friried applied
o sciences

Article

Fault Localization Method by Partitioning Memory
Using Memory Map and the Stack for Automotive
ECU Software Testing

Kwanhyo Kim, Ki-Yong Choi and Jung-Won Lee *

Department of Electrical and Computer Engineering, Ajou University, Suwon 16499, Korea;
khyo0317@gmail.com (K.K.); ki815kaisian@gmail.com (K.-Y.C.)
* Correspondence: jungwony@ajou.ac.kr; Tel.: +82-31-219-1813

Academic Editor: Antonio Maffucci
Received: 2 July 2016; Accepted: 9 September 2016; Published: 19 September 2016

Abstract: Recently, the usage of the automotive Electronic Control Unit (ECU) and its software
in cars is increasing. Therefore, as the functional complexity of such software increases, so does
the likelihood of software-related faults. Therefore, it is important to ensure the reliability of ECU
software in order to ensure automobile safety. For this reason, systematic testing methods are
required that can guarantee software quality. However, it is difficult to locate a fault during testing
with the current ECU development system because a tester performs the black-box testing using
a Hardware-in-the-Loop (HiL) simulator. Consequently, developers consume a large amount of
money and time for debugging because they perform debugging without any information about the
location of the fault. In this paper, we propose a method for localizing the fault utilizing memory
information during black-box testing. This is likely to be of use to developers who debug automotive
software. In order to observe whether symbols stored in the memory have been updated, the memory
is partitioned by a memory map and the stack, thus the fault candidate region is reduced. A memory
map method has the advantage of being able to finely partition the memory, and the stack method can
partition the memory without a memory map. We validated these methods by applying these to HiL
testing of the ECU for a body control system. The preliminary results indicate that a memory map
and the stack reduce the possible fault locations to 22% and 19% of the updated memory, respectively.

Keywords: Electronic Control Unit (ECU); automotive software; fault localization; embedded testing;
memory map; Hardware in the Loop (HiL); memory update

1. Introduction

Approximately 90% of all recent car innovations are based on the automotive Electronic Control
Unit (ECU) and its software. These include active/passive safety systems (e.g., airbags and collision
avoidance), driver assistance systems (e.g., lane-departure warning and night vision), and infotainment
systems (e.g., telephone, internet, and TV) [1]. However, as the number of ECUs in a car increases,
the functional complexity of their software also increases. Accordingly, the likelihood of faults due to
systematic ECU problems is increasing [2]. A car malfunction caused by a fault of an automotive ECU
can threaten driver safety as well as create potential legal difficulties. In order to solve such problems,
systematic testing/debugging techniques are required that ensure software reliability while taking its
complexity into account [3].

Generally, finding the location of a fault requires significant amounts of time and effort [4].
However, the fault-location information available to developers of automotive software is currently too
restrictive. Therefore, the problem is that it takes a large amount of effort and time to localize the faults.
One way to solve this problem is to provide the developer with fault-location information during

Appl. Sci. 2016, 6, 266; d0i:10.3390/app6090266 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/journal/applsci

Appl. Sci. 2016, 6, 266 2 0f 20

testing. In this paper, we propose a method whereby a tester of an automotive ECU can generate
memory-location information about a potential fault during testing.

The fundamental cause of this problem is original equipment manufacturer (OEM) systems in
the automotive industry, as shown schematically in Figure 1. An OEM system means a series of
steps in the process where developers and a tester perform development, testing, and debugging in
independent environments. Firstly, an OEM designer provides the manufacturer’s requirements to the
developers working for each supplier. Each developer then develops an independent ECU based on
these requirements, performs unit testing on it, and then delivers it to a tester in the OEM company.
This tester receives the software in a binary form with the ECU in order to protect the corporate
intellectual property (IP) rights, whereupon they perform black-box testing of each supplier’s ECU
and send the test results back to each relevant developer. Finally, each developer performs debugging
based on these test results [5].

/ OEM Company\ \
(‘Supplier Company #2
&m Requirement l Requirement £@

. #
Developerl#Ol Designer Develolper 02

[Supplier Company #q

Develop ECU/SW ‘ Develop ECU/SW
O Tester

U/SW #02 I

1
Debugging _ Debugging |!
Based on Test-result #01 BIaCkHI_DLOX. Teslt 9 T(est-result #02 Based on i
- (only pass/fail Using HIL simu only pass/fail _ 1

fest result ___withle_st_ssrmt__________________jxf_itblzst_ssftﬂ_l__ test-result =/

Figure 1. The process of developing automotive Electronic Control Unit (ECU) software.

Unfortunately, there is relatively little information that is exchangeable between the OEM company
and supplier companies because development and testing are performed in independent environments.
The tester may find it difficult to locate the cause of a fault because he/she receives the software in
a binary form (not as source code) because of IP protection. Therefore, developers find it difficult to
locate faults because they do not receive location information about the faults that occurred during
testing. This difficulty is shown by the dotted line of Figure 1. A tester performs black-box testing using
an HiL simulator to assess whether the ECU functions correctly in accordance with the requirements [6].
Accordingly, it is impossible to find the source-code location of faults that occur during testing.
Consequently, developers receive a test script and associated results that do not contain fault-location
information. As shown in Figure 2a, a developer equipped with the source code can use it for
purposes such as locating a fault, obtaining its description, establishing the list of called functions, and
determining the pertinent value of each variable. However, as shown in Figure 2b, the test results
currently give only information such as the name of the test script, the time of the test, the number of
test cases, and pass/fail information. Therefore, developers who debug automotive software are at
a disadvantage compared to those who perform debugging with the source code. Moreover, testers
experience difficulties when debugging because they perform integration testing on independently
developed ECUs with various types of interfaces.

Appl. Sci. 2016, 6, 266 3 0f 20

1. Fault Description Test Result
#include <iostream>
i = 1. TS RoomLamy
int main(void) 0xC0000094: Integer division by zero Test Script #1 - FAIL = P
{ Test Seript ID 1
int l‘malAfo 2. Call Stack 0: PO‘_Ne"'Wnte(lo); Test Script Name TS_RoomLamp
int localB=5; 1: wait(2000);
testA exelmain(void) 3. i ’ Start Date 2015-03-17 12:00:30
“fault” int localC=localA-localB; h :
: [testA exe!_tmainCRTStartu . 30-
=) int localD=localA/localC; wzm_:ﬁ!;m;é‘mmpgo 4: ACAN.ACT_ON(); Finish Date 2015-03-17 18:30:25
5: wait(1000); # of Line 60,000
locald |5 t s Total 2,500
} mﬁ U :: Test Case |Pass 2,000(80%)
localD | -858993460 int Fail 500(20%)

(@ ®)

Figure 2. Debugging information with/without source code. (a) Debugging information with source
code; (b) debugging information without source code.

The memory information can be used in such an environment to provide fault-location
information to developers [7]. This is because memory information is of the same type for each
ECU, regardless of its interface. For example, a binary file is executed independently in each ECU
in the associated environment that was developed based on AUTOSAR (AUTomotive Open System
ARchitecture) or multiple ECUs. Therefore, a trace of the software that is independently executed
with the platform is left in the ECU memory. Accordingly, this information can be used for each ECU
in the same way. Also, memory use is independent between modules because each ECU developer
determines the range of memory use before developing a module.

Meanwhile, the fundamental reason that the memory can be used for fault localization is the Def
and Use (DU) pair of variables in the source code, which leave “footprints” in the memory during
program execution. For example, in the statement “A = B”, which consists of variables A and B, A is
defined as “Def” and B is defined as “Use” [8]. The memory update occurs in the memory address of
the Def variable by combining memory interface commands such as LOAD, STORE, and MOVE when
this statement occurs during program execution [9].

