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Abstract: A new Fourier Series Learning Controller (FSLC) for velocity control on a Permanent
Magnet Synchronous Motor (PMSM) is proposed and implemented. An analysis of the error
convergence for the FSLC is presented, and the update law for the Fourier series coefficients
is specified. The field-oriented control method is used as a basic element to implement three
different controllers for a PMSM. The performance of the FSLC is compared with two control
methods, a classical PI (Proportional Integral) controller and an artificial neural network controller.
The periodic nature of torque ripple in PMSMs is considered as a periodic disturbance, which must
be compensated by the controller. With the FSLC implementation, a substantial reduction of the
velocity ripple is obtained. Furthermore, a higher speed of learning is achieved with the FSLC in
comparison with the artificial neural network.
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1. Introduction

The permanent magnet synchronous motors market is growing due to their competitive cost,
efficiency and reliability. These motors have common applications in fast dynamic positioning
systems and machine tool spindle drives, because they have one of the highest torque-to-losses
ratios [1]. However, these motors have an important disadvantage known as “torque ripple”, which
is mainly due to the magnetization and the manufacturing of the windings. Torque ripple causes
deterioration of the speed and position trajectory, and at high speed applications, torque ripple
causes an increase of acoustic noise and additional energy losses [2]. There are methods to control
Alternate Current (AC) motors, such as Direct Torque Control (DTC) and Field-Oriented Control
(FOC), which have become powerful and popular control schemes for high performance AC drives,
but they present undesired large torque and flux ripples [3,4].

A versatile PMSM (permanent magnet synchronous motors) model for torque ripple together
with an adaptive control algorithm are an option for torque ripple minimization [5]. Knowledge
about torque ripple harmonics is used for the adaptation of the control algorithm; additionally,
a current controller is designed to achieve ripple minimization [5]. Moreover, the torque pulsations
vary periodically with rotor position, and they are reflected as velocity ripple, particularly at
low speeds. Iterative Learning Control (ILC) is intuitively an excellent choice for torque ripple
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minimization [6]. Using the periodic nature of torque ripple and based on the component’s harmonic
distortion in the time domain of the compensation signal, the Fourier series controller coefficients
can be adjusted with the aim of reducing the torque ripple in a PMSM, thus allowing for smoother
operation [7].

As the Fourier series of a time function characterizes the frequency property of the signal, the
Fourier series can be used as a tool for analyzing the convergence of the iterative learning control
rules [8]. Further, the Fourier series can be applied in other cases, especially in periodic phenomena.
Periodic disturbances affect many physical systems, and periodic reference tracking is required for
some applications [9]. Controllers in the frequency domain have several advantages. The main
advantage of designing a repetitive controller in the frequency domain is the simplicity in the
control algorithm and the real-time implementation [10]. In an invertible generalized flux/current
Switched Reluctance Machine (SRM) model based on the Fourier series expansion, the key features
are geometry and material property dependency, flexibility in the choice of Fourier terms for the
desired level of accuracy and the existence of the inverse flux and torque models [11].

Fourier series representations using trigonometric functions are most commonly used. However,
the exponential form of the Fourier series has also been applied, and it has some advantages, such as
smaller and clearer mathematical expressions, which makes it easier to extend conclusions that have
been developed in the past [12]. Fourier series also can be seen as Neural Networks (NNs) when
the series coefficients are strategically modified. These have some differences from traditional NNs.
With Fourier Series Neural Networks (FSNN), without prior knowledge of the system model, all
of the nonlinearities and uncertainties of the dynamical system are lumped together and iteratively
compensated [13].

Other applications of the FSNN have been for servo systems. Some control laws based on a
friction model, for servo systems, cannot accomplish an excellent control performance for specific
applications with high precision positioning and low velocity tracking. In order to solve this problem,
a Fourier series neural network was introduced to approximate a nonlinear, complex and unknown
function caused by the frictional phenomenon [14].

An iterative algorithm based on the Fourier series approximation generates the optimal
feedforward to force the state trajectory to converge to a stable sliding surface. Using a Fourier series
approximation of tracking error, both the magnitudes and phases of the error can be compensated.
Therefore, time delay can be easily handled. The iterative learning controller based on the Fourier
series compensates for the deterministic uncertainties, and the feedback controller is responsible for
stabilizing the system [15–18].

