, classification, indexing, retrieval or
recognition. And of course, depending on the nature of the signal (i.e., speech, music or environmental
sound) and the targeted application, it will be more interesting that these extracted features reflect the
characteristics of the signal from a physical or perceptual point of view.

This paper presents an up-to-date state-of-the-art review of the main audio feature extraction
techniques applied to machine hearing. We build on the complete review about features for audio
retrieval by Mitrović et al. [17], and we have included the classic approaches in that work for the sake
of completeness. In addition, we present the latest advances on audio feature extraction techniques
together with new examples of their application to the analysis of speech, music and environmental
sounds. It is worth noting that most of the recently developed audio feature techniques introduced
in the last decade have entailed the definition of new approaches of analysis beyond the classic
domains (i.e., temporal, frequency-based and cepstral), such as the ones developed on the wavelet
domain, besides introducing image-based and multilinear or non-linear representations, together with
a significant increase of bio-inspired proposals.

This paper is organized as follows. Section 2 describes the main constituting blocks of any machine
hearing system, focusing the attention on the audio feature extraction process. Moreover, given the
importance of relating the nature of the signal with the type of extracted features, we detail the primary
characteristics of the three most frequent types of signals involved in machine hearing applications:
speech, music and environmental sounds. Next, Section 3 describes the followed taxonomy to describe
both classic and recently defined audio feature extraction techniques. Next, the description of the
rationale and main principles of approaches that are based on the physical characteristics of the
audio signal are described in Section 4, while those that try to somehow include perception in the
parameterization process are explained in Section 5. Finally, Section 6 discusses the conclusions of
this review.

2. Machine Hearing

As mentioned earlier, the problem of endowing machines with the ability of sensing their
acoustic environment is typically addressed by facing specific subproblems such as the detection,
identification, classification, indexing, retrieval or recognition of particular types of sound events,
scenes or compositions. Among them, speech, music and environmental sounds constitute the vast
majority of acoustic stimuli we can ultimately find in a given context of a machine hearing system.
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In this section, we first present a brief description of the primary goals and characteristics of
the constituting blocks of the generic architecture of machine hearing systems. Then, the main
characteristics of the audio sources those systems process, that is, speech, music and environmental
sounds, are detailed.

2.1. Architecture of Machine Hearing Systems

Regardless of the specific kind of problem addressed, the structure of the underlying system can
be described by means of a generic and common architecture design that is depicted in Figure 2.

output
Audio 

analysis

audio input

Feature 

extraction
Windowing

Figure 2. Generic architecture of a typical machine hearing system.

In a first stage, the continuous audio stream captured by a microphone is segmented into shorter
signal chunks by means of a windowing process. This is achieved by sliding a window function over
the theoretically infinite stream of samples of the input signal, and ends up by converting it into a
continuous sequence of finite blocks of samples. Thanks to windowing, the system will be capable
of operating on sample chunks of finite length. Moreover, depending on the length of the window
function, the typically non-stationary audio signal can be assumed to be quasi-stationary within each
frame, thus facilitating subsequent signal analysis.

The choice of the type and length of the window function, as well as the overlap between
consecutive signal frames, is intimately related to the machine hearing application at hand. It seems
logical that, for instance, the length of the window function should be proportional to the minimum
length of the acoustic events of interest. Therefore, window lengths between 10 and 50 milliseconds are
typically employed to process speech or to detect transient noise events [13], while windows of several
seconds are used in computational auditory scene analysis (CASA) applications (as in the works by
Peltonen et al. [18], Chu et al. [14], Valero and Alías [15], or Geiger et al. [19]). Further discussion about
the windowing process and its effect on the windowed signal lies beyond the scope of this work. The
interested reader is referred to classic digital signal processing texts (e.g., see the book by Oppenheim
and Schafer [20]).

Once the incoming audio stream has been segmented into finite length chunks, audio features are
extracted from each one of them. The goal of feature extraction is to obtain a compact representation of
the most salient acoustic characteristics of the signal, converting a N samples long frame into K scalar
coefficients (with K << N), thus attaining a data compaction that allows increasing the efficiency of
subsequent processes [13]. To that effect, these features may consider the physical or perceptual impact
of signal contents computed in the time, frequency, etc. domains.

In this sense, modeling the time evolution of audio signals has been found to be of paramount
importance when it comes to perform some types of machine hearing tasks, such as the recognition of
environmental sounds (as described by Gygi [21]) or the identification of rhythmic patterns in music
(Foote and Uchihashi [22]) for example. To keep this time information, the features extracted from
several subsequent signal frames can be merged into a single feature vector. It should be noted that,
due to this feature merging process, the feature vectors acquire a very high dimensionality that may
represent a hurdle to the subsequent audio analysis process, with the so-called curse of dimensionality
problem, as described by Bellman [23]. In order to compact the feature vectors, feature extraction
techniques are sometimes followed by a data dimensionality reduction process. To this end, several
approaches may be considered: from representing vectors in terms of some of their statistics (as done
in the works by Rabaoui et al. [24] or by Hurst [25]) to more complex approaches like analyzing
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the principal components of the feature vector (Eronen et al. [26]), thus projecting the data onto a
transformed space.

And finally, an audio analysis task must be conducted upon the feature vectors obtained in
the previous step. Of course, audio analysis is a generic label that tries to encompass any audio
processing necessary to tackle the specific machine hearing application at hand. For instance, in case
that recognizing a specific type of sound was the goal of our hearing machine, this audio analysis
block would consist of a supervised machine learning algorithm that should first build representative
acoustic models upon multiple samples from each sound class that we want the system to recognize,
to subsequently classify any incoming unknown sound signal into one of the predefined classes based
on the information acquired during the algorithm’s training phase.

Of course, each machine hearing application will require that the audio analysis block is designed
according to the application-specific needs and requirements. Although, providing the reader with a
comprehensive view of specific machine hearing problems exceeds the goals of this work, the interested
reader will find diverse examples of the machine hearing applications throughout the paper. Examples
include speaker identification (like in Yuo et al. [27]), music genre classification (Tzanetakis and
Cook [28]), environmental sound recognition (e.g., the works by Ando [29] and Valero and Alías [30]),
audio indexing and retrieval (Richard et al. [31]), or CASA (as in the works by Peltonen et al. [18],
Chu et al. [14], Valero and Alías [15]).

2.2. Key Differences among Speech, Music and Environmental Sounds

In what concerns the audio input that the machine hearing system is asked to process, speech,
music and environmental sounds present specific characteristics. The key differences can be directly
observed both in the time and the frequency domains, as well as in the structure and the semantics of
the signal. These differences can be then parametrized following a physical or perceptual approach
depending on the targeted application.

Firstly, music and speech signals present a certain periodicity that can be observed when analyzing
these signals in the time domain (see Figure 3). Although with some exceptions (e.g., some natural
sounds such as bird chirps or cricket sounds), the periodicity in environmental sounds may not be
so evident.
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Figure 3. Time envelope of a: (a) speech signal; (b) music signal (trumpet); (c) environmental sound
signal (traffic street).

Secondly, when analyzed in the frequency domain, it can be generally determined that the
complexity of the spectrum of environmental sounds (e.g., the sound of a passing car) is notably larger
than that of speech or music signals, as depicted in Figure 4. Moreover, it can be observed that speech
and music signals usually present harmonic structures in their spectra, a trait that is not that common
in environmental sounds, as mentioned before.
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Figure 4. Normalized power spectral density of the: (a) speech signal; (b) music signal (trumpet);
(c) environmental sound signal (traffic street) of representative regions extracted from Figure 3.

Thirdly, notice that both speech and music sounds are composed of a limited dictionary of sound
units: phonemes and notes, respectively. On the contrary, the range of environmental sounds is
theoretically infinite, since any occurring sound in the environment may be included in this category
(i.e., originated from noise, artificial or natural sound sources, see Figure 1).

Furthermore, there exists a key difference between these types of signals. In speech and music,
phonemes and musical notes are combined so as to obtain meaningful sequences that are actually
transmitting a particular semantic or aesthetic message. As opposed, the sequences on environmental
sounds do not follow any rule or predefined grammar, although they may convey some kind
of meaning (e.g., bird chirps or cricket sounds). Unlike speech and music, also other important
information is unknown, such as the duration of the sound events or the proportion between harmonic
and non-harmonic spectral structure.

Finally, Table 1 presents a summary of the specific characteristics of speech, music and
environmental sounds in terms of several factors. Given the noticeable differences between the
nature of these sounds, the research community has proposed diverse feature extraction techniques
adapted to the particularities of these sounds. However, some works also make use of well-established
approaches to build analogous systems in related research fields, e.g., by borrowing features showing
good performances for speech and/or music sounds analysis to parametrize environmental sounds.

Table 1. List of features that characterize speech, music and environmental sounds (adapted from [21]).

Features Speech Music Environmental Sounds

Type of audio units Phones Notes Any other type of audio
event

Source Human speech production
system

Instruments or Human
speech production system

Any other source producing
an audio event

Temporal and spectral characteristics

Short durations (40–200ms),
constrained and steady
timming and variability,
largely harmonic content
around 500 Hz to 2 KHz with
some noise-like sounds.

From short to long dura-
tions (40–1200ms), with a
mix of steady and transient
sounds organized in peri-
odic structures, largely har-
monic content in the full
20 Hz to 20 KHz audio band,
with some inharmonic com-
ponents.

From short to very long dura-
tions (40–3000ms), with wide
range of steady and transient
type of sounds, ans also a
wide range of harmonic to
inharmonic balances.

The following sections put the focus on the central topic of this work, presenting an in-depth
review of audio feature extraction techniques divided according to their physical or perceptual basis,
together with some specific applications of machine hearing focused on the analysis of speech, music
or environmental sounds.
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3. Audio Features Taxonomy and Review of Extraction Techniques

There exists a myriad of approaches to extract significant features from the audio input of a
machine hearing system. On the one hand, we can find those approaches that are only devoted to
extract physical features of the audio input. These extraction techniques differ on the domain of
operation, ranging from the classic time, frequency or cepstral domains to the derivation of features
based on other recent representations. Specifically, speech, music and environmental sounds typically
present rich time-varying characteristics with very diverse contents (as shown in Figure 3), which can
be parameterized in that domain, e.g., by computing from the analyzed input frame the sign-change
rate, the fundamental periodicity, the signal power or amplitude, etc. Moreover, the dynamic variations
of those audio signals can present relevant information in a transformed domain, e.g., through a
Fourier transform (see Figure 4), in the cepstral or Wavelet domains, or from eigenspaces or even
through non-linear representations, from which specific features related to e.g., spectrum, harmonicity,
line prediction or phase-space can be extracted.

On the other hand, we can find those techniques that try to explicitly integrate perception in the
parameterization process or derive it through the computation of signal features capable of extracting
perceptually relevant aspects from the input audio, as described by Richard et al. [31]. The former
typically include in the parameterization process simplified audition models of the hearing system
(e.g., by considering from Bark, Mel or Gammatone filter-banks to more complex models based on
electroencephalograms). This bio-inspired approach has to take into account the target species of the
machine hearing system, being adapted to the cochlear response of that species, e.g., human beings or
animals (see the work by Clemins et al. [32,33]). The latter approach to embed perception during the
feature extraction process is based on the computation of low-level features that somehow explain a
high-level sensation of sound similarity, which has been validated perceptually (Richard et al. [31]),
such the ones related to temporal or frequency-based domains (e.g., loudness, pitch, rhythm, etc.), or
the ones derived from the computation of the autocorrelation function and the auditory image model
for example.