Thus, the most intuitive way to provide the location information of the fault to the developer
using the memory update is to provide the pair of the updated addresses for fail test and fault
time. By utilizing this information, developers are able to localize faults targeting the list of updated
addresses at a particular time [10]. However, a disadvantage of this method is that it requires significant
computational time and expense to localize a fault within an excess of memory updates. To overcome
this, a method is required that can reduce the extent of potential fault locations by using the memory
update information. In this paper, we propose such a method for reducing both time and expense,
whose target is the data section of the memory.

Fault localization can be divided into two parts. First, suspicious code is identified that may
contain a fault. Next, the developer determines whether it actually contains a fault [11]. In this paper,
fault localization refers to the task of finding candidates for faulty symbols (symbol name and address)
by tracking the memory based on the suit of failed tests (binary source file, test case, and memory)
from the HiL simulation.

In order to reduce the extent of potential fault locations in the data section, we partition it using
a memory map and the stack. Unlike a general memory map, the one used in automotive software
includes information about the memory range to be used for each object file. This makes it possible
to use the memory map to divide the data sections into object-file units. It is also possible to use the
stack to divide the data section by predicting the information in a memory map. This is because the
stack works by being divided into each functional unit while the automotive software is running.
It is then possible to divide the data section by subjecting it to the unit information defined by the
stack. The stack information is useful for dividing the data section because it is possible to apply
the call relationships to the partitioned stack section, in much the same way as the call relationships
that exist between functions in the source code. Meanwhile, there is the constraint that a developer
has to transmit a memory map to a tester in the method by memory map. Therefore, we propose
memory-map and stack methods that use only the memory information.

Appl. Sci. 2016, 6, 266 4 0of 20

In this way, we adopt the standpoint of the tester when locating faults that occurred during
the integration test. The tester executes the HiL test in a black-box environment and acquires the
information related to a fault by utilizing the memory update information. However, the size of this
information is considerable, and it is therefore possible to waste a significant amount of resources
and time when localizing the fault. Hence, it is necessary to reduce the amount of target information.
We partition the memory by using the memory map and the stack. We also reduce the amount of
memory update information by finding those memory regions with high fault suspiciousness in
the partitioned memory. The fault suspiciousness and reduced memory update information can
be provided to developers; therefore, it is possible to reduce the time and resources required for
debugging. In other words, it is possible to help the developer to perform debugging by adopting the
standpoint of the tester. The contents of this paper are as follows. In Section 2, we analyze previous
studies related to the method proposed here. In Section 3, we describe the preparation for applying the
fault localization method. In Section 4, we explain the memory-map and stack methods for partitioning
the memory and calculating the fault suspiciousness of each partition. In Section 5, we validate our
method by applying it to the results of an HiL simulation. Finally, in Section 6, we conclude the paper
and present possible future work.

2. Related Work

In general, testing and debugging are essential for ensuring reliability; they account for
a significant fraction of any software development process. Debugging consists of two steps. The first
is to locate the fault in order to find where the bug exists. The second is to correct the fault in order to fix
the located bug [11]. Much time is spent finding the locations of faults in such a process. Therefore, it is
important to reduce this time in order to save costs used in software development and maintenance [12].
Fault localization has mainly been developed based on the source code written by the developer [4].
However, the tester executes black-box tests without the source code. Research described below has
been conducted in this regard to localize the faults.

2.1. Testing and Debugging in a Black-Box Environment

Research has been carried out on testing and debugging in a black-box environment.
Various methods have been studied for finding functional problems, given that source code is unavailable
in a black-box environment [6]. However, these methods are mainly for determining/classifying the
test input in order to efficiently test the program’s functionality. Therefore, they are generally not
helpful for locating faults that have occurred in a program. Previous research [13] on black-box testing
proposed an online fault localization system for finding the faulty component when a program is
functioning abnormally. In other words, the proposed method identifies the component causing
the failure in a multicomponent system, rather than finding the exact fault location in the program.
However, determining the cause of faults in terms of component units is not helpful for debugging
because a different supplier generally develops each component of an automotive electronic system.
Therefore, a method is required that can find the accurate location of a fault in a component.

A fault-locating method exists that works by connecting a debugger externally to the ECU [14].
This involves connecting the debugger to debugging pins on the outside of the ECU and monitoring
the memory state during program execution, as in the joint test action group (JTAG) background
debug mode (BDM). However, this method is simply a tool for observing the memory state. A suitable
algorithm is necessary in order to use this method to generate information that can help to localize
faults in the source code.

2.2. Testing and Debugging Method for Automotive ECUs

A variety of research has been carried out with respect to testing and debugging automotive
ECUs. In [15,16], testing methods were studied in a black-box environment using an HiL simulator at
the integration step of an automotive ECU. The integration testing method proposed in [15] determines

Appl. Sci. 2016, 6, 266 5 0f 20

the placement of the ECU by using the Universal Measurement and Calibration Protocol (XCP); it
detects an abnormal signal through the signal value. The ECU testing method proposed by [16] models
the ECU connection structure using the electric and electronic (EE) architecture in an HiL-test-system
(HiL-TS) environment. However, these methods are merely for checking the functionality of an ECU,
and do not address fault location.

Alternatively, debugging methods have been studied in Software-in-the-Loop (SiL) environments
in which the source code is available [17,18]. A development process has been proposed for system
integration in an SiL environment that can save system-development time and cost [17]. Another method
is to model automotive software using the Modelica tool, and to debug by connecting an external
debugger to an SiL environment running the simulation [18]. However, since these methods cannot
be applied to automotive ECU debugging in an environment where the source code is unavailable,
a method that can generate fault-location information in a black-box environment is still required.

2.3. Fault Localization Using Memory Information

Fault locations in memory represent indirect fault-location information for developers with
source-code access. It is possible to find the fault-location information in the memory by capturing
it during program execution by using an external controller area network (CAN) terminal for
communication between the automotive ECUs [19,20]. Methods for fault localization using memory
information have been studied. In [21], research for fault localization was performed by capturing
memory information in a case of malfunctioning software distributed to several clients. However,
this method is not suitable for the automotive ECU environment because developers receive memory
information from multiple clients in a distributed system. Also, studies have been conducted on
a fault-locating method in which the memory state is visualized [22], and on a method for finding
fault locations by observing the memory while the program is executed repeatedly [23]. However,
these methods cannot be applied to an automotive ECU testing environment in which the source code
cannot be accessed because they do not preclude its use.

A fault-localization method has been researched that uses the memory-update information of
automotive software [7]. However, this is limited by the number of memory updates that can occur in
the entire memory. Therefore, in this paper, we propose a method to reduce the fault candidate region
in the entire memory.

3. Preparation for Fault Localization

This section describes a fault-localization method for software installed in an automotive ECU.
For this purpose, we first describe the memory-map and stack methods utilizing the memory, and then
the overall process of this method.

3.1. Target Memory for Automotive ECU Software

In general, memory is composed of a data section, a text section, and a stack section, depending
on its intended use. The fault-localization method proposed in this paper is aimed at the data section.
The definition of each memory section is as follows.

o Text section: this is where the program’s source code is stored; it is used only for ‘read” during
program execution. Therefore, this section cannot be used for fault localization.

e Stack section: this is assigned to each function called during program execution. Therefore,
considering regions in this section as potential fault locations is not helpful to developers because
this section is allocated dynamically. However, it does contain information such as the Return
Address (RA) for each function, the Stack Pointer (SP), and local variables. Therefore, it is possible
to partition the stack section into functional units by using this information. A partitioned stack
section can be used to partition the data section.