Without prior knowledge of the system model, the nonlinearities and uncertainties of the
dynamical system that are lumped together with no restrictions on their relationship can be
compensated online by an Adaptive Fourier Neural Network (AFNN) [19]. There is another
nonlinearity that causes extreme difficulty in system modeling. Flexibility is a potential source of
uncertainty that can degrade the control performance and even destabilize the system in some cases.
To solve this, a Fourier Neural Network (FNN)-based output feedback learning control scheme was
proposed. This learning algorithm was carried out in the Fourier space, and it can guarantee the
stability of the closed-loop system and the convergence of the tracking error [20].

Nowadays, the Fourier series in control areas have been applied for aerial robots. The use of
a frequency-domain iterative learning scheme for periodic quadrocopter flight, parameterizing the
non-causal tracking error compensation as Fourier series, was presented by [21]. Uncertainties, such
as measurement noise, inaccuracies of the approximate transfer function or model uncertainty, can be
accounted for in the learning step size, and the optimal step size for each frequency component can
be computed from the statistical properties thereof [21].

There are complex cases where the controllers require help from Fourier series expansions,
like the control of autonomous underwater vehicles (AUV). The bottom-following or seabed tracking
of AUV, traversing at constant altitudes from the sea bottom, is a big challenge for controllers.



Appl. Sci. 2016, 6, 254 3 of 16

However, using the tools of nonlinear output regulation theory combined with Fourier series
expansion and pseudo-spectral methods, it is possible to solve the bottom-following problem without
requiring knowledge in advance of the seabed profile and using only one single echo sounder to
measure the altitude from the seabed [22].

One of the most important contributions of the expansion in Fourier series is helping as a
function approximation (FA) when it is difficult to establish an accurate dynamic model. For example,
the approach of estimated Fourier coefficients can be used by a nonlinear controller, which
simultaneously achieves accurate and ripple-free torque control and minimizes copper losses in
brushless motors [23]. In piezoelectrically-actuated systems, this approach can estimate the system
dynamics and uncertainties on-line, and no prior knowledge of system dynamics is required [24,25].
An adaptive iterative learning controller can be designed for nonlinear systems with unknown
time-varying parameters to realize the non-uniform trajectory tracking perfectly when the time
varying parameters are expanded into Fourier series with bounded remainder terms [26].

Moreover, the problem of modeling and tracking control for a high speed ball screw drive,
which includes time-varying parametric uncertainties and disturbances, can be solved when a
function approximation technique based on Fourier series expansion is applied to estimate the total
uncertainties containing inertia uncertainties, stiffness uncertainties and external disturbances [27].

The Fourier series have been complementary tools for conventional controllers, such as
Proportional Integral Derivative (PID). However, the Fourier series convergence depends on the
conventional controller stability. Furthermore, to obtain the coefficients of the Fourier series, the
continuous Fourier transform has been used, which depends on the period of the function, and it is
normally unknown.

In this paper, it is demonstrated that Fourier series, with a finite number of terms and the correct
update law for the coefficients, can represent the adequate control signal to stabilize a nonlinear
system without the help of other controllers. In this way, Fourier series can be used as a control
law even though the reference and/or error are not periodic. Besides, it is verified for periodic
disturbances, such as torque ripple in PMSMs, that Fourier series can eliminate these disturbances
by providing the correct harmonics with a suitable amplitude.

2. Model Description and Problem Formulation

Some causes of torque ripple can be explained from the PMSM mathematical model. In order
to understand the periodic nature of torque ripple in PMSMs, this section is used to review the
mathematical model and the additional considerations studied by [7].

The relationship between the three currents of a PMSM iiiabcs, the mutual and self-inductances LLLs

and the flux linkagesΨΨΨabcs are given by:

ΨΨΨabcs = LLLsiiiabcs +ΨΨΨm (1)

In matrix form:  Ψas

Ψbs
Ψcs

 =

 Lasas Lasbs Lascs

Lbsas Lbsbs Lbscs
Lcsas Lcsbs Lcscs


 ias

ibs
ics

+

 Ψasm

Ψbsm
Ψcsm

 (2)

With the flux linkages, the voltages are defined in the stator windings uuuabcs related to the
windings resistances rrrs and the flux linkages:

uuuabcs = rrrsiiiabcs +
d ΨΨΨabcs

dt
(3)
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where rrrs is a diagonal matrix with elements rs and uuuabcs = [uas, ubs, ucs]T . Assuming that the stator
windings are displaced by 120◦ and that the flux linkages ΨΨΨm are periodic functions of the electric
position θr with magnitude Ψm established by the permanent magnet, it is obtained:

ΨΨΨm =

 Ψasm

Ψbsm
Ψcsm

 =

 Ψmsin(θr)

Ψmsin(θr − 2
3π)

Ψmsin(θr +
2
3π)

 (4)

From Equations (3) and (1), assuming LLLs is constant:

uuuabcs = rrrsiiiabcs + LLLs
d iiiabcs

dt
+

d ΨΨΨm

dt
(5)

Moreover, to find the electromagnetic torque developed Te, the co-energy Wc is defined:

Wc =
1
2

iiiT
abcsLLLsiiiabcs + iiiT

abcsΨΨΨm + WPM (6)

where WPM is the permanent magnet energy. If P are the number of poles of PMSM, the
electromagnetic torque developed is:

Te =
P
2

∂Wc

∂θr
=

PΨm

2

(
iascos(θr) + ibscos(θr −

2
3
π) + icscos(θr +

2
3
π)

)
(7)

In order to understand torque ripple in PMSM, some assumptions are reconsidered from the
previous model (7); for a non-ideal PMSM, the flux linkages are not perfectly sinusoidal, and the
electromotive forces eeeabcs are non-cosine functions, although they are periodic functions with a peak
value Ep:

eeeabcs =
d ΨΨΨm

dt
= Epωr

 fas(θr)

fbs(θr − 2
3π)

fcs(θr +
2
3π)

 (8)

whereωr =
dθr
dt is the angular velocity and fas(θr), fbs(θr) and fcs(θr) are periodic functions with the

same shape as eas, ebs and ecs with a maximum magnitude ±1.
Since electromagnetic torque is given by:

Te = [easias + ebsibs + ecsics]
1
ωr

(9)

From Equation (8):

Te = Ep[ fas(θr)ias + fbs(θr −
2
3
π)ibs + fcs(θr +

2
3
π)ics] (10)

Then, electromagnetic torque is periodic with θr and is still independent of frequency. However,
to produce a constant electromagnetic torque, current waveforms should be calculated.

Moreover, when winding inductances are non-constant, the electromotive forces also are
modified. From Equation (1):

eeeabcs =
d ΨΨΨabcs

dt
=

d
dt
[LLLsiiiabcs +ΨΨΨm] (11)

eeeabcs = LLLs
d iiiabcs

dt
+ iiiabcs

dLLLs

dt
+

d ΨΨΨm

dt
(12)

In Equation (12), it can be seen that torque ripple is produced due to inductance angular
variations. The windings inductances can be different in some time instants, and electromagnetic
force varies [28].
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From macroscopic viewpoint, the torque produced in a PMSM is given by:

Te =
1
2

i2
dL
dθ
− 1

2N2Ψ
2
m

dR
dθ

+ i
dΨm

dθ
(13)

Equation (13) represents the mutual torque that is used to make the motor shaft turn. With
this representation of electromagnetic torque, the relation of developed torque and the variations
of the angular displacement that can affect resistances and inductances can be seen. These factors
among others produce torque ripple in PMSMs. In this examples, it is possible to see the dependence
of torque ripple and the angular position θr. Furthermore, when PMSM is controlled, the angular
position is periodic, as well as torque ripple, which can be seen as a natural periodic disturbance
in PMSMs.

3. Learning Controller Design Using Fourier Series

In this section, the Fourier series learning controller is presented for linear and nonlinear systems.
An update law for their coefficients, which assures the system stabilization without the help of other
controllers, is shown. The harmonics of the error dynamics are used by the controller, and they are
obtained from the discrete Fourier transform (DFT). Thus, the error dynamics does not need to be a
periodic function.

A function, that represent the dynamics error of the system, is considered to design the
learning controller:

s(t) = e(t) + ė(t) (14)

where e(t) is the error of the system. For this case, e(t) = ωd−ω is the difference between the desired
velocity and the actual velocity of the PMSM. The controller is designed to decrease the function
represented by Equation (14).