In this work, we organize the review of the most relevant and recent audio feature extracting
techniques found in the literature following the hierarchical taxonomy depicted in Figure 5. This
taxonomy builds on the one introduced in the review by Mitrović et al. [17]. We fist classify the
techniques by differentiating physically-based approaches from those with a perceptual basis, and
subsequently dividing them according to the domain of parameterization: time, frequency, wavelet,
image-based, cepstral, or other domains.

It is important to highlight that the main goal of this paper is to provide the reader with a broad
view of the existing approaches to audio feature extraction. The detailed mathematical analysis and
critical comparison between features lies beyond the scope and objectives of our work. The reader
interested in a mathematical description of audio features is referred to the works by Peeters [34] and
by Sharan and Moir [35]. Additionally, comparisons between several types of features can be found
in other works. Some of these works are focused on comparing the performance of several features
in the context of different machine hearing applications, such as sound recognition [36] or music
retrieval [37]. Finally, the work by Hengel and Krijnders [38] presents a comparison of characteristics
of audio features, such as their robustness to noise and spectro-temporal detail.
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Figure 5. Taxonomy of physical vs. perceptual based audio features extraction techniques.

4. Physical Audio Features Extraction Techniques

This section describes the main physical audio features extraction techniques reported in the
literature, categorized according to the previously defined taxonomy.

4.1. Time Domain Physical Features

Possibly the most significant trait of time domain features is that they do not require applying any
kind of transformation on the original audio signal, and their computation is performed directly on
the samples of the signal itself. This approach to audio feature extraction constitutes one of the most
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elementary and classic, and as such they appear in previous reviews on the topic (e.g., in the work by
Mitrović et al. [17]).

Time domain physical audio features can be classified into the following categories: zero crossing-
based features, amplitude-based features, power-based features and rhythm-based features.

The following paragraphs describe the most commonly used time domain features belonging to
these categories.

4.1.1. Zero-Crossing Rate-Based Physical Features

This kind of physical features are based on the analysis of the sing-rate change of the
analyzed audio input, which is a simple yet effective parameterization used in several machine
hearing applications.

• Zero-crossing rate (ZCR): it is defined as the number of times the audio signal waveform crosses
the zero amplitude level during a one second interval, which provides a rough estimator
of the dominant frequency component of the signal (Kedem [39]). Features based on this
criterion have been applied to speech/music discrimination, music classification (Li et al. [40],
Bergstra et al. [41], Morchen et al. [42], Tzanetakis and Cook [28], Wang et al. [9])), singing voice
detection in music and environmental sound recognition (see the works by Mitrović et al. [17] and
Peltonen et al. [18]), musical instrument classification (Benetos et al. [10]), voice activity detection
in noisy conditions (Ghaemmaghami et al. [43]) or for audio-based surveillance systems (as in
Rabaoui et al. [24]).

• Linear prediction zero-crossing ratio (LP-ZCR): this feature is defined as the ratio between the
ZCR of the original audio and the ZCR of the prediction error obtained from a linear prediction
filter (see El-Maleh et al. [44]). Its use is intended for discriminating between signals that show
different degree of correlation (e.g., between voiced and unvoiced speech).

4.1.2. Amplitude-Based Features

Amplitude-based features are based on a very simple analysis of the temporal envelope of the
signal. The following paragraphs describe the most commonly used amplitude-based temporal
features, including the one from the Moving Picture Experts Group (MPEG) [45], (previously reviewed
by Mitrović et al. [17]), and a feature extraction approach typically used to characterize voice
pathologies which has recently found application in music analysis.

• Amplitude descriptor (AD): it allows for distinguishing sounds with different signal envelopes,
being applied, for instance, for the discrimination of animal sounds (Mitrović et al. [46]). It is
based on collecting the energy, duration, and variation of duration of signal segments based on
their high and low amplitude by means of an adaptive threshold (a level-crossing computation).

• MPEG-7 audio waveform (AW): this feature is computed from a downsampled waveform
envelope, and it is defined as the maximum and minimum values of a function of a
non-overlapping analysis time window [45]. AW has been used as a feature in environmental
sound recognition, like in the works of Muhammad and Alghathbar [47], or by Valero and
Alías [48].

• Shimmer: it computes the cycle-to-cycle variations of the waveform amplitude. This feature has
been generally applied to study pathological voices (Klingholz [49], Kreiman and Gerratt [50],
Farrús et al. [51]). However, it has also been applied to discriminate vocal and non-vocal regions
from audio in songs (as in Murthy and Koolagudi [52]), characterize growl and screaming singing
styles (Kato and Ito [53]), prototype, classify and create musical sounds (Jenssen [54]) or to
improve speaker recognition and verification (Farrús et al. [51]) to name a few.
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4.1.3. Power-Based Features

The following paragraphs describe the most relevant and classic temporal audio features based
on signal power.

• Short-time energy: using a frame-based procedure, short-time energy (STE) can be defined as
the average energy per signal frame (which is in fact the MPEG-7 audio power descriptor [45]).
Nevertheless, there exist also other STE definitions in the literature that compute power in
the spectral domain (e.g., see Chu et al. [55]). STE can be used to detect the transition from
unvoiced to voices speech and vice versa (Zhang and Kuo [56]). This feature has also been used
in applications like musical onset detection (Smith et al. [57]), speech recognition (Liang and
Fan [58]), environmental sound recognition (Peltonen et al. [18], Muhammad and Alghathbar [47],
Valero and Alías [48]) and audio-based surveillance systems (Rabaoui et al. [24]).

• Volume: according to the work by Liu et al. [59], volume is defined as the Root-Mean Square
(RMS) of the waveform magnitude within a frame. It has been used for speech segmentation
applications, e.g., see Jiang et al. [60].

• MPEG-7 temporal centroid: it represents the time instant containing the signal largest average
energy, and it is computed as the temporal mean over the signal envelope (and measured
in seconds) [45]. The temporal centroid has been used as an audio feature in the field of
environmental sound recognition, like in the works by Muhammad and Alghathbar [47], and
Valero and Alías [48]).

• MPEG-7 log attack time: it characterizes the attack of a given sound (e.g., for musical
sounds, instruments can generate either smooth or sudden transitions) and it is computed
as the logarithm of the elapsed time from the beginning of a sound signal to its first local
maximum [45]. Besides being applied to musical onset detection (Smith et al. [57]), log attack time
(LAT) has been used for environmental sound recognition (see Muhammad and Alghathbar [47],
and Valero and Alías [48]).

4.1.4. Rhythm-Based Physical Features

Rhythm represents an relevant aspect of music and speech, but it can also be significant in
environmental and human activity related sounds (e.g., the sound of a train, finger tapping, etc.), since
it characterizes structural organization of sonic events (changes in energy, pitch, timbre, etc.) along the
time axis. Since the review by Mitrović et al. [17], there have been little significant contributions to the
derivation of rhythm-based features. Thus, the following paragraphs describe the most relevant and
classic rhythm-based features found in the literature.

• Pulse metric: this is a measure that uses long-time band-passed autocorrelation to determine
how rhythmic a sound is in a 5-second window (as defined by Scheirer and Slaney [61]). Its
computation is based on finding the peaks of the output envelopes in six frequency bands and
its further comparison, giving a high value when all subbands present a regular pattern. This
feature has been used for speech/music discrimination.

• Pulse clarity: it is a high-level musical dimension that conveys how easily in a given musical
piece, or a particular moment during that piece, listeners can perceive the underlying rhythmic
or metrical pulsation (as defined in the work by Lartillot et al. [62]). In that work, the authors
describe several descriptors to compute pulse clarity based on approaches such as the analysis
of the periodicity of the onset curve via autocorrelation, resonance functions, or entropy. This
feature has been employed to discover correlations with qualitative measures describing overall
properties of the music used in psychology studies in the work by Friberg et al. [63].

• Band periodicity: this is a measure of the strength of rhythmic or repetitive structures in
audio signals (see Lu et al. [64]). Band periodicity is defined within a frequency band, and
it is obtained as the mean value along all the signal frames of the maximum peak of the subband
autocorrelation function.
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• Beat spectrum/spectrogram: it is a two-dimensional parametrization based on time variations
and lag time, thus providing an interpretable representation that reflects temporal changes of
tempo (see the work by Foote [22,65]). Beat spectrum shows relevant peaks at rhythm periods
that match the rhythmic properties of the signal. Beat spectrum can be used for discriminating
between music (or between parts within an entire music signal) with different tempo patterns.

• Cyclic beat spectrum: or CBS for short, this is a representation of the tempo of a music signal
that groups multiples of the fundamental period of the signal together in a single tempo class
(Kurth et al. [66]). Thus, CBS gives a more compact representation of the fundamental beat period
of a song. This feature has been employed in the field of audio retrieval.

• Beat tracker: this a feature is derived following an algorithmic approach based on signal subband
decomposition and the application of a comb filter analysis in each subband (see Scheirer [67]).
Beat tracker mimics at large extent the human ability to track rhythmic beats in music and allows
obtaining not only tempo but also compute beat timing positions.

• Beat histogram: it provides a more general tempo perspective and summarizes the beat tempos
present in a music signal (Tzanetakis and Cook [28]). In this case, Wavelet transform (see
Section 4.3 for further details) is used to decompose the signal in octaves for performing
subsequent accumulation of the most salient periodicities in each subband to generate the
so-called beat histogram. This feature has been used for music genre classification [28].

4.2. Frequency Domain Physical Features

Audio features on the frequency domain constitute the largest set of audio features reported in
the literature (Mitrović et al. [17]). They are usually obtained from the Short-Time Fourier Transform
(STFT) transform or derived from an autoregression analysis. In general terms, physical frequency
domain features describe physical properties of the signal frequency content. Moreover, this type of
features can be further decomposed as follows:

• Autoregression-based
• STFT-based
• Brightness-related
• Tonality-related
• Chroma-related
• Spectrum shape-related

The following paragraphs describe these subcategories of physical frequency-based features.

4.2.1. Autoregression-Based Frequency Features

Autoregression-based features are derived from linear prediction analysis of signals, which
usually captures typical spectral predominances (e.g., formants) of speech signals.

The most commonly employed physical frequency features based on signal autoregression are
described below.

• Linear prediction coefficients: or LPC for short, this feature represents an all-pole filter that
captures the spectral envelope (SE) of a speech signal (formants or spectral resonances that appear
in the vocal tract), and have been extensively used for speech coding and recognition applications.
LPC have been applied also in audio segmentation and general purpose audio retrieval, like in
the works by Khan et al. [68,69].

• Line spectral frequencies: also referred to as Line Spectral Pairs (LSP) in the literature, Line
Spectral Frequencies (LSF) are a robust representation of LPC parameters for quantization and
interpolation purposes. They can be computed as the roots phases of the palindromic and the
antipalindromic polynomials that constitute the LPC polynomial representation, which in turns
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represent the vocal tract when the glottis is closed and open, respectively (see Itakura [70]).
Due to its intrinsic robustness they have been widely applied in a diverse set of classification
problems like speaker segmentation (Sarkar and Sreenivas [71]), instrument recognition and in
speech/music discrimination (Fu [13]).