Appl. Sci. 2016, 6, 266 6 of 20

e Data section: this is the region assigned to global variables. Treating regions in this section as
potential fault locations means identifying a specific object file or symbol as a fault candidate,
since this section is fixed and allocated by object file/symbol unit during program execution.

For these reasons, we propose a method that can reduce the fault candidate region in the data
section. In order to do this, it is necessary firstly to partition the data section. This section is used in
accordance with the object file/function unit determined at source-code level. The memory map and
the stack also include information about object-file unit or function unit that is determined at a high
level. Therefore, we partition the data section based on the memory map and stack.

3.1.1. Memory Usage Based on a Memory Map

A memory map is a file generated at the time of building the software that contains the
memory-usage information. However, there is a difference between the information in a general
memory map and that in one for automotive software. As shown in Figure 3a, a general memory map
includes section information depending on their intended uses. However, a data section in the memory
for automotive software is specified for each object file due to the issue of having to integrate each
supplier’s software. Therefore, the memory map for automotive software also contains information in
its data section based on the unit of each object file (Figure 3b). Thus, automotive software memory
information can be partitioned into object-file units based on its memory map.

[Section name] [Allocation] [Section name] [Allocation |
Obj_Ao Obj_B.o
TEXT Source Code TEXT Obj_Co |ObDe| ObEo
Obj_Fo Obj_Go
Va'gﬁ’?if: of | ooip | obiF
DATA Global Variables DATA Ob B obj C
Oy E ob_G

HEAP & STACK Local Variables HEAP & STACK

(@) (b)

Figure 3. Memory maps for general-purpose and automotive ECU software. (a) General-purpose
memory map; (b) an example of memory map for automotive ECU software.

3.1.2. Memory Usage Based on the Stack

The reasons for being able to partition the data section based on the stack are as follows. Firstly,
there is a function unit in the source code. Calling a function requires a return address and the memory
region of the associated variables. The stack section is used for these purposes, and hence there is
a unit in the stack that matches the function unit. This unit is the control section (CS), based upon
which the stack can be partitioned [24]. In addition, there are call relationships between CSs, as there
are between functions. Therefore, it is possible to partition the data section by CS units and the call
relationships between them.

Thus, a CS unit is equal to a function unit, and also to an object-file unit in the case where
an individual object file contains only one function. Here, however, we determine CS units by
acquiring the stack information during HiL testing, in accordance with the operational cycle of the
system installed on the ECU. Therefore, the stack information used to determine a CS unit does not
include all of the stack information that the ECU operating system actually uses. That is, the data
section is partitioned by units of overlapping regions of multiple object files. This is because the
data section is partitioned by using the remaining information in the stack at each operational cycle

Appl. Sci. 2016, 6, 266 7 of 20

in an environment that is dependent on the operational cycle of HiL testing. Therefore, memory
partitioning based on the stack is less precise than that based on a memory map.

3.1.3. Example of Memory Usage

An example of memory-map and stack partitioning of the data section is shown in Figure 4.
The pattern displayed in Figure 4 is the data section partitioned by the memory map. This involves
15 regions, including 2 duplicate ones. The information partitioned by the stack is displayed in
color; it is partitioned into 5 regions. Thus, we confirm that the memory-map method can partition
the memory more finely than the stack one. This is because the stack is allocated and released
dynamically during program execution, so only the stack information remaining at the time of memory
capture can be used. However, the memory map contains the data-section allocation information
for each object file. Therefore, as shown in Figure 4, the stack-partitioned memory unit contains the
memory-map partitioned one. A tester requires the memory map in order to access the memory that
is available to developers. However, since the memory map contains confidential matters regarding
how automotive-software object files use memory, a case can be made based on security grounds for
denying testers access to the memory map. Therefore, we propose the stack method, which is capable
of providing fault-location information without disclosing memory-map information. As shown in
Figure 4, it is possible to determine the fault candidate region in terms of object-file or CS units by
partitioning the memory.

N objectlo
7/, Object2.o
Object3.o,

G . oo 0 o (2 Objectd.o il ObjectT.o Y
:)e:‘tii'nn‘(ObjectS.o0 | Object8.0
Object6.o Object9.o

oo Object10.0) Object13.0

§§ E Objectll.ti @ Objectlzl.«ﬂ
222! Object12.0 Object15.o

L “cs# Cs #s
f:?ﬁl.fn‘{ - *Fault Candidate

CS #2 (by Stack)
Object5.o (by Memory Map)

Figure 4. Example of memory partitioning by memory map and stack.

3.2. Process of Fault Localization

As shown in Figure 5, the overall objective of this study is to provide developers with test results
that include the potential memory location of each fault. This is provided with the symbol list in each
partition in the form of a ranking according to fault suspiciousness. Figure 5 relates to the section
displayed within the dotted line in Figure 1; it describes a method by which a tester can indicate the
fault candidate region to developers. There are two memory-partition methods in the overall process
of fault localization: (1) the memory-map method, and @ the stack method without a memory map
(Figure 5). We firstly explain memory-map partitioning, and then that by the stack.

Appl. Sci. 2016, 6, 266 8 0of 20

Ao Bo Co

—r—
1011
“Partitioning”
TC#1 : Pass 110000100 \
TC #2 : Fail
TC#3 - Pass 110000100. “Memory Map”

TC #1 : Pass

TC 7 Fail C 3 @ Partitioning with Memory Map
TC #3 : Pass
<The Table of Fault Candidates> T
Partiti Symbol Fault
Rak (imber List Suspiciousness
signal_A
<Legacy System > 1] s:gna\:s 100 L
Signal C

“Partitioning”

Signal D
2 2 signal £ &

110000100k

20 34 Signal_F 10

@ Partitioning with Stack

< Fault Candidates for Debugging >
% Fault Candidate

Figure 5. Fault localization by partitioning memory in two ways for automotive software.

The fault-localization method comprises four steps (Figure 6). As mentioned previously, the
third of the four steps (highlighted by a dashed line) is the memory-partitioning step, by either
the memory map or the stack. As shown by the solid line in the fourth step in Figure 6, the final
result is a fault-suspiciousness ranking based on that of each partition. The individual steps are
described below.

[Step] [Output |

Memory information
(address, value)

Capturing memory information -
m— — - —
Preparation™ ¥

- The set of updated addresses

Identifying the set of updated addresses | | of each frame

 pesseseeeeeeeeeiiiinn L ;
H 1t
H Partitioning the dat ti . .- .
aritiomng the ca 21 selz ton :mmp The partitioned data section
Fault (memory map, stack))
localization —| - ~
S - FS of each partition
Fault localization by FS) “» - FS ranking of partitions
R

X FS: Fault Suspiciousness

Figure 6. Process of fault localization.

e Capturing memory information: this is done by CAN communication during program execution
in the black-box testing environment using the HiL simulator; memory information refers to the
set of values at each address [20]. In addition, files are generated related to the configuration
information of the memory section (section file), the allocation information of each symbol in the
memory (symbol file), and the function call relationship (call file) from the automotive software
via the binary utility [25]. These files are used in the memory-partitioning step.

e Identifying the set of updated addresses: a list of addresses updated each time is extracted
based on the acquired memory information.

e Partitioning the data section: this step can be performed in parallel with the second stage; the
memory map and the stack are used to partition the memory.

e Fault localization by FS: fault suspiciousness (FS) is calculated by applying the partitioned
memory obtained in the second step to the memory-update information obtained in the third step.