Each sampling period Ts is taking a sample of s(t), and data windows with N terms are formed
as [wk

0, wk
1, ..., wk

N−1]. The sample sk in the k-th instant is assigned to wk
N−1, and other values are shifted

to the left. Namely, wk
N−1 = sk, wk

N−2 = sk−1, wk
N−3 = sk−2, ... , wk

0 = sk−(N−1). Each data
window wk

j has a sequence of discrete numbers that can be transformed to the frequency domain by
the DFT as follows:

Xk
n =

N−1

∑
j=0

wk
j e−i 2πnj

N , n = 0, 1, ..., N − 1 (15)

Note that a data window wk
j with N real elements is enough to calculate the DFT from

Equation (15). Although the elements of the data window are random numbers, the DFT can be
calculated. Then, the signal s(t) does not need to be periodic. Furthermore, using the Euler formula
in Equation (15), the real and imaginary parts of Xk

n are:

zk
n = Re{Xk

n} =
N−1

∑
j=0

wk
j cos

(
2πnj

N

)
, n = 0, 1, ..., N − 1 (16)

yk
n = Im{Xk

n} = −
N−1

∑
j=0

wk
j sin

(
2πnj

N

)
, n = 0, 1, ..., N − 1 (17)

Then, the coefficients to return from the frequency domain to the time domain in the k-th instant
are calculated as follow:

pk
0 =

zk
0

N
, qk

0 = 0 (18)

pk
N
2
=

zk
N
2

N
, qk

N
2
= 0 (19)
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pk
n =

2zk
n

N
, n = 1, ...,

N
2
− 1 (20)

qk
n = −2yk

n
N

, n = 1, ...,
N
2
− 1 (21)

From the Inverse Discrete Fourier Transform (IDFT), taking the values of Equation (15) and
considering N as an even number, the representation in Fourier series for samples in the k-th window
wk

j is:

wk
j =

N/2

∑
n=0

(
pk

ncos
(

2πnj
N

)
+ qk

nsin
(

2πnj
N

))
, j = 0, 1, ..., N − 1 (22)

Equation (22) means that minimizing the coefficients pk
n and qk

n, it is possible to decrease wk
j . The

controller proposed is a Fourier series with adjustable coefficients, where each coefficient is modified
to contribute to the pk

n and qk
n decrease in each sample period. Equation (22) is the Fourier series

representation of the dynamics error. The new controller uses the coefficients of this representation,
but each coefficient is modified by a gain and adding a special function, which can be seen intuitively
as an integral part. Finally, in the k-th instant, the controller output is calculated as follows:

u(k) =
N/2

∑
n=0

(
ak

ncos
(

2πn(N − 1)
N

)
+ bk

nsin
(

2πn(N − 1)
N

))
(23)

where:
ak

n = αn pk
n + âk

n, n = 0, 1, ...,
N
2

(24)

bk
n = αnqk

n + b̂k
n, n = 0, 1, ...,

N
2

(25)

where αn is a gain used to obtain a proportion of the harmonics of the error dynamics. The coefficients
âk

n and b̂k
n will be provided by a learning function, and these coefficients are designed to assure that pk

n
and qk

n decrease. However, the main controller coefficients ak
n and bk

n must keep a value different from
zero to produce a control signal for the system. Then, coefficients âk

n and b̂k
n perform the integral part

equivalent in a PID controller. In the frequency domain, the integral part must adjust each coefficient
of the main controller, until they converge to the correct values. Using the update law proposed
by [16], coefficients âk

n and b̂k
n are calculated as follows:

âk
n = γn

k−1

∑
j=0

pj
n, n = 0, 1, ...,

N
2

(26)

b̂k
n = γn

k−1

∑
j=0

qj
n, n = 0, 1, ...,

N
2

(27)

where γn is a learning gain for each harmonic and should be selected according to some conditions
that will be shown in the next section to assure the convergence of pk

n and qk
n. Note that the

convergence of coefficients pk
n and qk

n to zero means that the coefficients âk
n and b̂k

n also converge
to some value.

Note that control law (23) was obtained through the IDFT when the harmonics of the s(t) were
modified. However, from IDFT, in each sample period, a data window with N values is obtained.
The control output is one value of that window. Due to the arrangement of data window wk

j , the
control law in the k-th instant is j = N − 1, and for this reason, the control law given by (23) is
calculated only with j = N − 1; other values of this window are not necessary.
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Before the control method begins, the initial conditions for window wk
j and gains αn and γn are

given. When the experiment starts, a sample of s(t) is taken, and wk
j is updated. Later, the coefficients

pk
n and qk

n are calculated through Equations (18), (19), (20) and (21) followed by the coefficients of
the controller ak

n and bk
n with Equations (24) and (25). Finally, the control law is calculated from

Equation (23), and the algorithm is repeated by taking another sample of s(t). In each cycle of the
algorithm, a new data window wk

j is obtained, and a new DFT is calculated. Then, it is necessary to
restart the summations of the DFT. However, the summations of the learning part are not restarted,
because the coefficients âk

n and b̂k
n have the information accumulated during the experiment. In this

way, the controller has the information of the error dynamics, and also, it keeps the information of
the learning part.