• Code excited linear prediction features: or CELP for short, this feature was introduced by
Schroeder and Atal [72] and has become one of the most important influences in nowadays
speech coding standards. This feature comprises spectral features like LSP but also two codebook
coefficients related to signal’s pitch and prediction residual signal. CELP features have been also
applied in the environmental sound recognition framework, like in the work by Tsau et al. [73].

4.2.2. STFT-Based Frequency Features

This kind of audio features are generally derived from the signal spectrogram obtained from
STFT computation. While some of the features belonging to this category are computed from the
analysis of the spectrogram envelope (e.g., subband energy ratio, spectral flux, spectral slope, spectral
peaks or MPEG-7 spectral envelope, normalized spectral envelope, and stereo panning spectrum
feature), others are obtained from the STFT phase (like group delay functions and/or modified group
delay functions).

The following list summarizes the most widely employed STFT-based features.

• Subband energy ratio: it is usually defined as a measure of the normalized signal energy along a
predefined set of frequency subbands. In a broad sense, it coarsely describes the signal energy
distribution of the spectrum (Mitrović et al. [17]). There are different approximations as regards
the number and characteristics of analyzed subbands (e.g., Mel scale, ad-hoc subbands, etc.). It
has been used for audio segmentation and music analysis applications (see Jiang et al. [60], or
Srinivasan et al. [74]) and environmental sound recognition (Peltonen et al. [18]).

• Spectral flux: or SF for short, this feature is defined as the 2-norm of the frame-to-frame spectral
amplitude difference vector (see Scheirer and Slaney [61]), and it describes sudden changes in
the frequency energy distribution of sounds, which can be applied for detection of musical note
onsets or, more generally speaking, detection of significant changes in the spectral distribution.
It measures how quickly the power spectrum changes and it can be used to determine the
timbre of an audio signal. This feature has been used for speech/music discrimination (like in
Jiang et al. [60], or in Khan et al. [68,69]), musical instrument classification (Benetos et al. [10]),
music genre classification (Li et al. [40], Lu et al. [12], Tzanetakis and Cook [28], Wang et al. [9])
and environmental sound recognition (see Peltonen et al. [18]).

• Spectral peaks: this feature was defined by Wang [8] as constellation maps that show the most
relevant energy bin components in the time-frequency signal representation. Hence, spectral
peaks is an attribute that shows high robustness to possible signal distortions (low signal-to-noise
ratio (SNR)–see Klingholz [49], equalization, coders, etc.) being suitable for robust recognition
applications. This feature has been used for automatic music retrieval (e.g., the well-known
Shazam search engine by Wang [8]), but also for robust speech recognition (see Farahani et al. [75]).

• MPEG-7 spectrum envelope and normalized spectrum envelope: the audio spectrum envelope
(ASE) is a log-frequency power spectrum that can be used to generate a reduced spectrogram of
the original audio signal, as described by Kim et al. [76]. It is obtained by summing the energy of
the original power spectrum within a series of frequency bands. Each decibel-scale spectral vector
is normalized with the RMS energy envelope, thus yielding a normalized log-power version
of the ASE called normalized audio spectrum envelope (NASE) (Kim et al. [76]). ASE feature
has been used in audio event classification [76], music genre classification (Lee et al. [77]) and
environmental sound recognition (see Muhammad and Alghathbar [47], or Valero and Alías [48]).

• Stereo panning spectrum feature: or SPSF for short, this feature provides a time-frequency
representation that is intended to represent the left/right stereo panning of a stereo audio
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signal (Tzanetakis et al. [78]). Therefore, this feature is conceived with the aim of capturing
relevant information of music signals, and more specifically, information that reflects typical
postproduction in professional recordings. The additional information obtained through SPSF can
be used for enhancing music classification and retrieval system accuracies (Tzanetakis et al. [79]).

• Group delay function: also known as GDF, it is defined as the negative derivative of the
unwrapped phase of the signal Fourier transform (see Yegnanarayana and Murthy [80]) and
reveals information about temporal localization of events (i.e., signal peaks). This feature has
been used for determining the instants of significant excitation in speech signals (like in Smits
and Yegnanarayana [81], or Rao et al. [82]) and in beat identification in music performances
(Sethares et al. [83]).

• Modified group delay function: or MGDF for short, it is defined as a smoother version of
the GDF, reducing its intrinsic spiky nature by introducing a cepstral smoothing process prior
to GDF computation. It has been used in speaker identification (Hegde et al. [84]), but also in
speech analysis, speech segmentation, speech recognition and language identification frameworks
(Murthy and Yegnanarayana [85]).

4.2.3. Brightness-Related Physical Frequency Features

Brightness is an attribute that is closely related to the balance of signal energy in terms of high
and low frequencies (a sound is said to be bright when it has more high than low frequency content).

The most relevant brightness-related physical features found in the literature are the following:

• Spectral centroid: or SC for short, this feature describes the center of gravity of the
spectral energy. It can be defined as the first moment (frequency position of the mean value)
of the signal frame magnitude spectrum as in the works by Li et al. [40], or by Tzanetakis and
Cook [28], or obtained from the power spectrum of the entire signal in MPEG-7. SC reveals
the predominant frequency of the signal. In the MPEG-7 standard definition [45], the audio
spectrum centroid (ASC) is defined by computing SC over the power spectrum obtained from an
octave-frequency scale analysis and roughly describes the sharpness of a sound. SC has been
applied in musical onset detection (Smith et al. [57]), music classification (Bergstra et al. [41],
Li et al. [40], Lu et al. [12], Morchen et al. [42], Wang et al. [9]), environmental sound recognition
(like in Peltonen et al. [18], Muhammad and Alghathbar [47], Valero and Alías [48]) and, more
recently, to music mood classification (Ren et al. [86]).

• Spectral center: this feature is defined as the median frequency of the signal spectrum,
where both lower and higher energies are balanced. Therefore, is a measure close to spectral
centroid. It has been shown to be useful for automatic rhythm tracking in musical signals (see
Sethares et al. [83]).

4.2.4. Tonality-Related Physical Frequency Features

The fundamental frequency is defined as the lowest frequency of an harmonic stationary audio
signal, which in turn can be qualified as tonal sound. In music, tonality is a system that organizes
the notes of a musical scale according to musical criteria. Moreover, tonality is related to the notion
of harmonicity, which describes the structure of sounds that are mainly constituted by a series of
harmonically related frequencies (i.e., a fundamental frequency and its multiples), which are typical
characteristics of (tonal) musical instruments sounds and voiced speech.

The following paragraphs describe the most widely employed tonality-related features that do
not incorporate specific auditory models for their computation.

• Fundamental frequency: it is also denoted as F0. The MPEG-7 standard defines audio
fundamental frequency feature as the first peak of the local normalized spectro-temporal
autocorrelation function [45]. There are several methods in the literature to compute F0,
e.g., autocorrelation-based methods, spectral-based methods, cepstral-based methods, and
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combinations (Hess [87]). This feature has been used in applications like musical onset detection
(Smith et al. [57]), musical genre classification (Tzanetakis and Cook [28]), audio retrieval
(Wold et al. [88]) and environmental sound recognition (Muhammad and Alghathbar [47],
Valero and Alías [48]). In the literature F0 is sometimes denoted as pitch as it may represent a
rough estimate of the perceived tonality of the signal (e.g., pitch histogram and pitch profile).

• Pitch histogram: instead of using a very specific and local descriptor like fundamental frequency,
the pitch histogram describes more compactly the pitch content of a signal. Pitch histogram
has been used for musical genre classification by Tzanetakis and Cook [28], as it gives a general
perspective of the aggregated notes (frequencies) present in a musical signal along a certain period.

• Pitch profile: this feature is a more precise representation of musical pitch, as it takes
into account both pitch mistuning effects produced in real instruments and also pitch
representation of percussive sounds. It has been shown that use of pitch profile feature
outperforms conventional chroma-based features in musical key detection, like in Zhu and
Kankanhalli [89].

• Harmonicity: this feature is useful for distinguishing between tonal or harmonic (e.g., birds, flute,
etc.) and noise-like sounds (e.g., dog bark, snare drum, etc.). Most traditional harmonicity features
either use an impulse train (like in Ishizuka et al. [90]) to search for the set of peaks in multiples
of F0, or uses the autocorrelation-inspired functions to find the self-repetition of the signal in the
time- or frequency-domain (as in Kristjansson et al. [91]). Spectral local harmonicity is proposed
in the work by Khao [92], a method that uses only the sub-regions of the spectrum that still retain
a sufficient harmonic structure. In the MPEG-7 standard, two harmonicity measures are proposed.
Harmonic ratio (HR) is a measure of the proportion of harmonic components in the power
spectrum. The Upper limit of harmonicity (ULH) is an estimation of the frequency beyond which
the spectrum no longer has any harmonic structure. Harmonicity has been used also in the field
of environmental sound recognition (Muhammad and Alghathbar [47], Valero and Alías [48]).
Some other harmonicity-based features for music genre and instrument family classification have
been defined, like harmonic concentration, harmonic energy entropy or harmonic derivative (see
Srinivasan and Kankanhalli [93]).

• Inharmonicity: this feature measures the extent to which the partials of a sound are separated
with respect to its ideal position in a harmonic context (whose frequencies are integers
of a fundamental frequency). Some approaches take into account only partial frequencies
(like Agostini et al. [94,95]), while others also consider partial energies and bandwidths
(see Cai et al. [96]).

• Harmonic-to-Noise Ratio: Harmonic-to-noise Ratio (HNR) is computed as the relation between
the energy of the harmonic part and the energy of the rest of the signal in decibels (dB)
(Boersma [97]). Although HNR has been generally applied to analyze pathological voices (like in
Klingholz [49], or in Lee et al. [98]), it has also been applied in some music-related applications
such as the characterization of growl and screaming singing styles, as in Kato and Ito [53].

• MPEG-7 spectral timbral descriptors: the MPEG-7 standard defines some features that are
closely related to the harmonic structure of sounds, and are appropriate for discrimination of
musical sounds: MPEG-7 harmonic spectral centroid (HSC) (the amplitude-weighted average of
the harmonic frequencies, closely related to brightness and sharpness), MPEG-7 harmonic spectral
deviation (HSD) (amplitude deviation of the harmonic peaks from their neighboring harmonic
peaks, being minimum if all the harmonic partials have the same amplitude), MPEG-7 harmonic
spectral spread (HSS) (the power-weighted root-mean-square deviation of the harmonic peaks
from the HSC, related to harmonic bandwidths), and MPEG-7 harmonic spectral variation
(HSV) (correlation of harmonic peak amplitudes in two adjacent frames, representing the
harmonic variability over time). MPEG-7 spectral timbral descriptors have been employed
for environmental sound recognition (Muhammad and Alghathbar [47],Valero and Alías [48]).
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• Jitter: computes the cycle-to-cycle variations of the fundamental frequency (Klingholz [49]), that is,
the average absolute difference between consecutive periods of speech (Farrús et al. [51]). Besides
typically being applied to analyze pathological voices (like in Klingholz [49], or in Kreiman and
Gerratt [50]), it has also been applied to prototyping, classification and creation of musical sounds
(Jensen [54]), improve speaker recognition (Farrús et al. [51]), characterize growl and screaming
singing styles (Kato and Ito [53]) or discriminate vocal and non-vocal regions from audio songs
(Murthy and Koolagudi [52]), among others.