Appl. Sci. 2016, 6, 266 9 of 20

The FS ranking of partitions is then determined based on the calculated FS. The number of fault
candidates is reduced because the final result is provided in terms of the FS ranking of the top
10 partitions, is provided with the symbol list of fault candidates.

3.3. Identifying the Set of Updated Addresses

This section describes the final preparation step for fault localization. In the second step of
Figure 6, we identified the set of updated addresses based on the acquired memory information.
This information is captured N times with P cycles targeting the program with execution time T, and
is composed of M addresses; P refers to a period of the main task in the system. A frame (F) is defined
as the set of memory information captured each time. Furthermore, whether each address is updated
is determined by the change of the value at that address. That is, an address is updated only if its
value changes from the previous frame to the present one. The definition of terms related to this is
as follows:

Memory Address Set (A) = {a|0<a < M; aisanaddress}; 1)

Frame (F) = {Vu,k‘ V, k is the value of the address a at time P x k,

2

a € A, kis a frame number, P is a period of the system main task} ; @

Memory Update (U, ;) = L Vo 7 Vajka fora € A, kis a frame number . (3)
0, Va,k = Va,kfl

The update information calculated in this way can be used for fault localization in a failed test.
This is because test failure is closely related to the test-script inputs, and it is possible to find the
address estimated as being at fault by processing the update frequency approximately simultaneously
with an input being set. In a previous study [7], a range with a relatively high input quota based on the
update frequency of each address (i.e., a range in which the number of updated addresses increases and
remains above average) was defined as an input-driven update range (IDUR). The updated addresses
in this range can be regarded as being related to the faults generated in the test cases. This is because
IDUR is a range in which the number of update addresses increases while the output changes in
response to the input. In this paper, we use the IDUR method to calculate the FS.

4. Fault Localization Method

Faults can be localized by either the memory-map method or the stack one. The former has the
advantage of being able to partition the memory more finely, while the latter has the advantage of
being able to localize faults without a memory map. The remaining goal is to find the fault candidates
associated with the causes of each fault by using both methods. Here, a fault candidate refers to the
symbol that is closely related to an input and that is found based on the memory update information.

4.1. Partitioning by Memory Map

In Figure 7, memory map (MM) is the input of a memory-map partitioning method. As shown in
Figure 3b, it contains the range of each section, as well as that allocated to each object file. Therefore,
we partition the data section using the range allocated to each object file in the memory map, i.e., the
start-address information and the size of the data section. Lines 1-2 in Figure 7 refer to each object
file (OB]J (n)) in the memory map, and a partitioned data section (PD (t)). In lines 3-8, we define the
criteria for partitioning the data section based on the address range of each object file in the memory
map. As shown in line 4, an object file that is not allocated to the data section is excluded from being
a fault candidate in the memory-partitioning step.

Appl. Sci. 2016, 6, 266 10 of 20

Algorithm 1. The Algorithm for Partitioning the Data Section by Memory Map

INPUT : MM, memory map for automotive software
OUTPUT : PD, the data section partitioned by memory map

1: OBJ(n) = the nt* object file in MM
2: PD(t) = the t'h range of address partitioning the data section

: WHILE not the end of MM do

if(OB] (n) is allocated the data section) then
PD(t) < OBJ(n).data section
t—t+1

ne—n+1

: END WHILE

R R

=}

: ASCENDING_SORTING(PD)
10: RETURN PD

Figure 7. Algorithm for partitioning the data section by memory map.

4.2. Partitioning by the Stack

The partitioning method by the stack involves partitioning the data section using itself and the
stack data section. As shown in the flow chart of Figure 8, the files from a binary file (executable)
about an ECU acquired by using the values set stored on the stack and binary utilities are utilized.
For each file that is acquired, the configuration information of the memory section (section file
(SEC)) and the function—call information (call file (CALL)) are acquired by the objdump program.
The memory-allocation information of each symbol (symbol file (SYM)) is acquired by a gnu binary
utility program [25]. The stack accesses the address values from bottom to top according to the default
address-size of the system. Partitioning the data section by the stack is carried out in three stages. First,
we partition the stack into control-section units using the value stored in the stack and the section
file. Then, we identify each control section using the symbol and call files. Finally, we partition the
data section used by each control section. An explanation of each of these steps is given by using the
example of Figure 9.

Yes

Partitioning
the stack section

% CS : Control Section 1 1 Identifying
SP: Stack Pointer] | the control section
RA : Return Address G I
JRpUT LVG : Local Variable shared | Find I-th function symbol I
; 1 tching the RA in SYM
SEC. SYM; CALL with Global 1 | matching the RA in No i
(File Type) 1
————————————— Find call relations using
I | the function symbol in I
n = bottom address of Stack; k
CALL;
1 =1 1 | i=i+1 |
I | |
| (. I |
in the stack| 1
STACK(n) is SP
| sectiong | o the ith Cs; I 1 |
| No n=n-1;i=i+1;
I ®] -
I STACK(n) is local variables Ins?;:::t STACK(n)is RA I | Make e PD 6l the data I Parhhonlng
in the i-th CS; P intheithcs; ake the PD of the da i
I el g i | I sectionin the LVG of each | the data section
@ 1 I
I in the data . I I
n<Top section . | STACK(n) is LVGs 1
| address of B inthe ithCS; | 1
I Stack n=n-1 | I
| ! I :
| ! | !
1 |
1 o

(5

Figure 8. Flowchart of partitioning the data section using the stack.

® Step 1: Partitioning the stack section

In this step, we partition the stack section into CS units (Figure 8(D—®). The CS structure is in the
form {(local variable) *, LVG *, RA, SP} (Here, * means that occurs over zero or more than once, LVG is

Appl. Sci. 2016, 6, 266 11 of 20

local variable sheared with global, RA is return address, and SP is stack pointer). We now turn our
attention to Figure 9. If we read the value of the stack (Figure 9a) with memory allocated from the
bottom address, this can be represented by (address, value) pairs (Figure 9b). If we check the values
from the bottom address based on the flow chart, the address 40004028 is a local variable because it
does not correspond to the address range of the SEC file (Figure 9f; cf. Figure 8@®). The next address
40004024 is the LVG. In this address, 40000F20 is included in the scope of the data section of the SEC
file (Figure 9f; cf. Figure 8(®®). In the same way, address 40004020 is the RA (Figure 8(®). However, the
value in address 4000401C is 00000000, and address 4000401C is the SP because the first SP in the stack
points to the starting address of the entire memory. If we find the SP depending on Figure 8(®), the CS
index is increased. If this process is repeated until the top address is reached, it is possible to partition
the stack into CS units (Figure 8(®), as shown in Figure 9c. In this way, the task of partitioning the stack
into CS units is repeated during the total frame. Each CS with the same RA is considered an identical
CS because it is judged to be used by the same function.

® Step 2: Identifying the control section

We identify the information in each CS (Figure 8(%),(7). As we confirmed in the previous step,
address 40004020 in Figure 9 is the RA, and its value is 0004A5ES. In the SYM file (Figure 9g), 0004A5E8
is included in the range of Func_A. Func_A is known to call Func_B in the CALL file (Figure Sh).
In other words, Func_A is the function of the first CS and has Func_B as the caller. If this process is
performed for each CS, it is possible to obtain a CS list as shown in Figure 9d.