4. Error Convergence Conditions of the Closed-Loop System

The stability of the Fourier series learning controller is shown in this section. The analysis of [16]
is extended for this new controller when the Fourier series is the unique controller, and it is not
possible to assure that the error dynamics is a periodic function.

First, the change of controller harmonics ∆ak
n and ∆bk

n is analyzed to find a relation between
the controller gains and the change in the harmonics of s(t). This analysis is important due to the
output of a nonlinear system contains, in general, higher harmonics in addition to the fundamental
harmonic component [16]. Because the system harmonics are presented in the error signal s(t), the
main objective of controller is to reduce the harmonics of s(t).

Then, the change of the n-th controller harmonic is represented as:

∆ak
n = ak+1

n − ak
n (28)

where ak+1
n is the next value of the n-th harmonic from the k-th instant. Note that the mathematical

procedure in this section is also true for bk
n, qk

n and b̂k
n.

Additionally, the change in the controller harmonic of s(t) is calculated as follows:

∆pk
n = pk+1

n − pk
n (29)

where pk+1
n is the next magnitude of the n-th error harmonic from the k-th instant. To determine the

stability and conditions for the error convergence of the closed-loop system, the following proposition
is described.

Proposition 1. When the controller (23) is applied to a linear or nonlinear system from which the function (14)
can be obtained and the controller coefficients are updated according to Equations (24)–(27), the sufficient

conditions for the error convergence are: αn >
∣∣∣ ∆ak

n
∆pk

n

∣∣∣ and γn <
∣∣∣ ∆ak

n
∆pk

n
− αn

∣∣∣ ∀ n, k ∈ Z+.

Proof. The change of controller harmonics is calculated from Equations (24) and (25) as:

∆ak
n = αn∆pk

n + ∆âk
n (30)

where, applying the definition of the change used in Equations (28) and (29), the term ∆âk
n is:

∆âk
n = γn pk

n (31)

Substituting Equation (31) into Equation (30), the next expressions can be obtained as:

∆ak
n = αn∆pk

n + γn pk
n (32)
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∆ak
n

∆pk
n
= αn + γn

pk
n

∆pk
n

(33)

∆ak
n

∆pk
n
= αn + γn

pk
n

pk+1
n − pk

n
(34)

∆ak
n

∆pk
n
= αn + γn

1
pk+1

n
pk

n
− 1

(35)

pk+1
n
pk

n
− 1 =

γn
∆ak

n
∆pk

n
− αn

(36)

pk+1
n
pk

n
=

γn
∆ak

n
∆pk

n
− αn

+ 1 (37)

Taking the right side of Equation (37), the following inequality is possible under certain conditions:

− 1 <
γn

∆ak
n

∆pk
n
− αn

+ 1 < 1 (38)

− 2 <
γn

∆ak
n

∆pk
n
− αn

< 0 (39)

If γn > 0, then:

αn >

∣∣∣∣∣∆ak
n

∆pk
n

∣∣∣∣∣ (40)

Furthermore, the other condition that assures the inequality (39) is:

γn <

∣∣∣∣∣∆ak
n

∆pk
n
− αn

∣∣∣∣∣ (41)

With Conditions (40) and (41), the inequality (38) is true, and this means that:

− 1 <
pk+1

n
pk

n
< 1 (42)

In other words: ∣∣∣∣∣ pk+1
n
pk

n

∣∣∣∣∣ < β < 1 (43)

where {β ∈ R | 0 < β < 1}. Then, while k increases, in each new sample taken during the
experiment, the coefficients pk

n and qk
d decrease according to the next sequence:∣∣∣pk

n

∣∣∣ < β
∣∣∣pk−1

n

∣∣∣ < β2
∣∣∣pk−2

n

∣∣∣ < · · · < βk
∣∣∣p0

n

∣∣∣ (44)

If the coefficients of the Fourier representation of s(t) are diminished asymptotically, time
domain s(t) is being minimized, namely:

s(t) = e(t) + ė(t) = 0 (45)

Thus, the above equation represents a stable system, and e(t) will tend to zero as time increases.
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Note that the only conditions for stability are (40) and (41). However, if αn is chosen so large,
the coefficients ak

n and bk
n will also be large, but the coefficients pk

n and qk
n may or may not be large;

it depends of the system and the closed-loop system, which would be unstable if the condition (40) is
not satisfied.