4.2.5. Chroma-Related Physical Frequency Features

Chroma is related to perception of pitch, in the sense that it is a complement of the tone height. In
a musical context, two notes that are separated one or more octaves have the same chroma (e.g., C4
and C7 notes), and produce a similar effect on the human auditory perception.

The following paragraphs describe chroma-related frequency features, which are basically
computed from direct physical approaches:

• Chromagram: also known as chroma-based feature, chromagram is a spectrum-based energy
representation that takes into account the 12 pitch classes within an octave (corresponding to
pitch classes in musical theory) (Shepard [99]), and it can be computed from a logarithmic STFT
(Bartsch and Wakefield [100]). Then, it constitutes a very compact representation suited for
musical and harmonic signals representation following a perceptual approach.

• Chroma energy distribution normalized statistics: or CENS for short, this feature was conceived
for music similarity matching and has shown to be robust to tempo and timbre variations
(Müller et al. [101]). Therefore, it can be used for identifying similarities between different
interpretations of a given music piece.

4.2.6. Spectrum Shape-Related Physical Frequency Features

Another relevant set of frequency features are the ones that try to describe the shape of the
spectrum of the audio signal. The following paragraphs describe the most widely employed, and some
of the newest contributions in this area.

• Bandwidth: usually defined as the second-order statistic of the signal spectrum, it helps to
discriminate tonal sounds (with low bandwidths) from noise-like sounds (with high bandwidths)
(see Peeters [34]). However, it is difficult to distinguish between complex tonal sounds (e.g.,
music, instruments, etc.) from complex noise-like sounds using only this feature. It can be defined
over the power spectrum or in its logarithmic version (see Liu et al. [59], or Srinivasan and
Kankanhalli [93]) and it can be computed over the whole spectrum or within different subbands
(like in Ramalingam and Krishnan [102]). MPEG-7 defines audio spectrum spread (ASS) as the
standard deviation of the signal spectrum, which constitutes the second moment while (being the
ASC the first one). Spectral bandwidth has been used for music classification (Bergstra et al. [41],
Lu et al. [12], Morchen et al. [42], Tzanetakis and Cook [28]), and environmental sound recognition
(Peltonen et al. [18], Muhammad and Alghathbar [47], Valero and Alías [48]).

• Spectral dispersion: this is a measure closely related to spectral bandwidth. The only difference
is that it takes into account the spectral center (median) instead of the spectral centroid (mean)
(see Sethares et al. [83]).

• Spectral rolloff point: defined as the 95th percentile of the power spectral distribution
(see Scheirer and Slaney [61]), spectral rolloff point can be regarded as a measure of the
skewness of the spectral shape. It can be used, for example, for distinguishing between
voiced from unvoiced speech sounds. It has been used in music genre classification (like in
Li and Ogihara [103], Bergstra et al. [41], Li et al. [40], Lu et al. [12], Morchen et al. [42],
Tzanetakis and Cook [28], Wang et al. [9]), speech/music discrimination (Scheirer and Slaney [61]),
musical instrument classification (Benetos et al. [10]), environmental sound recognition
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(Peltonen et al. [18]), audio-based surveillance systems (Rabaoui et al. [24]) and music mood
classification (Ren et al. [86]).

• Spectral flatness: this is a measure of uniformity in the frequency distribution of the power
spectrum, and it can be computed as the ratio between the geometric and the arithmetic mean
of a subband (see Ramalingam and Krishnan [102]) (equivalent to the MPEG-7 audio spectrum
flatness (ASF) descriptor [45]). This feature allows distinguishing between noise-like sounds
(high value of spectral flatness) and more tonal sounds (low value). This feature has been used
in audio fingerprinting (see Lancini et al. [104]), musical onset detection (Smith et al. [57]),
music classification (Allamanche et al. [105], Cheng et al. [106], Tzanetakis and Cook [28]) and
environmental sound recognition (Muhammad and Alghathbar [47], Valero and Alías [48]).

• Spectral crest factor: in contrast to spectral flatness measure, spectral crest factor measures
how peaked the power spectrum is, and it is also useful for differentiation of noise-like (lower
spectral crest factor) and tonal sounds (higher spectral crest factor). It can be computed as the
ratio between the maximum and the mean of the power spectrum within a subband, and has
been used for audio fingerprinting (see Lancini et al. [104], Li and Ogihara [103]) and music
classification (Allamanche et al. [105], Cheng et al. [106]).

• Subband spectral flux: or SSF for short, this feature is inversely proportional to spectral flatness,
being more relevant in subbands with non-uniform frequency content. In fact, SSF measures
the proportion of dominant partials in different subbands, and it can be measured accumulating
the differences between adjacent frequencies in a subband. It has been used for improving
the representation and recognition of environmental sounds (Cai et al. [96]) and music mood
classification (Ren et al. [86]).

• Entropy: this is another measure that describes spectrum uniformity (or flatness), and it can
be computed following different approaches (Shannon entropy, or its generalization named
Renyi entropy) and also in different subbands (see Ramalingam and Krishnan [102]). It has been
used for automatic speech recognition, computing the Shannon entropy in different equal size
subbands, like in Misra et al. [107].

• Octave-based Spectral Contrast: also referred to as OSC, it is defined as the difference between
peaks (that generally corresponds to harmonic content in music) and valleys (where non-harmonic
or noise components are more dominant) measured in subbands by octave-scale filters and using
a neighborhood criteria in its computation (Jiang et al. [108]). To represent the whole music piece,
mean and standard deviation of the spectral contrast and spectral peak of all frames are used as
the spectral contrast features. OSC features have been used for music classification (Lee et al. [77],
Lu et al. [12], Yang et al. [109]) and music mood classification, as in Ren et al. [86].

• Spectral slope: this is a measure of the spectral slant by means of a simple linear regression
(Morchen et al. [42]), and it has been used for classification purposes in speech analysis
applications (Shukla et al. [110]) and speaker identification problems (Murthy et al. [111]).

• Spectral skewness and kurtosis: spectral skewness, which is computed as the 3rd order moment
of the spectral distribution, is a measure that characterizes the asymmetry of this distribution
around its mean value. On the other hand, spectral kurtosis describes the flatness of the spectral
distribution around its mean, and its computed as the 4th order moment (see Peeters et al. [34]).
Both parameters have been applied for music genre classification (Baniya et al. [112]) and music
mood classification (Ren et al. [86]).

4.3. Wavelet-Based Physical Features

A Wavelet is a mathematical function used to divide a given function or continuous-time signal
into different scale components. The Wavelet transform (WT) has advantages over the traditional
Fourier transform for representing functions that have discontinuities and sharp peaks, and for
accurately deconstructing and reconstructing finite, non-periodic and/or non-stationary signals
(Mallat [113]). In the work by Benedetto and Teolis [114], a link between auditory functions and
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Wavelet analysis was provided, while in the work by Yang et al. [115] an analytical framework
to model the early stages of auditory processing, based on Wavelet and multiresolution analysis
was proposed.

In the following paragraphs, we describe the most commonly used wavelet-based physical
frequency features.

• Wavelet-based direct approaches: different type or families of wavelets have been used
and defined in the literature in the field of audio processing. Daubechies wavelets have
been used in blind source speech separation (see the work by Missaoui and Lachiri [116])
and Debechies together with Haar wavelets have been used in music classification
(Popescu et al. [117]), while Coiflets wavelet have been applied recently to de-noising of
audio signals (Vishwakarma et al. [118]). Other approaches like Daubechies Wavelet coefficient
histogram (DWCH) features, are defined as the first three statistical moments of the coefficient
histograms that represent the subbands obtained from Daubechies Wavelet audio signal
decomposition (see Li et al. [40,119]). They have been applied in the field of speech recognition
(Kim et al. [120]), music analysis applications such as genre classification, artist style identification
and emotion detection (as in Li et al. [40,119,121], Mandel and Ellis [122], Yang et al. [109]) or
mood classification (Ren et al. [86]). Also, in the work by Tabinda and Ahire [123], different
wavelet families (like Daubechies, symlet, coiflet, biorthogonal, stationary and dmer) are used in
audio steganography (an application for hiding data in cover speech which is imperceptible from
the original audio).

• Hurst parameter features: or pH for short, is a time-frequency statistical representation of the
vocal source composed of a vector of Hurst parameters (defined by Hurst [25]), which was
computed by applying a wavelet-based multidimensional transformation of the short-time input
speech in the work by Sant’Ana [124]. Thanks to its statistical definition, pH is robust to channel
distortions as it models the stochastic behavior of input speech signal (see Zao et al. [125], or
Palo et al. [126]). pH was originally applied as a means to improve speech-related problems,
such as text-independent speaker recognition [124], speech emotion classification [125,126], or
speech enhancement [127]. However, it has also been applied to sound source localization in
noisy environments recently, as in the work by Dranka and Coelho [128].

An alternative means to represent signals using a finite dictionary of basis functions (or atoms) is
matching pursuit (MP), described by Mallat in [129], an algorithm that provides an efficient way of
sparsely decomposing a signal by selecting the “best” subset of basis vectors from a given dictionary.
The selection of the “best” elements in the dictionary is based on maximizing the energy removed from
the residual signal at each step of the algorithm. This allows obtaining a reasonable approximation
of the signal with a few basis functions, which provides an interpretation of the signal structure.
The dictionary of basis functions can be composed of Wavelet functions, Wavelet packets, or Gabor
functions, to name a few.

The following paragraphs describe some relevant audio features using MP-based
signal decompositions.

• MP-based Gabor features: Wolfe et al. [130] proposed the construction of multiresolution Gabor
dictionaries appropriate for audio signal analysis, which is applied for music and speech signals
observed in noise, obtaining a more efficient spectro-temporal representation compared to a full
multiresolution decomposition. In this work, Gabor atoms are given by time-frequency shifts
of distinct window functions. Ezzat et al. describe in [131] the use of 2D Gabor filterbank and
illustrate its response to different speech phenomena such as harmonicity, formants, vertical
onsets/offsets, noise, and overlapping simultaneous speakers. Meyer and Kollmeier propose
in [132] the use of spectro-temporal Gabor features to enhance automatic speech recognition
performance in adverse conditions, and obtain better results when Hanning-shaped Gabor filters
are used in contrast to more classical Gaussian approaches. Chu et al. [14] proposed using MP and
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a dictionary of Gabor functions to represent the time dynamics of environmental sounds, which
are typically noise-like with a broad flat spectrum, but may include strong temporal domain
signatures. Coupled with Mel Frequency Cepstral Coefficients (see Section 5.6 for more details),
the MP-based Gabor features allowed improved environmental sound recognition. In [133],
Wang et al. proposed a nonuniform scale-frequency map based on Gabor atoms selected via MP,
onto which Principal Component Analysis and Linear Discriminate Analysis are subsequently
applied to generate the audio feature. The proposed feature was employed for environmental
sound classification in home automation.