® Step 3: Partitioning the data section

Finally, the data section is partitioned by the LVG in each CS (Figure 8(®)—@0). We make reference
points for partitioning the data section using each LVG and CS in Figure 9e. If these reference points are
sorted, the data section is partitioned as shown in Figure 9i. The LVG is the boundary for partitioning
the data section. Therefore, the more LVGs stored on the stack, the more finely the data section can be
partitioned. This process is represented as the algorithm in Figure 10.

Partitioning Identifying Partitioning
Byte 4 40002000 the stack section the control section the data section
e ! :
Starting Address ; L0003FFC : ; :
00020000 n
20004000 | 00000020 L CS#it2
: Func: Fune_C
5 wvariables =
Text 20004004 | 00000005 il i
0004008 | 4000401C 5 PD#n+2
0007TFFFF 4000400C 00055D23 RA
CSHiF1
0004010 [4000020C LVG i i s PD#n+1
7 4 2
g 40004014 | 0000003C 154 Callee: Fumc C AO00IZ0
7 VG 4000020C
Dat 0004018 00000002 e PD#n
ata 400002
4000401C 00000000 SP C H00020C
) CSh
A0 Top 30006020 | 0004ASES RA S R PDén-1
Stack 10004024 | 40000F20 LVG . Callee: Func B
Tocdl #i VG 40000F20
00028 1 00000001)
A000402B Bottom O o ... Y variables
(a) Memory allocation (b) Stack (¢) Partitioned stack (d) CS list (e) PD list
(f) SEC file (g) SYM file (h) CALL file (i) Partitioned data section
Start addr End addr Section Start addr End addr Symbol Caller Callee Index End addr
00040000 O007FFFF Text 4A000 4BFFF Func_A Fanc A Func B n-1 4000020B
40000000 40001FFF Data 55000 55FFF Func_B Func B Func C n 40000F1F
40002000 4000402B Stack 56000 ST0FF Func_C Fmc D Func E ntl
Figure 9. Example of partitioning the data section using the stack (a—i).

Appl. Sci. 2016, 6, 266 12 0f 20

Algorithm 2. The Algorithm for Partitioning the Data Section by the Stack

INPUT : STACK, the set of (address, value) in stack section
SEC, the range of address allocated to each section
SYM, the range of address allocated to each symbol(fimction) 15: FOR 1 — [to SIZE(CS) do

Step 2. Identifving the control section

CALL, the set of call relation between symbals(functions) 16: H(FIND(CS(i). return address in SYM))then
OUTPLUT : PD, data section partitioned by the stack 17: CS(i). func «— function symbol
18: (FIND(CS(i). func in CALL))then
1: STACK(n) = (address, value} in stack section 19: C5(i). callee + call relation
2: PD(t) = the t™" range af address partitioning the data section 20: END FOR

3: CS = the list of control sections
(LVG: local variable shared with global)

Step 1. Partitioning the stack section Step 3. Partitioning the data section
4: FOR n « last address to first address in stack section do 21: FOR j « I to SIZE(CS) do
3: iffSTACK(n) is in SEC(stack)) 22: IfCS(j).LVG is not null)then
6: C5(i). stack pointer «— STACK(n) 23: PD(t) — CS(G).LVG
7: ie—i+1 24: t—t+1
8: else iffSTACK(n) is in SEC (text)) 25: END FOR
9: C5(i).return address « STACK (n)
10: else iffSTACK (n) is in SEC(data)) 26: ASCENDING_SORTING(PD)
Ii: C5(i). LVG « STACK(n) 27: RETURN PD
12: else
13: C5(i).local variables « STACK(n)
14: END FOR

Figure 10. Algorithm for partitioning the data section by the stack.

4.3. Fault Localization by Fault Suspiciousness

The FS (FS;) of each partition (PT)) is calculated by applying the memory update information to the
partitioned memory information. FS is a numerical value obtained by determining the non-executing
region of the updated partitions (FSP) in each frame, and by applying a weight to the number of
determined times (NFSP;) in an entire frame based on their relevance to the input. The terms used
to calculate FS are as follows. Terms F; and U, ; used in (5) are defined by (2) and (3) in Section 3.3.
As described there, IDUR defined in (8) is the range in which the number of update addresses increases
while the output changes according to the input. Like (9), FS is calculated by the ratio between the
numbers of frames determined as FS partitions in all frames and in IDUR, respectively. This is because
FS s calculated based on the number of times an FS partition is determined and the correlation between
the input and the update information. The algorithm calculating FS on the basis of such defined terms
is shown in Figure 11.

Algorithm 3. The Algorithm for Fault Localization by FS

INPUT : UC, the number of updated address in data section for each object file
FIPUR the range of fiames for IDUR
F, the range of the total frames

OUTPUT : FS, the fault suspiciousness for each objet file

UCy,j = the number of update address in data section for each object file j in frame k of UC
NFSP; = the number of frame that partition j is determined as FSP in the total frames
NFSP{PUR = the munber of frame that partition j is determined as FSP in IDUR

FS; = the fault suspiciousness for each object file j of F'S

BN

5: FOR k < 1 to the total number of frames do
6: Average «— SUM(UC)/SIZE(UC)

7: FORj <« 1to SIZE(UC)

8. ifi 0 <UCy j< Average)then

9 if{ k is in IDUR)then

10: NFSP{PUR « NFSP[PUR+ |
11 NFSP; < NFSP;+ 1

12: END FOR

13: END FOR

14: FORj « 1 to SIZE(UC)
15: FSj« (NFSP{PUR + FIDUR)- (NFSP; = F)
16: END FOR

17: RETURNFS

Figure 11. Algorithm for fault localization by fault suspiciousness (FS).

Appl. Sci. 2016, 6, 266 13 0f 20

Partition (PT;) = j" memory region partitioned by the memory map and the stack 4)
Update Count (UCk,j) = number of U,y in PT; for F 5)

Fault — suspicious Partition (FSPk,]-) = {(PT]', UCk,]-) ‘0 < UCk; < AVGy;

Y #of updated addresses in Fy ©®)

AVGy =
k #of partitions in Fy }

Number of Fault — suspicious Partitions (NFSP;) = number of frames PT; determined as FSP (7)

Input — driven Update Range (IDUR) = the range of the number of update addresses ®)

while the output is changed according to the input

NFSP;in IDUR) NEFSP; in all frames
The number of frames in IDUR ~ The total number of frames

Fault Suspiciousness (FS;) = 9)

Firstly, the number of update addresses (UC) in each partition is calculated in each frame.
Next, FS partitions are determined based on the number of update addresses in each partition. As in
Figure 12, partitions are classified into executing regions (UC; > AV Gy), non-executing regions
(UCy = 0), and FS partitions (FSP;, 0 < UCy < AVGy) based on the average number of update
addresses (AV Gy) in each frame.

PartitionA.o PartitionB.o PartitionC.o PartitionD.o ®m updated address

UC) =# of updated address

i L= ¢ .
_ r#of updated addresses in Fj, | Frame # k

AVGy =

of partitionsin F, LLIILLLE

Executing
ucy = AVGy)

Not executing
we=0) Ensnann.

N FSP
& (0<UC,<AVGy)

Figure 12. Three types of partition in the data section.

FS partitions are determined in each frame based on these criteria, and the number of frames
(NFSP;j) determined as having FS partitions is calculated. Finally, FS (FS;) is calculated by using
NFSP; and the number of frames (NF SP]«I DUR) determined as having FS partitions in IDUR based on
the accumulated number of frames (Figure 11, lines 14-16). The equation for calculating the fault
suspiciousness is implemented in Figure 11, line 15. In other words, by calculating a ratio determined
by FS partitions in all frames and one determined by such partitions in IDUR, the ratio of the latter to
the former is used as the FS. This ratio can be used for FS because the more frames that are determined
as having FS partitions in IDUR (which is highly relevant to the input during the entire execution time),
the more addresses that are associated with faults. In other words, this process calculates relevance to
input. Finally, the FS ranking of partitions is determined on the basis of the FS of each partition.