The learning gain γn is upper bounded by condition (41) and lower bounded by zero. However,
to make γn very small means that the learning is very slow and the system control is only αn

dependent. Hence, finding a correct value for αn can be more difficult.
It is convenient to choose an αn gain not so large and a γn not so small. The magnitudes depend

only on the system. Furthermore, note that the gains αn and γn can be chosen independently for each
harmonic. Thus, it is useful to modify the DC components, α0 and γ0, independently of the other
harmonics. These gains can control a constant energy injected to the system unlike other harmonics,
which vary based on the corresponding frequency.

The number of harmonics for the controller depends on the desired response; more harmonics
allow an accurate representation of the control signal. However, the number of harmonics is limited
by the resonant frequency of the system. Note that a physical system only has a finite bandwidth,
and the lower frequency components generally dominate the dynamics error [16]. Furthermore, if a
big number of harmonics is chosen, data window wk

j would have more terms, which requires more
memory for the processing system, and it takes more time to calculate the output control.

The sample period is an important factor to be considered. If the sample period is big, the
function s(t) is not correctly represented, and the controller can not assure the stability of the
closed-loop system. Note that the DFT can transform any array of numbers, even if they are random
numbers, then the Fourier representation of the window wk

j always exist. Then, the sample period
affects only the correct representation of s(t).

The controller only considers the measurement of the system output compared to the desired
output to obtain the output error. Afterward, the function s(t) and the controller output are
calculated. Therefore, the controller does not use the system model, namely the system is decentralized.

5. Experimental Implementation

The field-oriented control will be used to implement three different velocity controllers, a Fourier
Series Learning Controller (FSLC), a traditional PI controller of the FOC and an Artificial Neural
Network (ANN). The performance of the three controllers will be compared. In Figure 1, the block
diagram of the FOC for the velocity control of a PMSM with three different master controllers
is shown.

Figure 1. Block diagram of the FOC (Field Oriented Control) for the velocity control of a
PMSM (Permanent Magnet Synchronous Motor) with three different master controllers, the FSLC
(Fourier Series Learning Controller), a traditional PI (Proportional Integral) and an ANN (Artificial
Neural Network).
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The reference value of the flux control IdRe f is zero for PMSMs, as is shown in the block
diagram [29]. To estimate the angular velocity of PMSM ϑ, a filter of position proposed by [30] is
used, which can reduce the noise on the velocity signal compared with the analytical derivative of
the angular position. The gain of the filter was A = 5.0.

The proposed controller is compared with a classical PI control and with an ANN. The
architecture and all details of the ANN are those proposed by [31]. We use three neurons in the
intermediate layer and three inputs: ek, ek−1 and ek−2, which are the error and error in two previous
instants and one neuron for the output layer.

The controllers will be tested to control the velocity of the EMJ-04APB22 PMSM, which has
four poles and the following parameters: 200 (V), 2.7 (A), 400 (W) maximum power, 3000 (rpm)
rated speed, 4.7 (ω) stator resistance, 0.014 (H) stator inductance and 2500 (PPR) incremental
encoder attached.

Figure 2 shows the interconnection diagram of the control system. The control algorithms
were programed on a computer Aspire V5-561-7455 (acer, New Taipei, Xizhi, Taiwan). The control
output values, calculated by the controller, are sent to an acquisition card, which is based on a
microcontroller dsPIC33FJ12MC202 (MICROCHIP, Chandler, AZ, USA). For the communication of
the microcontroller with the computer, a device FT232RL (FTDI, Seaward Place, Glasgow, UK),
was used. The acquisition card has three tasks, to acquire data from the PMSM encoder (Anaheim
Automation, Anaheim, CA, USA) and the current sensors, to send data to the computer and to apply
three PWM signals to the power stage. The currents of each phase of PMSM are measured from the
ACS712 sensors (Allegro, Worcester, MA, USA). The power stage is based on H bridges LMD18200
(Texas Instruments, Dallas, TX, USA), which generate the AC voltages for each phase of the PMSM.

Figure 2. Interconnections diagram of the control system.