• Spectral decomposition: in [134], Zhang et al. proposed an audio feature extraction scheme
applied to audio effect classification and based on spectral decomposition by matching-pursuit
in the frequency domain. Based on psychoacoustic studies, a set of spectral sinusoid-Gaussian
basis vectors are constructed to extract pitch, timbre and residual in-harmonic components
from the spectrum, and the audio feature consists of the scales of basis vectors after dimension
reduction. Also in [135], Umapathy et al. applied an Adaptive Time Frequency Transform
(ATFT for short) algorithm for music genre classification as a Wavelet decomposition but using
Gaussian-based kernels with different frequencies, translations and scales. The scale parameter,
which characterizes the signal envelope, captures information about rhythmic structures, and it
has been used for music genre identification (see Fu [13]).

• Sparse coding tensor representation: this work presents an evolution of Gabor atom MP-based
audio feature extraction of Chu et al. [14]. The method proposed in the work by Zhang and
He [136] tries to preserve the distinctiveness of the atoms selected by the MP algorithm by using
a frequency-time-scale tensor derived from the sparse coding of the audio signal. The three
tensor dimensions represent the frequency, time center and scale of transient time-frequency
components with different dimensions. This feature was coupled with MFCC and applied to
perform sound effects classification.

4.4. Image Domain Physical Features

This approach to feature extraction is based on a joint two-dimensional image-based m of the
audio signal. Typically, one of the dimensions corresponds to a frequency vision of the signal, while
the other corresponds to a time view (as defined by Walters [137]).

• Spectrogram image features: or SIF for short, are features that comprise a set of techniques
that focus on applying techniques from the image processing field to the time-frequency
representations (using Fourier, cepstral, or other types of frequency mapping techniques) of
the sound to be analyzed (Chu et al. [14], Dennis et al. [138]). Spectrogram image features
like subband power distribution (SPD), a two-dimensional representation of the distribution of
normalized spectral power over time against frequency, have been shown to be useful for sound
event recognition (Dennis [4]). The advantage of the SPD over the spectrogram is that the sparse,
high-power elements of the sound event are transformed to a localized region of the SPD, unlike
in the spectrogram where they may be scattered over time and frequency. Also, Local Spectrogram
features (LS) are introduced by Dennis [4] with the ability to detect an arbitrary combination of
overlapping sounds, including two or more different sounds or the same sound overlapping
itself. LS features are used to detect keypoints in the spectrogram and then characterize the sound
using the Generalized Hough Transform (GHT), a kind of universal transform that can be used
to find arbitrarily complex shapes in grey level images, and that it can model the geometrical
distribution of speech information over the wider temporal context (Dennis et al. [139]).

In Section 5.5 other approaches for image-based audio feature extraction which incorporate
perceptual auditory models are reviewed.
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4.5. Cepstral Domain Physical Features

Cepstral features are compact representations of the spectrum and provide a smooth
approximation based on the logarithmic magnitude. They have been largely used for speaker
identification and speech recognition but they have also been employed in the context of
audio retrieval.

The main cepstral domain physical features found in the literature are the following:

• Complex cepstrum: is defined as the Inverse Fourier transform of the logarithm (with unwrapped
phase) of the Fourier transform of the signal (see Oppenheim and Schafer [140]), and has been
used for pitch determination of speech signals (Noll [141]) but also for identification of musical
instruments (see Brown [142]).

• Linear Prediction Cepstrum Coefficients: or LPCC for short. This feature is defined as the
inverse Fourier transform of the logarithmic magnitude of the linear prediction spectral complex
envelope (Atal [143]), and provide a more robust and compact representation especially useful
for automatic speech recognition and speaker identification (Adami and Couto Barone [144])
but also for singer identification (Shen et al. [145]), music classification (Xu et al. [146], Kim and
Whitman [147]) and environmental sound recognition (see Peltonen et al. [18], or Chu et al. [14]).

4.6. Other Domains

The literature contains other approaches to audio feature extraction that operate on domains
different to the ones just reviewed. Some of the most significant physical-based features are the
eigenspace domain, the phase space domain, and the acoustic environment domain. The following
paragraphs briefly describe these approaches.

• Eigenspace: audio features expressed in the eigenspace are usually obtained from sound
segments of several seconds of duration, which are postprocessed by dimensionality reduction
algorithms in order to obtain a compact representation of the main signal information. This
dimensionality reduction is normally performed by means of Principal Component Analysis
(PCA) (or alternatively, via Singular Value Decomposition or SVD), which is equivalent to a
projection of the original data onto a subspace defined by its eigenvectors (or eigenspace), or
Independent Component Analysis (ICA). Some of the most relevant eigendomain physical
features found in the literature are: i) MPEG-7 audio spectrum basis/projection feature, which is
a combination of two descriptors (audio spectrum basis or ASB–and audio spectrum projection
or ASP) conceived for audio retrieval and classification [45,76]. ASB feature is a compact
representation of the signal spectrogram obtained through SVD, while ASP is the spectrogram
projection against a given audio spectrum basis. ASB and ASP have been used for environmental
sound recognition, as in Muhammad and Alghathbar [47]; and ii) Distortion discriminant analysis
(DDA) feature, which is a compact time-invariant and noise-robust representation of an audio
signal, that is based on applying hierarchical PCA to a time-frequency representation derived
from a modulated complex lapped transform (MCLT) (see Burges et al. [148], or Malvar [149]).
Therefore, this feature serves as a robust audio representation against many signal distortions
(time-shifts, compression artifacts and frequency and noise distortions).

• Phase space: this type of features emerge as a response to the linear approach that has usually
been employed to model speech. However, linear models do not take into account nonlinear
effects occurring during speech production, thus constituting a simplification of reality. This is
why approaches based on nonlinear dynamics try to bridge this gap. A first example are the
nonlinear features for speech recognition presented in the work by Lindgren et al. [150], which are
based on the so-called reconstructed phase space generated from time-lagged versions of the
original time series. The idea is that reconstructed phase spaces have been proven to recover
the full dynamics of the generating system, which implies that features extracted from it can
potentially contain more and/or different information than a spectral representation. In the works
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by Kokkinos and Maragos [151] and by Pitsikalis and Maragos [152], a similar idea is employed
to compute for short time series of speech sounds useful features like Lyapunov exponents.

• Acoustic environment features: this type of features try to capture information from the acoustic
environment where the sound is measured. As an example, in the work by Hu et al. [153],
the authors propose the use of Direct-to-Reverberant Ratio (DRR), the ratio between the Room
Impulse response (RIR) energy of the direct path and the reverberant components, to perform
speaker diarization. In this approach, they don’t use a direct measure of the RIR, but a
Non-intrusive Room Acoustic parameter estimator (NIRA) (see Parada et al. [154]). This estimator
is a data-driven approach that uses 106 features derived from pitch period importance weighted
signal to noise ratio, zero-crossing rate, Hilbert transformation, power spectrum of long term
deviation, MFCCs, line spectrum frequency and modulation representation.

5. Perceptual Audio Features Extraction Techniques

The concept of perceptual audio features is based on finding ways to describe general audio
properties based on human perception. The literature contains several attempts to derive this type of
features, be it through the integration of perception in the very parameterization process, or through
the computation of signal features capable of extracting perceptually relevant aspects from the audio
signal (see Richard et al. [31]).

Interestingly, there exist some works focused on bridging the gap between features and subjective
perception, aiming at the discovery of correlations between perceptual audio features and qualitative
audio descriptive measures used in psychology studies, such as the work by Friberg et al. [63].

This section describess the main perceptual audio features extraction techniques reported in the
literature, categorized according to the defined taxonomy (see Figure 5).

5.1. Time Domain Perceptual Features

In the context of time domain perceptual features we can found zero-crossing features, perceptual
autocorrelation-based features and rhythm pattern.

5.1.1. Zero-Crossing Rate-Based Perceptual Features

The following zero-crossing-based features which incorporate some bio-inspired auditory model
can be found in the literature:

• Zero-crossing peak amplitudes (ZCPA): were designed for automatic speech recognition (ASR)
in noisy environments by Kim et al. [155], showing better results that linear prediction coefficients.
This feature is computed from time-domain zero crossings of the signal previously decomposed
in several psychoacoustic scaled subbands. The final representation of the feature is obtained on
a histogram of the inverse zero-crossings lengths over all the subband signals. Subsequently, each
histogram bin is scaled with the peak value of the corresponding zero crossing interval. In [156],
Wang and Zhao applied ZCPA to noise-robust speech recognition.

• Pitch synchronous zero crossing peak amplitudes (PS-ZCPA): were proposed by
Ghulam et al. [157] and they were designed for improving robustness of ASR in noisy conditions.
The original method is based on an auditory nervous system, as it uses a mel-frequency spaced
filterbank as a front-end stage. PS-ZCPA considers only inverse zero-crossings lengths whose
peaks have a height above a threshold obtained as a portion of the highest peak within a signal
pitch period. PS-ZCPA are only computed in voiced speech segments, being combined with the
preceding ZCPA features obtained from unvoiced speech segments. In [158], the same authors
presented a new version of the PS-ZCPA feature, using a pitch-synchronous peak-amplitude
approach that ignores zero-crossings.
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5.1.2. Perceptual Autocorrelation-Based Features

Autocorrelation is a measure of the self-similarity of the signal in the time domain with diverse
applications to audio feature extraction. In this section, we revise those features derived from
autocorrelation providing a measure of perceptual-based parameters related to acoustic phenomena.

• Autocorrelation function features: or ACF for short, this feature introduced by Ando in [159],
has been subsequently applied by the same author to environmental sound analysis [29] and
recently adapted to speech representation [160]. To compute ACF, the autocorrelation function is
firstly computed from the audio signal, and then this function is parameterized by means of a set
of perceptual-based parameters related to acoustic phenomena (signal loudness, perceived pitch,
strength of perceived pitch and signal periodicity).

• Narrow-band autocorrelation function features: also known as NB-ACF, this feature was
introduced by Valero and Alías [15], where the ACF concept is reused in the context of a filter
bank analysis. Specifically, the features are obtained from the autocorrelation function of audio
signals computed after applying a Mel filter bank (which are based on the Mel scale, a perceptual
scale of pitches judged by listeners to be equal in distance from one another). These features
have been shown to provide good performance for indoor and outdoor environmental sound
classification. In [161], the same authors improved this technique by substituting the Mel filter
bank employed to obtain the narrow-band signals by a Gammatone filter bank with Equivalent
Rectangular Bandwidth bands. In addition, the Autocorrelation Zero Crossing Rate (AZCR) was
added, following previous works like the one by Ghaemmaghami et al. [43].

5.1.3. Rhythm Pattern

As defined by Mitrović et al. [17], this feature is a two-dimensional representation of acoustic
versus modulation frequency that is built upon a specific loudness sensation, and it is obtained by
Fourier analysis of the critical bands over time and incorporating a weighting stage that is inspired
by the human auditory system. This feature has shown to be useful in music similarity retrieval
(Pampalk et al. [162], Rauber et al. [163]).

5.2. Frequency Domain Perceptual Features

Frequency-based features can also be defined on the perceptual frequency domain. This type
of features are based in some signal properties measured taking into account the human auditory
perception. The main perceptual properties represented by this type of features include:

• Modulation-based
• Brightness-related
• Tonality-related
• Loudness-related
• Roughness-related

The following paragraphs describe these subcategories of frequency-based perceptual features.