5. Experimental Results

We applied the proposed algorithm to an actual body-control module (BCM). We tested whether
the BCM operates normally depending on the input by simulating the other modules in the car by
utilizing the HiL simulator used on site. This BCM is SPC5604B BOLERO; the memory sizes used by

Appl. Sci. 2016, 6, 266 14 of 20

the binary file are a 374-KB text section, a 24.6-KB data section, and a 4-KB stack section. As shown in
Table 1, we obtained six data sets that captured the memory in 10 ms blocks (the main task period of
the system). In this section, we present specifically the experimental results for data set #1.

Table 1. Specification of each data set (RAM size = 29.4 KB).

Index Test Case ID Test Case Name Lab ID Lab Name Frame (N)
1 1 WARNING_TC2 74 1006_LAB25 400
2 1 WARNING_TC2 75 1006_LAB27 400
3 1 WARNING_TC2 95 1013_LAB39 400
4 2 TELECMATICS_TC2 96 1013_LAB40 400
5 11 TELECMATICS_TC4 127 1029_LAB1 650
6 12 TELECMATICS_TC16 131 TC16_LAB3 800

5.1. Results by Memory Map

The results of the memory-map method are as follows. The number of update addresses for
each partition is shown underlined in Table 2. In addition, values for IDUR (the range of frames
related to the input) are shown inside the bold borders in Table 2; the ranges are 53-74 frames and
253-276 frames, respectively.

e Total number of partitions = 308

e Number of partitions in which memory update occurred = 67

e FSpartitions (FSP) in Frame #60: objs. #8 and #20 (0 < UC < AVG = 1.84)

e FESpartitions (FSP) in Frame #261: objs. #8, #19, and #39 (0 < UC < AVG = 1.55)

The calculated FSs and rankings are shown in Figure 13. The FSs of the top 18 partitions are the
same, so we show these. For reference, the rank 2 FS is 6.52 and the rank 3 FS is 5.95, in comparison
to a rank 1 FS of 8.70. Obj files with high FS values in the graph have a common feature. These files
are affected by the size of the ratio determined as a fault-suspicious region in IDUR rather than the
entire frame.

Table 2. Number of update addresses for each partition based on memory map (Test Case ID =1,
Lab ID = 74, Lab Name = 1006_LAB25, Frame = 400).

Frame
Object File Normal Range IDUR N.R. IDUR N.R.
#1 #2 #3 #4 #5 A #60 | #61 | #62 .. | #261 ‘ #262 ‘ #263 | ... | #399
Obj #8 1 1 1 1 1 .- 1 1 1 e 1 1 1 - 1
Obj #9 5 5 5 7 5 5 5 5 5 5 5 . 5
Obj #19 1 0 0 1 1 0 1 0 1 0 1 1
Obj #20 0 0 0 0 0 1 0 0 0 0 0 0
Obj #31 2 2 2 2 2 ... 3 3 3 . 2 2 2
Obj #32 0 0 0 0 0 0 0 0 - 0 0 1
Obj #38 17 17 17 17 17 . 20 20 20 . 19 19 19 .. 17
Obj #39 0 0 0 0 0 0 0 0 1 0 0 0
Obj #44 0 2 0 2 0 .. 2 0 2 . 0 2
Obj #45 1 14 2 10 1 17 1 14 2 10 1 1
Obj #67 3 3 3 3 3 3 3 3 3 3 3 3
AVERAGE 123 | 1.55 | 1.39 | 1.57 | 1.27 | ... | 1.84 | 1.52 | 2.01 ... | 155|193 | 194 | ... | 1.22

“

... ” presents omission of meaningless information.

Appl. Sci. 2016, 6, 266 15 of 20

FS ranking by memory map

1000 RANK1 11 111 1 1 11 11 1 1 1 1 10
878787 8787 878787 87 87 87 87 8787 87 8.7 87 8.7 9
100
8
2 w
10 6.52 3 2 7 3
5.95 5 58 6 9
g 6 7 2
& 4.97 2
5 1 { 7 47 ’ 2.684.35 5 2
2 9 3
= 348/ L
01 A s A 3
w0t/ pl 12 Y ;o fld .
TPCAIEET IR A A4 07 NHEG A R Phs 23 2
0.01 093¢ 076 3 / e g s H et B =T / & 5 R V- 1
SO PP b C R R N . W 0.99¢ 104y 0.84 5 075
2505 | 25| 252505 58 ¥ 25 '/ gag 2525725 d 25252525 ["*/95 1
00 0 0 00 0 | o ! 00 0 0000 0
0.001 0
M RPN MYIN O RN O NN YN e N RO NN N O RO NN NI N e RN N NI NER NS N M T NEn
gNMTNer AN INeN RN RIRSNRRERNRTLS85SY 953y TIVeLLO3AARINSLNS3ERBIREE
K
Fault Suspiciousness ~——Ratioin IDUR -=- Ratio in Total Frame

Figure 13. FS ranking by memory map.

5.2. Results by Stack

The results of the stack method are as follows. Figure 14 shows the ranking of fault suspiciousness
in all 44 parts. The ratio size when using the stack method had no influence on fault suspiciousness, as
was the case when using the memory-map method. These results can be attributed to the following.
The frequency with which FS partitions are determined in IDUR is related more to the fault. Therefore,
the region with high FS is selected as a candidate region because it is frequently determined as
a fault-suspicious one in IDUR (1.74 < FS < 8.70, 1 < Rank < 3).

e Total number of partitions = 44
e Number of partitions in which memory update occurred = 26

FS ranking by Stack
1000 RANK1 11 1 10

100

Ratio(%)
.
Falut Suspiciousness

0.1

0.01

0.001

Figure 14. FS ranking by stack.

5.3. Result Analysis & Validation

Finally, the reduction rate of fault candidates by each method is as follows. We can confirm that
both methods have relatively high rates.

e Memory-map method

- Size of the data section in which memory updates occurred = 10,786 bytes
- Total size of the fault candidate region (top 18) = 1859 bytes
- Reduction rate of fault candidates = (1859 - 10,786) x 100 (%) = 17.24%

e Stack method
- Size of the data section in which memory updates occurred = 24,583 bytes

- Total size of the fault candidate region (top 10) = 6202 bytes
- Reduction rate of fault candidates = (6202 +-24,583) x 100 (%) = 25.23%

Appl. Sci. 2016, 6, 266 16 of 20

The fault candidate information refers to ranges of addresses in the memory. Thus, a fault
candidate region has the list of symbols allocated to that address. In order to validate the results based
on the symbol names for each fault candidate region, we use the symbol information of all memory
addresses from each software developer. Based on this information, we confirmed the validity of the
results in terms of the correlation between the input signal of the test script and the symbols in the
fault candidate region, i.e., the similarity of names in Tables 3 and 4. This is because the cause of a fault
is directly related to an input when the fault occurs during a test. Therefore, it is possible to find the
cause of the fault by using the symbol information if the fault-candidate symbol is relevant to the input
signal. The description of each column title in Tables 3 and 4 is as follows.

e Inputsignal in test script: this is an input signal in the inspection range entering the ECU during
the execution of the test using the HiL simulation.

e Symbol in fault candidate: this is the symbol in a fault candidate region obtained in Figures 13
and 14, displayed by matching to related input signal.

e Description of symbol: this is the description of each symbol in a fault candidate region, and was
confirmed to be faults in the test script through verification meetings with the software developers.