Appl. Sci. 2016, 6, 254 11 of 16

6. Results and Discussion

The reference velocity for controllers and the master PI gains tested in the experimentation, were
the lowest velocity and the same gains studied by [32]. In Table 1 are shown the gains and parameters
of the control system. Note that the two slave PI controllers for currents Iq and Id have the same
proportional and integral gains.

Table 1. Gains and parameters of the control system.

Description Parameter Value

Proportional gain of the slave PI controllers for currents Iq and Id Kps 1.0
Integral gain of the slave PI controllers for currents Iq and Id Kis 10.0

Proportional gain of the FSLC (Fourier Series Learning Controller) αn 0.037
Learning gain of the FSLC γn 0.03

Number of terms of the FSLC N 4
Proportional gain of the master PI (Proportional Integral) controller Kpm 0.0477

Integral gain of the master PI controller Kim 2.38
Learning coefficient of the ANN (Artificial Neural Network) η 4.9

Number of neurons in the intermediate layer of the ANN Nn 3
Gain of the position filter A 5.0

Sample period (s) Ts 0.005
Velocity reference (rad/s) ωRe f 0.3142

The learning coefficient η and the number of neurons in the intermediate layer Nn for the ANN
were chosen by observing the dynamics performance of the closed loop system. In the same way, the
number of terms N and the gains αn and γn of the FSLC were chosen caring the stability conditions
(40) and (41) and observing the dynamics performance of the control system. Note that, if γn is
bigger than αn, the stability conditions are not satisfied, and the stability cannot be assured; which is
an example of the wrong selection of gains.

First, the angular position θ of the PMSM is shown in order to observe the different performances
of the three controllers. A constant velocity must produce a straight line of the angular position from
zero to 2π. Figure 3 shows the behavior of controllers when the velocity of PMSM is controlled.
The PI controller cannot reduce the torque ripple, as can be observed in Figure 3b, where a distortion
of angular position produced by the torque ripple is shown. The ANN reduces the torque ripple
after a learning time of 18.0 s approximately, as is shown in Figure 3c. However, the Fourier series
learning controller reduce the torque ripple faster than the ANN in 2.7 s approximately, as is shown
in Figure 3a. Additionally, a change of load is applied after 50 s. A mass of 1.2 kg is loaded by the
PMSM. According to the rotor size of the motor, the torque generated by this mass is 0.0824 Nm.
It is observed that the three controllers can compensate the constant disturbance; however, the torque
ripple continues affecting the PI as the velocity controller.

Figure 4 shows the estimation of the velocities ϑ of the closed-loop systems for the three
controllers. In Figure 4b is shown the estimation of velocity of the closed-loop system with a PI as
the velocity controller. It can be observed that the torque ripple affects the velocity, and the PI cannot
compensate it. In Figure 4c is shown the estimation of velocity of the closed-loop system with the
ANN as the velocity controller. It can be observed that the speed varies around the desired velocity
while the ANN learns, but only after 18.0 s, approximately, the torque ripple is reduced. In Figure 4a
is shown the estimation of velocity of the closed-loop system with the FSLC as the velocity controller.
In the first 2.7 s, during the learning process, a peak of velocity occurs, which is compensated in 0.16 s,
approximately, and later, the velocity ripple is reduced. When the disturbance is applied from 50 s,
the three controllers can compensate it, in 1.14 s, approximately. After the disturbance, the FSLC
and the PI controllers are not affected. However, in Figure 4c, it is observed that the ANN is affected
before 50 s; namely, the variations of the velocity are bigger than the variations before the disturbance.
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Figure 3. Angular positions when the velocity is controlled to 0.3142 rad/s. (a) FSLC as the velocity
controller; (b) PI as the velocity controller; and (c) ANN as the velocity controller.

Figure 4. Estimation of the angular velocity when it is controlled to 0.3142 rad/s. (a) FSLC as the
velocity controller; (b) PI as the velocity controller; and (c) ANN as the velocity controller.

Figure 5 shows the control signals IqRe f of controllers and the measured currents Iq of the
closed-loop systems. Figure 5b Shows the behavior of the PI controller. It can be observed that the
control signal and the current measured Iq are apparently similar, and there are some small variations.
Figure 5c shows the behavior of the ANN controller. In the learning stage, there are large variations
of the control signal and also of the measured current. After the learning stage, the variations are
reduced, and the control signal is similar to the measured current, which corresponds to the moment
of the reduction of the velocity ripple. Figure 5a shows the behavior of the Fourier series learning
controller. In the learning stage, the control signal increases to 5.5 A, and it is saturated; however, the
measured current only reaches 3.5 A. Later, the signal control decreases to −5.5 A, but the measured
current only decrease to −1.7 A. After the learning stage finishes, the measured current Iq tries to
follow the control signal IqRe f , and the velocity ripple is reduced. Later, when the torque disturbance
is applied from 50 s, the currents are incremented up to 0.5 A in order for the change of load to
be compensated.
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Figure 5. Iq currents of the closed-loop systems when the velocity is controlled to 0.3142 rad/s. (a)
FSLC as the velocity controller; (b) PI as the velocity controller and (c) ANN as the velocity controller.