5.2.1. Modulation-Based Perceptual Frequency Features

Modulation-based perceptual frequency features represent the low-frequency (e.g., around 20 Hz)
modulation content present in audio signals, which produce both amplitude and frequency variations.
These variations are easily observed in audio signals that incorporate beats and rhythm (e.g., rhythmic
patterns in music, audio signals coming from industrial machineries, speech signals, etc.). This
modulation information can reflect structural evolution along time of the frequency content of a sound
and can be measured separately for each frequency band.
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The following paragraphs describe the most relevant modulation frequency features found in the
literature based on a perceptual-based approach, including those reviewed by Mitrović et al. [17] and
some recent contribution to the field:

• 4 Hz modulation energy: is defined with the aim of capturing the most relevant hearing sensation
of fluctuation in terms of amplitude- and frequency-modulated sounds (see Fastl [164]). The
authors propose a model of fluctuation strength, based on a psychoacoustical magnitude, namely
the temporal masking pattern. This feature can be computed filtering each subband of a signal
spectral analysis by a 4 Hz band-pass filter along time and it has been used for music/speech
discrimination (see Scheirer and Slaney [61]).

• Computer model of amplitude-modulation sensitivity of single units in the inferior
culliculus: the work by Hewitt and Meddis [165] introduces a computer model of a neural circuit
that replicates amplitude-modulation sensitivity of cells in the central nucleous of the inferior
culliculus (ICC) is presented, allowing for the encoding of signal periodicity as a rate-based code.

• Joint acoustic and modulation frequency features: these are time-invariant representations that
model the non-stationary behavior of an audio signal (Sukittanon and Atlas [166]). Modulation
frequencies for each frequency band are extracted from demodulation of the Bark-scaled
spectrogram using the Wavelet transform (see Section 4.3). These features have been used
for audio fingerprinting by Sukittanon and Atlas [166], and they are similar to rhythm pattern
feature (related to rhythm in music).

• Auditory filter bank temporal envelopes: or AFTE for short, this is another attempt to capture
modulation information related to sound [167]. Modulation information is here obtained through
bandpass filtering the output bands of a logarithmic-scale filterbank of 4th-order Gammatone
bandpass filters. These features have been used for audio classification and musical genre
classification by McKinney and Breebaart [167], and by Fu et al. [13].

• Modulation spectrogram: also referred to as MS, this feature displays and encodes the signal in
terms of the distribution of slow modulations across time and frequency, as defined by Greenberg
and Kingsbury [168]. In particular, it was defined to represent modulation frequencies in the
speech signal between 0 and 8 Hz, with a peak sensitivity at 4 Hz, corresponding closely to the
long-term modulation spectrum of speech. The MS is computed in critical-band-wide channels
and incorporates a simple automatic gain control, and emphasizes spectro-temporal peaks. MS
has been used for robust speech recognition (see Kingsbury et al. [169], or Baby et al. [170]),
music classification (Lee et al. [77]), or content-based audio identification incorporating a Wavelet
transform (Sukittanon et al. [171]). Recently, the MS features have been separated through a tensor
factorization model, which represents each component as modulation spectra being activated
across different subbands at each time frame, being applied for monaural speech separation
purposes in the work by Barker and Virtanen [172] and for the classification of pathological infant
cries (Chittora and Patil [173]).

• Long-term modulation analysis of short-term timbre features: in the work by Ren et al. [86]
the use of a two-dimensional representation of acoustic frequency and modulation frequency
to extract joint acoustic frequency and modulation frequency features is proposed, using an
approach similar than in the work by Lee et al. [77]. Long-term joint frequency features, such
as acoustic-modulation spectral contrast/valley (AMSC/AMSV), acoustic-modulation spectral
flatness measure (AMSFM), and acoustic-modulation spectral crest measure (AMSCM), are then
computed from the spectra of each joint frequency subband. By combining the proposed features,
together with the modulation spectral analysis of MFCC and statistical descriptors of short-term
timbre features, this new feature set outperforms previous approaches with statistical significance
in automatic music mood classification.
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5.2.2. Brightness-Related Perceptual Frequency Features

The second subtype of perceptual frequency features are those that aim at describing the brightness
of the sound (see Section 4.2.3 for its physical-based counterpart). In this subcategory we can find
sharpness, a measure of the signal strength for high frequencies, which is closely related to audio
brightness, and it has been used for audio similarity analysis (Herre et al. [174], Peeters et al. [34]).
Sharpness can be computed similarly to SC (see Section 4.2.3), but based on specific loudness instead
of the magnitude spectrum (in Zwicker and Fastl [175]), thus, being the perceptual variant of SC
(Peeters et al. [34], Richard et al. [31]).

5.2.3. Tonality-Related Perceptual Frequency Features

Tonality is a sound property that is closely related to the subjective perception of the main
frequency of harmonic signals, and it allows distinguishing noise-like sounds from sinusoidal-like
sounds, and especially those sinusoidal sounds whose frequencies are harmonically related. Contrary
to the previous reviewed pitch-based audio features (see Section 4.2.4), psychoacoustical pitch feature
incorporates auditory-based models. This is a measure that models human pitch perception (as defined
by Meddis and O’Mard [176]), by incorporating a band pass filtering that emphasizes the most relevant
frequency band for pitch perception, the use of specific filter bank model (Gammatone) that mimics
the frequency selectivity of the cochlea, and use of inner hair-cell models that allows computing
autocorrelation functions of continuous firing probabilities. The final feature is computed summing
across channels all these autocorrelation functions. Previous approaches, like the work by Slaney and
Lyon [177], combine a cochlear model with a bank of autocorrelators.

5.2.4. Loudness-Related Perceptual Frequency Features

This section summarizes those features that are related to the loudness of the audio signal, a
notion that is defined as the subjective impression of the intensity of a sound (see Peeters et al. [34]).

• Loudness: in the original work by Olson [178] the loudness measurement procedure of a complex
sound (e.g., speech, music, noise) is described as the sum of the loudness index (using equal
loudness contours) for each of the several subbands in which the audio us previously divided. In
the work by Breebaart and McKinney [179] the authors compute loudness by firstly computing the
power spectrum of the input frame and then normalizing by subtracting (in dB) an approximation
of the absolute threshold of hearing, and then filtering by a bank of gammatone filters and
summing across frequency to yield the power in each auditory filter, which corresponds to the
internal excitation as a function of frequency. These excitations are then compressed, scaled and
summed across filters to arrive at the loudness estimate.

• Specific loudness sensation: this is a measure of loudness (in Sone units, a perceptual scale for
loudness measurement (see Peeters et al. [34]) in a specific frequency range. It incorporates both
Bark-scale frequency analysis and the spectral masking effect that emulates the human auditory
system (Pampalk et al. [162]). This feature has been applied to audio retrieval (Morchen et al. [42]).

• Integral loudness: this feature closely measures the human sensation of loudness by spectral
integration of loudness over several frequency groups (Pfeiffer [180]). This feature has been
used for discrimination between foreground and background sounds (see Linehart et al. [181],
Pfeiffer et al. [182]).

5.2.5. Roughness-Related Perceptual Frequency Features

In the work by Daniel and Weber [183], roughness is defined as a basic psychoacoustical sensation
for rapid amplitude variations which reduces the sensory pleasantness and the quality of noises.
According to psychophysical theories, the roughness of a complex sound (a sound comprising
many partials or pure tone components) depends on the distance between the partials measured
in critical bandwidths.
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In fact, roughness is considered a perceptual or psycho-acoustic feature, but it also captures
amplitude modulations. In particular, it is defined as the perception of temporal envelope modulations
in the range of about 20–150 Hz and is maximal for modulations near 70 Hz.

To compute the roughness feature, the following pipeline is defined in the work by McKinney
and Breeebaart [167]: (i) the temporal (Hilbert) envelope of each filter of a bank of Gammatone filters
is computed; (ii) a correlation factor for each filter based on the correlation of its output with that
from two filters above and below it in the filter bank is obtained; (iii) the roughness estimate is then
calculated by filtering the power in each filter output with a set of bandpass filters (centered near 70 Hz)
that pass only those modulation frequencies relevant to the perception of roughness (Zwicker and
Fastl [175]), multiplying by the correlation factor and then summing across frequency and across the
filter bank.

5.3. Wavelet-Based Perceptual Features

In the following paragraphs, we describe the most commonly used Wavelet-based perceptual
frequency features, which represent an extension of the wavelet-based physical features previously
reviewed in Section 4.3.

• Kernel Power Flow Orientation Coefficients (KPFOC): in the works by Gerazov and
Ivanovski [184,185], a bank of 2D kernels is used to estimate the orientation of the power flow
at every point in the auditory spectrogram calculated using a Gammatone filter bank (Valero
and Alías [161]), obtaining an ASR front-end with increased robustness to both noise and room
reverberation with respect to previous approaches, and specially for small vocabulary tasks.

• Mel Frequency Discrete Wavelet Coefficients: or MFDWC for short, account for the perceptual
response of the ear by applying the discrete WT to the Mel-scaled log filter bank energies obtained
from the input signal (see Gowdy and Tufekci [186]). MFDWC, which were initially defined to
improve speech recongintion problems (Tavenei et al. [187]), have been subsequently applied to
other machine hearing realed applications such as speaker verification/identification (see Tufekci
and Gurbuz [188], Nghia et al. [189]), and audio-based surveillance systems (Rabaoui et al. [24]).

• Gammatone wavelet features: is a subtype of audio features formulated in the Wavelet domain
that accounts for perceptual modelling is the Gammatone Wavelet features (GTW) (see Valero
and Alías [190], Venkitaraman et al. [191]). These features are obtained by replacing typical
mother functions, such as Morlet (Burrus et al. [192]), Coiflet (Bradie [193]) or Daubechies [194])
by Gammatone functions, which model the auditory system. GTW features show superior
classification accuracy both in noiseless and noisy conditions when compared to Daubechies
Wavelet features in classification of surveillance-related sounds, as exposed by Valero and
Alías [190].

• Perceptual wavelet packets: the Wavelet packet transform is an implementation version of
the discrete WT, where the filtering process is iterated on both the low frequency and high
frequency components (see Jiang et al. [195]), which has been optimized perceptually by including
the representation of the input audio into critical bands described by Greenwood [196] and
Ren et al. [197]. Wavelet packet transform has been used in different applications like in the work
by Dobson et al. [198] for audio coding purposes, or in audio watermarking (Artameeyanant [199]).
Perceptual Wavelet Packets (PWP) have been applied to bio-acoustic signal enhancement
(Ren et al. [197]), speech recognition (Rajeswari et al. [200]), and more recently also for baby
crying sound events recognition (Ntalampiras [201]).

• Gabor functions: the work by Kleinschmidt models the receptive field of cortical neurons also
as two-dimensional complex Gabor function [202]. More recently, Heckman et al. have studied
in [203] the use of Gabor functions against learning the features via Independent Component
Analysis technique for the computation of local features in a two-layer hierarchical bio-inspired
approach. Wu et al. employ two-dimensional Gabor functions with different scales and directions
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to analyze the localized patches of the power spectrogram [204], improving the speech recognition
performance in noisy environments, compared with other previous speech feature extraction
methods. In a similar way, Schröder et al. [205] propose an optimization of spectro-temporal
Gabor filterbank features for the audio events detection task. In [206,207], Lindeberg and Friberg
describe a new way of deriving the Gabor filters as a particular case (using non-causal Gaussian
windows) of frequency selective temporal receptive fields, representing the first layer of their
scale-space theory for auditory signals.