Table 3. Correlation between test input and fault candidate symbol based on memory map.

Input Signal in Symbol in Fault

Number Test Script Object File Candidate Description of Symbol
1 SunRoof _SW.write Struct_InterBuz Switching the sunroof open state
.SunRoof
" Obj #39
AssistSeatBelt Struct_InterBuz o .
2 SW.write AssistSeatBeet Switching the driver-door state
AlternatorState
3 SWowrite not found
4 EPBlockLamp Obs #32 Struct_EPBlockStatus Switching the state of the
_SW.write) .EPBlockLamp electronic parking-brake lamp
Engine2
15 _IGN.write not found
. . Struct_TailGate o .
16 KeyState _SW.write Obj #20 KeyState Switching the key-in state
VehicleSpeed . Struct_VecleData oo .
17 SW.write Obj #44 VehicleSpeed Switching the vehicle-speed state

“

... ” presents omission of meaningless information.

Table 4. Correlation between test input and fault candidate symbol based on the stack.

Input Signal in i Symbol in Fault L
Number Test Script Partition Candidate Description of Symbol
1 SunRoof _SW.write Signal_SunRoof Switching the sunroof open state
2 ASSIStseat.Belt Signal_AssistSeatBelt ~ Switching the seatbelt-assist state
_SW.write
Part #27
AlternatorStatus . o
3 SWowrite Signal_AlternatorStatus ~Switching an alternator-lamp state
EPBlockLamp . Switching the electronic
4 _SW.write Signal_EPBlockLamp parking-brake lamp
15 Engine2 Sienal IGN Engine ieniti
IGN.write ignal| ngine ignition
Part #16
16 KeyState _SW.write Signal_KeyState Switching the key-in state
VehicleSpeed . . o .
17 SW.write Part #29 Signal_VehicleSpeed Switching the vehicle-speed state

“

... ” presents omission of meaningless information.

Appl. Sci. 2016, 6, 266 17 of 20

Table 3 shows the correlations between input signals and the symbols in fault candidate regions
obtained by the memory map. These fault candidate regions contain the symbols related to 13 input
signals of a total of 17 input signals. Table 4 shows the correlations between input signals and the
symbols in fault candidate regions obtained by the stack. These fault candidate regions contain
the symbols related to 16 inputs signals out of a total of 17 input signals. Of the fault candidate
regions in Table 3, those with symbols actually related to input signals are objs. #20, #32, #39, and #44.
This is because the symbols in regions other than these are only indirectly affected by the input signal.
Therefore, these symbols could not be confirmed through name similarity alone. For the same reason,
it was not possible to confirm everything by the stack.

As a result, we could find the symbols related to 76% of the input signals by the memory map,
and the symbols related to 94% of those by the stack. As can be seen from the results with the other
data set in Table 5, similar results were obtained (approximately 75% and 92% on average). However,
as seen by comparing Tables 3 and 4, there are differences between the symbol names obtained by
the memory map and those obtained by the stack. These differences are illustrated in Figure 15.
An input signal applied by the HiL simulator is transmitted internally through the virtual bus to the
structure indicating the state information via software logic. In addition, a fault candidate region
identified by the memory map includes the symbols of the structure indicating the actual ECU state
receiving the input signal; one identified by the stack includes the symbols of the external input signals
delivered through the virtual bus. This difference is due to memory information being captured by
the operating cycle of the operating system, so the stack information at each time point cannot be
obtained via software. Accordingly, there is a limit to directly finding the cause of faults compared to
the memory-map method due to losing the stack information. Therefore, both methods have different
advantages and disadvantages, as shown in Table 5. The reduction ratio of fault candidates is the
ratio of the size of fault candidates divided by the size of the updated memory. There is no significant
difference between the reduction ratios of the two methods (22.43% and 19.21%). In addition, a fault
candidate region identified by the stack includes symbols related to external ECU communication.
However, a fault candidate region identified by the memory map includes symbols related to the
internal ECU state. Therefore, the memory-map method is more useful for finding the fault location
directly. However, a fault candidate region identified by the stack includes more symbols related to
input signals that one identified by the memory map.

Signal
Test
Input
— —» » —» .
HiL - o VFB S/W Logic | VFB State Information of
N ECUS/W
Simulator — Interface (Structure)
Test » ol
Output e VFB et

3 VFB: Virtual Functional Bus

Figure 15. Differences of symbol types in fault candidates (memory map and stack).

In conclusion, since only indirect clues are available for finding the cause of a fault by the stack
method, whereas it is possible to find the symbol directly causing the fault by the memory-map method,
additional work is required to track the exact location of the symbol causing the fault. However,
although the stack method requires further work, it can be applied independently of developer even
in an environment without a memory map where HiL testing is performed.

Appl. Sci. 2016, 6, 266 18 of 20

Table 5. Comparative results of the two fault-localization methods.

Fault Localization Based Fault Localization
Feature on Memory Map Based on the Stack
1D ID ID ID Av 1D 1D ID ID Av
#74 #95 #96 #131 & w74 495 #96 #131 &

Reduction rate of fault candidates
(=size of fault candidate region/size 17.24 22.10 1720 33.18 2243 2523 1232 2553 1376 19.21
of updated memory) (%)

Number of symbols related to
the input signal in the fault
candidate/total number of input
signals in the test script (%)

7647 7647 75 71.88 7496 9412 8824 96.88 90.63 9247

Characteristics of the symbols Structure symbols referring Symbols of the virtual bus signals for
related to the input signal to an internal ECU state sharing data from the external ECU

6. Conclusions

In this paper, we proposed a method to provide developers with a reduced number of fault
candidate regions in the memory targeting of an automotive ECU and its software in the course of
performing black-box tests using an HiL simulator. In the proposed method, the captured memory
information was partitioned by a memory map and the stack based on the memory information
captured during the execution of the automotive software. A fault candidate was then calculated by
applying the updated information to the partitioned memory.

The method proposed in this paper has the following advantages. Firstly, it is possible to localize
faults in a black-box environment in which the source code is unavailable. Previous fault-localizing
methods for a black-box environment were inadequate, but it is now possible to generate the fault
candidate information by using proposed method. Secondly, it is possible to localize faults even
without the use of an external ECU debugging terminal for run/stop debugging. In general, the new
method is necessary for environments in which these tools do not exist. This is because debugging
is performed by observing the state of the memory according to the operation period of the system;
however, the method for this is not yet adequate. Nevertheless, it is possible to obtain similar
information to that from a debugger by using the method proposed in this paper. Thus, the method of
fault localization without using the source code can contribute significantly to saving development
time that is currently consumed by finding fault locations.

In the future, we will study the effects of combining the stack and memory-map methods. From the
analyses of the two separate methods in the previous section, the memory-map one is now known to
have the advantage of being able to find symbols indicating the internal state of the ECUs, whereas the
stack one has the advantage of being able to find symbols for the virtual bus signals related to most of
the input signals. By combining the two methods, it is expected that memory methods will become
capable of finding more symbols that indicate the internal ECU state. At present, we search for faults
using only the information about failed test cases. However, the reliability of our method would be
improved by inspecting the update patterns of passed memory. Furthermore, we plan to study how
the passing information using knowledge that can be acquired from the binary code could be applied
to the present research results.

Acknowledgments: This research was supported by Next-Generation Information Computing Development
Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT &
Future Planning (NRF-2014M3C4A7030504).