Figure 6 shows the errors of the control systems obtained by each controller. In Figure 6b,
it is observed that the PI controller cannot compensate the torque ripple, and the error varies to
−1.2 rad/s. Figure 6c shows the error obtained when the ANN is the velocity controller. During
the first 18.0 s, there are variations of the error up to −0.4 rad/s, but after the learning time, the error
oscillates around 0 rad/s, between−0.07 and 0.8 rad/s. In Figure 6a, the error obtained with the FSLC
as the velocity controller is shown. During the learning time, the error reaches −2.5 rad/s; however,
after this time, the error converges, and it remains near zero. Thus, it is experimentally demonstrated
that the FSLC achieves the error convergence of a nonlinear system. When the controllers are under a
constant disturbance of torque after 50 s, it is shown that this disturbance only affects the ANN as the
controller, since from the disturbance, the error varies up to −0.2 rad/s. However, in the case of the
FSLC as the controller the error continues around zero, and the variations are maintained between
−0.05 and 0.05 rad/s. Then, it is experimentally demonstrated that the FSLC can add the integral
part in a control system.

Figure 6. Errors of the control systems when the velocity is controlled to 0.3142 rad/s. (a) FSLC as the
velocity controller; (b) PI as the velocity controller; and (c) ANN as the velocity controller.
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7. Conclusions

A new Fourier series learning controller was proposed and applied in a nonlinear system.
The error convergence of the Fourier series learning controller was analyzed, and two convergence
conditions were obtained. The new controller was used for the velocity control on a PMSM,
which reduces the torque ripple by 70% with respect to the results obtained with a PI as the
velocity controller.

The performance of the Fourier series learning controller was compared with the performance
of other two controllers, the conventional PI controller and an artificial neural network. There were
two comparisons against a controller that cannot compensate the torque ripple, and another that
can reduce this periodic disturbance. However, it is a valuable study to compare the performance
of the FSLC with other techniques for reducing the torque ripple, and this is proposed for future
work. In this case, a learning time of 2.7 seconds was required for the FSLC, whereas for the
ANN, 18.0 seconds were required. The computational cost of the new FSLC is bigger than the
conventional PI controller, since the FSLC requires more code lines and programming loops than the
PI. However, the PI controller cannot reduce the torque ripple as the FSLC or the ANN. Nevertheless,
the computational cost of the FSLC is considerably less than the ANN, and the results show that the
FSLC can learn faster than the ANN. Besides, for the FSLC, the processing time and the computational
cost could be reduced if other mathematical tools are applied instead of the DFT as the FFT, which is
a good proposal for future work.

The results show that the FSLC is a good alternative to be applied as the controller in the control
of nonlinear systems, including the compensation of periodic disturbances, such as torque ripple
in PMSMs. The FSLC designed is a model-free controller, and it only requires information of the
error dynamics.
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Abbreviations

The following abbreviations are used in this manuscript:

FSLC: Fourier Series Learning Controller
PMSM: Permanent Magnet Synchronous Motor
FOC: Field Oriented Control
DTC: Direct Torque Control
ILC: Iterative Learning Control
SRM: Switched Reluctance Machine
NN: Neural Network
FSNN: Fourier Series Neural Network
AFNN: Adaptive Fourier Neural Network
FNN: Fourier Neural Network
AUV: Autonomous Underwater Vehicles
FA: Function Approximation
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DFT: Discrete Fourier Transform
IDFT: Inverse Discrete Fourier Transform
ANN: Artificial Neural Network

References

1. Mattavelli, P.; Tubiana, L.; Zigliotto, M. Torque-ripple reduction in PM synchronous motor drives using
repetitive current control. IEEE Trans. Power Electron. 2005, 20, 1423–1431.

2. Štumberger, B.; Štumberger, G.; Hadžiselimović, M.; Zagradišnik, I. Torque ripple reduction in
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