5.4. Multiscale Spectro-Temporal-Based Perceptual Features

There are different approaches in the bibliography that use the concept of spectro-temporal
response field and that incorporate two-stage processes inspired in the auditory system. Those
approaches rely on the fact that measurements in the primary auditory cortex of different animals
revealed its spectro-temporal organization, i.e., the receptive fields are selective to modulations in the
time-frequency domain. In the following paragraphs, proposals that incorporate spectro-temporal
analysis of audio signals at different (temporal and/or frequency) scales are reviewed.

• Multiscale spectro-temporal modulations: it consists of two basic stages, as defined by
Mesgarani et al. [208]. An early stage models the transformation of the acoustic signal into
an internal neural representation referred to as an auditory spectrogram (using bank of 128
constant-Q bandpass filters with center frequencies equally spaced on a logarithmic frequency
axis). Subsequently a central stage analyzes the spectrogram to estimate the content of its
spectral and temporal modulations using a bank of modulation-selective filters (equivalent to a
two-dimensional affine wavelet transform of the auditory spectrogram, with a spectro-temporal
mother wavelet resembling a two-dimensional spectro-temporal Gabor function) mimicking
those described in a model of the mammalian primary auditory cortex. In [208], Mesgarani et al.
use multiscale spectro-temporal modulations to discriminate speech from nonspeech consisting
of animal vocalizations, music, and environmental sounds. Moreover, these features have
been applied to music genre classification (Panagakis et al. [209]) and voice activity detection
(Ng et al. [210]).

• Computational models for auditory receptive fields: in [206,207], Lindeberg and Friberg
describe a theoretical and methodological framework to define computational models for
auditory receptive fields. The proposal is also based on a two-stage process: (i) a first layer of
frequency selective temporal receptive fields where the input signal is represented as multi-scale
spectrograms, which can be specifically configured to simulate the physical resonance system in
the cochlea spectrogram; (ii) a second layer of spectro-temporal receptive fields which consist of
kernel-based 2D processing units in order to capture relevant auditory changes in both time and
frequency dimensions (after logarithmic representation in both amplitude and frequency axes,
and ignoring phase information), including from separable to non-separable (introducing an
specific glissando parameter) spectro-temporal patterns. The presented model is closely related
to biological receptive fields (i.e., those that can be physiologically measured from neurons, in
the inferior colliculus and the primary auditory cortex, as reported by Qiu et al. in [211]). This
work gives an interesting perspective unifying in one theory a way to axiomatically derive
representations like Gammatone (see Patterson and Holdsworth [212]) or Gabor filterbanks
(Wolfe et al. [130]), regarding the causality of the filters used in the first audio analysis stage
(see Section 5.6). A set of new auditory features are proposed respecting auditory invariances,
being the result of the output 2D spectrogram after the kernel-based processing, using different
operators like: spectro-temporal smoothings, onset and offset detections, spectral sharpenings,
ways for capturing frequency variations over time and glissando estimation.
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5.5. Image Domain Perceptual Features

In this section, the image-based audio features introduced in Section 4.4 are extended whenever
they include some aspect of psycho-acoustics or perceptual models of hearing. Following a perceptual
image-based approach, the main features described in the literature are the following:

• Spectrogram image features: as introduced in Section 4.4, spectrogram image features have
been also derived from front-end parametrizations which make use of psychoacoustical models.
In [213], Dennis et al. use GHT to construct a codebook from a Gaussian Mixture Model-Hidden
Markov Model based ASR, in order to train an artificial neural network that learns a discriminative
weighting for optimizing the classification accuracy in a frame-level phoneme recognition
application. In this work MFCC are used as front-end parametrization. The same authors
compute in [214] a robust sparse spike coding of the 40-dimension Mel-filtered spectrogram
(detection of high energy peaks that correlate with a codebook dictionary) to learn a neural
network for sound event classification. The results show a superior reliability when the proposed
parameterization is used against the conventional raw spectrogram.

• Auditory image model: or AIM for short, this feature extraction technique includes functional
and physiological modules to simulate auditory spectral analysis, neural encoding and temporal
integration, including new forms of periodicity-sensitive temporal integration that generate
stabilized auditory images (Patterson et al. [215,216]). The encoding process is based on a three
stage system. Briefly, the spectral analysis stage converts the sound wave into the model’s
representation of basilar membrane motion (BMM). The neural encoding stage stabilizes the
BMM in level and sharpens features like vowel formants, to produce a simulation of the neural
activity pattern produced by the sound in the auditory nerve. The temporal integration stage
stabilizes the repeating structure in the NAP and produces a simulation of our perception, referred
to as the auditory image.

• Stabilized auditory image: based on the AIM features, the stabilized auditory image (SAI) is
defined as a two-dimensional representation of the sound signal (see Walters [137]): the first
dimension of a SAI frame is simply the spectral dimension added by a previous filterbank
analysis, while the second comes from the strobed temporal integration process by which an SAI
is generated. SAI has been applied to speech recognition and audio search [137] and more recently,
a low-resolution overlapped SIF has been introduced together with Deep Neural Networks (DNN)
to perform robust sound event classification in noisy conditions (McLoughlin et al. [217]).

• Time-chroma images: this feature is a two dimensional representation for audio signals
that plots the chroma distribution of an audio signal over time, as described in the work
by Malekesmaeili and Ward [218]. This feature employs a modified definition of the
chroma concept called chroman, which is defined as the set of all pitches that are apart by
n octaves. Coupled with a fingerprinting algorithm that extracts local fingerprints from the
time-chroma image, the proposed feature allows improved accuracy in audio copy detection and
song identification.

5.6. Cepstral Domain Perceptual Features

Within the perceptual-based cepstral domain features two subtypes of features are found:
perceptual filter bank-based and autoregression-based.

The following paragraphs describe the most relevant features belonging to these two categories
of cepstral features which incorporate perceptual-based schemes.

5.6.1. Perceptual Filter Banks-Based Cepstral Features

Perceptual filter banks-based cepstral features are based on the computation of cepstral-based
parameters following an approach based on, firstly, obtaining the logarithm of the magnitude’s Fourier
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transform, or using an specific filter bank decomposition with some possible perceptual criteria; and
secondly, performing a Fourier transform (or Cosine transform) of the previous result.

This type of features comprises the well-known Mel Frequency Cepstral Coefficients and their
variants, which are often based on using different frequency scales before the last Fourier-based
stage. Some examples include Equivalent Rectangular Bandwidths (ERB) (see Moore et al. [219]),
Bark (see Zwicker [220]), critical bands (as in the work by Greenwood [196]) and octave-scale (see
Maddage et al. [221].

Another aspect connected to these type of features is that they are mostly based on the computation
of a cochleagram (the resulting time-frequency output of the filterbanks), which in some sense try to
model the frequency selectivity of the cochlea (as in the work by Richard et al. [31]).

The following paragraphs describe the most relevant features in this area.

• Mel Frequency Cepstral Coefficients: also denoted as MFCC, have been largely employed in
the speech recognition field but also in the field of audio content classification (see the work
by Liang and Fan [58]), due to the fact that their computation is based on perceptual-based
frequency scale in the first stage (the human auditory model in which is inspired the frequency
Mel-scale). After obtaining the frame-based Fourier transform, outputs of a Mel-scale filter bank
are logarithmized and finally they are decorrelated by means of the Discrete Cosine Transform
(DCT). Only first DCT coefficients (usually from 8 to 13) are used to gather information that
represents the low frequency component of the signal’s spectral envelope (mainly related to
timbre). MFCC’́s have been used also for music classification (see the works by Benetos et al. [10],
Bergstra et al. [41], Tzanetakis and Cook [28], or Wang et al. [9]), singer identification (as in
Shen et al. [145]), environmental sound classification (see Beritelli and Grasso [222], or Peltonen
et al. [18]), audio-based surveillance systems (Rabaoui et al. [24]), being also embedded in
hearing aids (see Zeng and Liu [223]) and even employed detect breath sound as an indicator
of respiratory health and disease (Lei et al. [224]). Also, some particular extensions of MFCC
have been introduced in the context of speech recognition and speaker verification in the aim
of obtaining more robust spectral representation in the presence of noise (e.g., in the works by
Shannon and Paliwal [225], Yuo et al. [27], or Choi [226]).

• Greenwood Function cepstral coefficients: building on the seminal work by Greenwood [196],
where it was stated that many mammals have a logarithmic cochlear-frequency response,
Clemins et al. [32] introduced Greenwood function Cepstral Coefficients (GFCC), extracting
the equal loudness curve from species-specific audiogram measurements as an audio feature
extraction for the analysis of environmental sound coming from the vocalization of those species.
Later, this features were applied also to multichannel speech recognition by Trawicki et al. [227].

• Noise-robust audio features: or NRAF for short, these features incorporate a specific human
auditory model based on a three stage process (a first stage of filtering in the cochlea, transduction
of mechanical displacement in electrical activity–log compression in the hair cell stage–, and a
reduction stage using decorrelation that mimics the lateral inhibitory network in the cochlear
nucleus) (see Ravindran et al. [228]).

• Gammatone cepstral coefficients: also known as GTCC, Patterson et al. in [229,230] proposed
a filterbank based on Gammatone function that predicts human masking data accurately,
while Hohman proposed in [231] an efficient implementation of a Gammatone filterbank
(using the 4th-order linear Gammatone filter) for the frequency analysis and resynthesis
of audio signals. Valero and Alías derived the Gammatone cepstral coefficients feature
by maintaining the effective computation scheme from MFCC but changing the Mel filter
bank by a Gammatone filter bank [232]. Gammatone filters were originally designed to
model the human auditory spectral response, given their good approximation in terms of
impulse response, magnitude response and filter bandwidth, as described by Patterson and
Holdsworth [212]. Gammatone-like features have been used also in audio processing (see
the work of Johannesma in [233]), in speech recognition applications (see Shao et al. [234],
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or Schlüter et al. [235]), water sound event detection for tele-monitoring applications
(Guyot et al. [236]), for road noise sources classification (Socoró et al. [237]) and computational
auditory scene analysis (Shao et al. [238]). In [206,207] Lindeberg and Friberg describe an
axiomatic way of obtaining Gammatone filters as a particular case of a multi-scale spectrogram
when the analysis filters are constrained to be causal. They also define a new family of generalized
Gammatone filters that allow for additional degrees of freedom in the trade-off between the
temporal dynamics and the spectral selectivity of time-causal spectrograms. This approach
represents a part of a unified theory for constructing computational models for auditory receptive
fields (see a brief description in Section 5.4).

• GammaChirp filterbanks: Irino and Patterson proposed in [239] an extension of the Gammatone
filter which was called Gammachirp filter, with the aim of obtaining a more accurate model
of the auditory sensitivity, providing an excellent fit to human masking data. Specifically, this
approach is able to represent the natural asymmetry of the auditory filter and its dependence
on the signal strength. Abdallah and Hajaiej [240] defined GammaChirp Cepstral coefficients (GC-
Cept) substituting the typical Mel filterbank in MFCC by a Gammachirp filterbank of 32 filters
over speech signals (within the speech frequency band up to 8 KHz). They showed a better
performance of the new Gammachirp filterbanks compared with the MFCC in a text independent
speaker recognition system for noisy environments.

5.6.2. Autoregression-Based Cepstral Features

A common trait of autoregression-based cepstral features is that linear predictive analysis is
incorporated within the cepstral-based framework. This group of features includes perceptual linear
prediction, relative spectral-perceptual linear prediction and linear prediction cepstrum coefficients,
which are described next.