Author Contributions:].-W.L. conceived and designed the experiments; K.K. performed the experiments; K.K.
and K.-Y.C. analyzed the data; K.-Y.C. contributed analysis tools; J.-W.L. and K.K. wrote the paper; K.-Y.C.
contributed to the revision of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2016, 6, 266 19 0f 20

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Altinger, H.; Wotawa, F.; Schurius, M. Testing methods used in the automotive industry: Results from
a survey. In Proceedings of the 2014 Workshop on Joining AcadeMiA and Industry Contributions to Test
Automation and Model-Based Testing, San Jose, CA, USA, 21-25 July 2014; pp. 1-6.

Zhang, H.; Li, W,; Chen, W. Model-based hazard analysis method on automotive programmable
electronic system. In Proceedings of the 3rd International Conference on Biomedical Engineering and
Informatics (BMEI), Yantai, China, 16-18 October 2010; pp. 2658-2661.

Tatar, M.; Mauss, J. Systematic test and validation of complex embedded system. In Proceedings of the
Embedded Real Time Software and Systems (ERTS) 2014, Toulouse, France, 5-7 February 2014.

Wong, W.E.; Gao, R.; Li, Y.; Abreu, R.; Wotawa, F. A survey of software fault localization. IEEE Trans.
Softw. Eng. 2016, 42, 707-740. [CrossRef]

Siegl, S.; Hielscher, K.-S.; German, R. Model based requirements analysis and testing of automotive
systems with timed usage models. In Proceedings of the 18th IEEE International Requirements Engineering
Conference (RE), Sydney, Australia, 27 September-1 October 2010; pp. 345-350.

Nidhra, S.; Dondeti, J. Black box and white box testing techniques—A literature review. Int.]. Embed.
Syst. Appl. 2012, 2, 29-50. [CrossRef]

Choi, K.-Y.; Seo, J.; Jang, S.; Lee, J.-W. HiL testing based fault localization method using memory
update frequency. In Advances in Computer Science and Ubiquitous Computing; Springer Singapore: Singapore,
2015; pp. 765-772.

Wong, W.E.; Horgan, J.R.; London, S.; Mathur, A.P. Effect of test set minimization on fault detection
effectiveness. In Proceedings of the 17th international conference on Software engineering (ICSE), Seattle,
WA, USA, 24-28 April 1995; pp. 41-50.

Piguet, C.; Masgonty, J.-M.; Arm, C.; Durand, S.; Schneider, T.; Rampogna, F.; Scarnera, C.; Iseli, C.;
Bardyn, J.-P.; Pache, R.; et al. Low-power design of 8-b embedded CoolRisc microcontroller cores. IEEE .
Solid State Circuits 1997, 32, 1067-1078. [CrossRef]

Padmanabhuni, B.; Tan, H.B.K. Techniques for defending from buffer overflow vulnerability security exploits.
IEEE Internet Comput. 2011. [CrossRef]

Wong, W.E.; Debroy, V. Software fault localization. Encycl. Softw. Eng. 2010, 1, 1147.

Baah, G.K,; Podgurski, A.; Harrold, M.]. Mitigating the confounding effects of program dependences for
effective fault localization. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering, Szeged, Hungary, 5-9 September 2011; pp. 146-156.
Nguyen, H.; Shen, Z.; Tan, Y.; Gu, X. FChain: Toward black-box online fault localization for cloud systems.
In Proceedings of the 33rd International Conference on Distributed Computing Systems (ICDCS),
Philadelphia, PA, USA, 8-11 July 2013.

Vermeulen, B. Functional debug techniques for embedded systems. IEEE Des. Test Comput. 2008, 25, 208-215.
[CrossRef]

Caliebe, P; Lauer, C.; German, R. Flexible integration testing of automotive ECUs by combining AUTOSAR
and XCP. In Proceedings of the 2011 IEEE International Conference on Computer Applications and Industrial
Electronics (ICCAIE), Penang, Malaysia, 4-7 December 2011; pp. 67-72.

Hillenbrand, M.; Miiller-Glaser, K.D. An approach to supply simulations of the functional environment of
ECUs for hardware-in-the-loop test systems based on EE-architectures conform to AUTOSAR. In Proceedings
of the 20th IEEE/IFIP International Symposium on Rapid System Prototyping, Paris, France, 23-26 June 2009;
pp- 188-195.

Bruckmann, H.; Strenkert, J.; Keller, U.; Wiesner, B.; Junghanns, A. Model-based development of a dual-clutch
transmission using rapid prototyping and SiL. In Proceedings of the 2009 International VDI Congress
Transmissions in Vehicles, Friedrichshafen, Germany, 30 June-1 July 2009.

Chrisofakis, E.; Junghanns, A.; Kehrer, C.; Rink, A. Simulation-based development of automotive control
software with Modelica. In Proceedings of the 8th International Modelica Conference, Dresden, Germany,
20-22 March 2011; pp. 20-22.

Kim, I.; Al-Hilo, A.; Jang, H.S.; Yoo, J.-G. Conformance testing of SGSF-064-1 using CANoe. Int.]. Appl. Sci.
2015, 5, 1086-1101. [CrossRef]

http://dx.doi.org/10.1109/TSE.2016.2521368
http://dx.doi.org/10.5121/ijesa.2012.2204
http://dx.doi.org/10.1109/4.597297
http://dx.doi.org/10.1109/MIC.2011.109
http://dx.doi.org/10.1109/MDT.2008.66
http://dx.doi.org/10.3390/app5041086

Appl. Sci. 2016, 6, 266 20 of 20

20.

21.

22.

23.

24.

25.

Lee, J.-W,; Choi, K.-Y.; Jang, S.; Lee,].-W. Data cascading method for the large automotive data acquisition
beyond the CAN bandwidth in HiL testing. In Advances in Computer Science and Ubiquitous Computing;
Springer Singapore: Singapore, 2015; pp. 773-780.

Wu, R.; Zhang, H.; Cheung, S.-C.; Kim, S. CrashLocator: Locating crashing faults based on crash stacks.
In Proceedings of the 2014 International Symposium on Software Testing and Analysis (ISSTA), San Jose,
CA, USA, 21-26 July 2014; pp. 204-214.

Egan, M.H.; McDonald, C. Program visualization and explanation for novice C programmers. In Proceedings
of the 16th Australasian Computing Education Conference (ACE), Auckland, New Zealand, 20-23 January
2014; pp. 51-57.

Jeffrey, D.; Nagarajan, V.; Gupta, R. Execution suppression: An automated iterative technique for locating
memory errors. Trans. Program. Lang. Syst. 2010, 32. [CrossRef]

Harris, T.L.; Fraser, K.; Pratt, A. A practical multi-word compare-and-swap operation. Distrib. Comput.
2002, 2508, 265-279.

GNU Binary Utilities. Available online: https://sourceware.org/binutils/docs/binutils/index.html
(accessed on 2 July 2016).

® © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC-BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/1745312.1745314
https://sourceware.org/binutils/docs/binutils/index.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Testing and Debugging in a Black-Box Environment
	Testing and Debugging Method for Automotive ECUs
	Fault Localization Using Memory Information

	Preparation for Fault Localization
	Target Memory for Automotive ECU Software
	Memory Usage Based on a Memory Map
	Memory Usage Based on the Stack
	Example of Memory Usage

	Process of Fault Localization
	Identifying the Set of Updated Addresses

	Fault Localization Method
	Partitioning by Memory Map
	Partitioning by the Stack
	Fault Localization by Fault Suspiciousness

	Experimental Results
	Results by Memory Map
	Results by Stack
	Result Analysis & Validation

	Conclusions