• Perceptual Linear Prediction: or PLP for short, this feature represents a more accurate
representation of spectral contour by means of a linear prediction-based approach that
incorporates also some specific human hearing inspired properties like use of a frequency
Bark-scale and asymmetrical critical-band masking curves, as described by Hermansky [241].
These features, were later revised and improved by Hönig et al. [242] for speech recognition
purposes and recently applied to baby crying sound events recognition by Ntalampiras [201].

• Relative Spectral-Perceptual Linear Prediction: also referred to as RASTA-PLP, this is a noise-
robust version of the PLP feature introduced by Hermansky and Morgan [243]. The objective is to
incorporate human-like abilities to disregard noise when listening in speech communication by
means of filtering each frequency channel with a bandpass filter that mitigate slow time variations
due to communication channel disturbances (e.g., steady background noise, convolutional noise)
and fast variations due to analysis artifacts. Also, the RASTA-PLP process uses static nonlinear
compression and expansion blocks before and after the bandpass processing. There is a close
relation between RASTA processing and delta cepstral coefficients (i.e., first derivatives of MFCC),
which are broadly used in the contexts of speech recognition and statistical speech synthesis. This
features have also been applied for audio-based surveillance systems by Rabaoui et al. [24].

• Generalized Perceptual Linear Prediction: also denoted as gPLP, is defined as an
adaptation of PLP originally developed for human speech processing to represent their vocal
production mechanisms of mammals by substituting a species-specific frequency warping
and equal loudness curve from humans by those from the analyzed species (see the work by
Clemins et al. [32,33]).

5.7. Other Domains

The literature contains other approaches to perceptual audio feature extraction that operate on
domains different to the ones just reviewed. Some of the most significant are the eigenspace-based
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features, the electroencephalogramn-based features and the auditory saliency map. The following
paragraphs briefly describe these approaches.

• Eigenspace-based features: in this category, we find Rate-scale-frequency (RSF) features, which
describe modulation components present in certain frequency bands of the auditory spectrum,
and they are based in the same human auditory model that incorporates the noise-robust
audio features (NRAF), as described in the work by Ravindran et al. [228] (see Section 5.6.1).
RFS represent a compact and decorrelated representation (they are derived performing a
Principal Component Analysis stage) of the two-dimensional Wavelet transform applied to
the audio spectrum;

• Electroencephalogram-based features: or EEG-based features for short, these find application
in human-centered favorite music estimation, as introduced by Sawata et al. [244]. In that work,
the authors compute features from the EEG signals of a user that is listening to his/her favorite
music, while simultaneously computing several features from the audio signal (root mean square,
brightness, ZCR or tempo, among others). Subsequently, both types of features are correlated
by means of kernel canonical correlation analysis (KCCA), which allows deriving a projection
between the audio features space and the EEG-based feature space. By using the obtained
projection, the new EEG-based audio features can be derived from audio features, since this
projection provides the best correlation between both feature spaces. As a result, it becomes
possible to transform original audio features into EEG-based audio features with no need of
further EEG signals acquisition.

• Auditory saliency map: is a bottom-up auditory attention model which computes an auditory
saliency map from the input sound derived by Kalinli et al. [245,246], and it has been applied
to environmental sounds in the work by De Coensel and Botteldooren [247] (perception of
transportation noise). The saliency map holds non-negative values and its maximum defines the
most salient location in 2D auditory spectrum. First, auditory spectrum of sound is estimated
using an early auditory (EA) system model, consisting of cochlear filtering, inner hair cell (IHC),
and lateral inhibitory stages mimicking the process from basilar membrane to the cochlear
nucleus in the auditory system (using a set of constant-Q asymmetric band-pass filters uniformly
distributed along a logarithmic frequency axis). Next, the auditory spectrum is analyzed by
extracting a set of multi-scale features (2D spectro-temporal receptive filters) which consist of
intensity, frequency contrast, temporal contrast and orientation feature channels. Subsequently,
center-surround differences (point wise differences across different center-based and surrounding-
based scales) are calculated from the previous feature channels, resulting in feature maps. From
the computed 30 features maps (six for each intensity, frequency contrast, temporal contrast
and twelve for orientation) an iterative and nonlinear normalization algorithm (simulating
competition between the neighboring salient locations using a large 2D difference of Gaussians
filter) is applied to the possible noisy feature maps, obtaining reduced sparse representations of
only those locations which strongly stand-out from their surroundings. All normalized maps are
then summed to provide bottom-up input to the saliency map.

6. Conclusions

This work has presented an up-to-date review of the most relevant audio feature extraction
techniques related to machine hearing which have been developed for the analysis of speech, music
and environmental sounds. With the aim of providing a self-contained reference for audio analysis
applications practitioners, this review covers the most elementary and classic approaches to audio
feature extraction, dating back to the 1970s, through to the most recent contributions for the derivation
of audio features based on new domains of computation and bio-inspired paradigms.

To that effect, we revisit classic audio feature extraction techniques taking the complete work by
Mitrović et al. [17] as a reference, and extend those approaches by accounting for the latest advances
in this research field. Besides extending that review with features computed on time, frequency and
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cepstral domains, we describe feature extraction techniques computed on the wavelet and image
domains, obtained from multilinear or non-linear parameterizations, together with those derived
from specific representations such as the machine-pursuit algorithm or the Hurst parameterization.
Moreover, it is worth noting that a significant number of novel bio-inspired proposals are also described
(e.g., including an auditory model such as Mel and Gammatone filter-banks, or derived from the
computation of the autocorrelation function or the auditory image model). The described audio features
extraction techniques are classified depending on whether they have a physical or a perceptual basis.

It is worth mentioning that the increase of complexity in the field of audio parameterization,
specifically as regards the more recent perceptual and bio-inspired approaches, makes it difficult to
obtain a clear taxonomy that accommodates all the proposals found in the literature. For instance, a
different perspective that goes beyond the proposed taxonomy of audio features could be applied to
organize some of the described perceptual features.

Concretely, many perceptual features are based on obtaining a first set of features that try to
emulate the physical resonance system in the cochlea using filterbanks with specific frequency positions
and bandwidths (e.g., image domain perceptual features, perceptual filter banks-based cepstral features,
auditory saliency maps, some of the wavelet-based perceptual features, or most of the modulation-
based perceptual frequency features).

Moreover, some of these perceptually-based approaches define a second stage to obtain a set of
meaningful features that correlate in some sense with psycho-acoustical responses from the previous
spectrogram-based representation. In some cases, this second-stage features are derived from kernel-
based 2D processing (like in the wavelet-based perceptual features) while other approaches propose
more elaborate processing stages (e.g., auditory saliency maps).

Furthermore, the description of the main concepts and principles behind all reviewed feature
extraction techniques has considered the specific particularities of the three main types of audio inputs
considered: speech, music and environmental sounds. Furthermore, we have included some classic
and recent examples to illustrate the application of these techniques in several specific machine hearing
related problems, e.g., for speech: segmentation, recognition, speaker verification/identification or
language identification; for music: annotation, recommendation, genre classification, instrument
recognition, song identification, or mood classification; for environmental sound: recognition,
classification, audio-based surveillance or computational auditory scene analysis, among others.

Finally, we would like to note that this work has been written not as a thorough collection of all
existing audio features extraction techniques related to audio analysis, but as an attempt to collate
up-to-date approaches found in the literature of this dynamic field of research. Furthermore, we expect
that the new works proposing innovative approaches in machine hearing require the development of
novel audio feature extraction techniques that will extend this work.
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ACF Autocorrelation Function features
AD Amplitude Descriptor
AFTE Auditory Filter bank Temporal Envelopes
AMSC/AMSV Acoustic-Modulation Spectral Contrast/Valley
AMSFM Acoustic-Modulation Spectral Flatness Measure (AMSFM)
AMSCM Acoustic-Modulation Spectral Crest Measure (AMSCM)
ASB Audio Spectrum Basis
ASC Audio Spectrum Centroid
ASE audio Spectrum Envelope
ASF Audio Spectrum Flatness
ASP Audio Spectrum Projection
ASR Automatic Speech Recognition
ASS Audio Spectrum Spread
ATFT Adaptive Time Frequency Transform
AW Audio Waveform
AZCR Autocorrelation Zero Crossing Rate
BMM Basilar Membrane Motion
CASA Computational Auditory Scene Analysis
CBS Cyclic Beat Spectrum
CELP Code Excited Linear Prediction
CENS Chroma Energy distribution Normalized Statistics
dB Decibels
DCT Discrete Cosine Transform
DDA Distortion Discriminant Analysis
DNN Deep Neural Networks
DWCH Daubechies Wavelet Coefficient Histogram
DRR Direct-to-Reverberant Ratio
ERB Equivalent Rectangular Bandwidth
EA Early Auditory model
F0 Fundamental frequency
GC-Cept GammaChirp Cepstral coefficients
GDF Group Delay Functions
GFCC Greenwood Function Cepstral Coefficients
GHT Generalised Hough Transform
gPLP Generalized Perceptual Linear Prediction
GTCC Gammatone Cepstral Coefficients
GTW Gammatone Wavelet features
HNR Harmonic-to-Noise Ratio
HR Harmonic Ratio
HSC Harmonic Spectral Centroid
HSD Harmonic Spectral Deviation
HSS Harmonic Spectral Spread
HSV Harmonic Spectral Variation
ICA Independent Component Analysis
IHC Inner Hair Cell
KCCA Kernel Canonical Correlation Analysis
KPFOCs Kernel Power Flow Orientation Coefficients
LAT Log Attack Time
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LPC Linear Prediction Coefficient
LPCC Linear Prediction Cepstrum Coefficients
LP-ZCR Linear Prediction Zero Crossing Ratio
LS Local Spectrogram features
LSF Line Spectral Frequencies
LSP Line Spectral Pairs
MCLT Modulated Complex Lapped Transform
MFCC Mel-Frequency Cepstrum Coefficient
MFDWC Mel Frequency Discrete Wavelet Coefficients
MGDF Modified Group Delay Functions
MP Matching Pursuit
MPEG Moving Picture Experts Group
MS Modulation spectrogram
NASE Normalized Spectral Envelope
NB-ACF Narrow-Band Autocorrelation Function features
NIRA Non-intrusive Room Acoustic parameter
NRAF Noise-Robust Audio Features
OSC Octave-based Spectral Contrast
PCA Principal Component Analysis
pH Hurst parameter features
PLP Perceptual Linear Prediction
PS-ZCPA Pitch Synchronous Zero Crossing Peak Amplitudes
PWP Perceptual Wavelet Packets
RASTA-PLP Relative Spectral-perceptual Linear Prediction
RIR Room Impulse Response
RMS Root Mean Square
RSF Rate-Scale-Frequency
SAI Stabilised Auditory Image
SC Spectral Centroid
SE Spectral Envelope
SF Spectral Flux
SIF Spectrogram Image Features
SNR Signal-to-Noise Ratio
SPD Subband Power Distribution
SPSF Stereo Panning Spectrum Feature
STE Short-time Energy
STFT Short Time Fourier Transform
ULH Upper Limit of Harmonicity
WT Wavelet Transform
ZCPA Zero Crossing Peak Amplitudes
ZCR Zero Crossing Rate
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