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Abstract: Quadriaxial non-crimp fabric (QNCF) composites are increasingly being used as primary
structural materials in aircraft and automotive applications. Predicting the mechanical properties of
QNCF lamina is more complicated compared with that of unidirectional (UD) composites, because
of the knitting connection of different plies. In this study, to analyze the stiffness and strength of
the QNCF composites, a novel modeling strategy for the meso-scale features is presented based on
the semi-laminar assumption. Following the view of the mechanical properties of single composite
lamina, the complex QNCEF layer is decomposed into individual plies. Three different representative
unit cells along fiber direction are selected to predict the mechanical performance of QNCF, including
in-plane stiffness, damage initiation, and stiffness degradation. To validate the developed modeling
strategy, the predictions are compared with existing experimental results, where a good agreement
is presented on the prediction of in-plane stiffness and strength. Furthermore, the effect of in-plane
fiber distortion, induced by the stitching yarn on the mechanical properties, is studied.

Keywords: non-crimp fabric (NCF); fiber distortion; mechanical properties; multiscale analysis

1. Introduction

Non-crimp fabric (NCF) is constituted by a large amount of fairly straight fiber tows that are
placed side by side and bounded by warp-knitting [1]. Compared with the unidirectional (UD)
pre-preg composites, NCF composites have many advantages, such as lower production cost, higher
out-of-plane damage tolerance and fracture toughness. Thus, it is becoming more popular in the
manufacture of complex and thicker parts than UD pre-preg composites [2]. The NCF has two main
types, open structure and continuous plies [3]. The fiber tows of continuous plies are laid as closely as
possible to reduce the waviness of the fiber tows. However, fiber distortion still exists in the plies [4].

Mechanical properties of single lamina are the basic parameters for composites. Many theories and
failure criteria are developed based on the assumptions that each lamina of the laminated composites
is homogeneous and orthotropic [5]. Since each lamina in the NCF has a unique fiber direction,
it can be considered as semi-laminar [6]. For the mechanical analysis of NCF composite structures,
the basic mechanical properties of the semi-laminar composites should be known. To obtain the
mechanical properties of each lamina of quadriaxial non-crimp fabric (QNCF) composites (the material
is supplied with a layer stacking sequence (45°/90°/ —45° /0°)) through experiment, four kinds of UD
specimens need to be produced (one for each fiber direction, including the through-thickness yarn) [7].
This process is very complicated and costly, for it is not very easy to adjust the warp-knitting machine
for a small batch production of these UD specimens. Alternatively, the mechanical properties of NCF
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composites can be predicted by using a multiscale analysis approach. However, a complete multiscale
analysis is also very time-consuming [6].

An equivalent analysis method was proposed based on semi-laminar considerations [6,8,9]. In this
method, the mechanical properties of NCF lamina are determined by equivalent UD composite lamina,
which is multiplied with knock-down factors to take into consideration the effect of fiber waviness.
The effect of fiber waviness on the mechanical properties was studied using different modeling
methods in references [10-12]. The knock-down factor or stiffness reduction in the previous works
mainly focused on the out-of-plane fiber waviness of opening structure NCF composites. However, the
waviness of continuous plies NCF composites mainly presents in the in-plane direction of the fabrics
rather than the out of plane direction. Thus, the effect of in-plane fiber waviness should be considered
when evaluating the mechanical performance of this kind of NCF composites.

Several researchers have studied the mechanical properties of continuous plies NCF using either
experimental or multiscale modeling approach. Truong et al. [13] compared the experimental results
of the elastic modulus with that of classical laminate theory (CLT) predictions, and found that the
effect of stitching on the stiffness of this material was not significant. However, earlier works [14,15]
claimed that the experimental measurements were about 17% lower than those obtained by the CLT.
Mikhaluk et al. [16] used acoustic emission (AE) registration and X-ray imaging to detect damage
initiation and evolution in quadriaxial laminates under tensile load, and the numerical simulation
of the failure process was also carried out. Ivanov et al. [17] summarized the previous meso-scale
model, and set up a meso-scale mechanically representative volume (mRVE), and predicted the
effect of stitching on the mechanical properties of non-crimp fabric composite, such as, stiffness,
failure initiation, stiffness degradation and strength. The current researches were focused on the
performance of a whole continuous plies QNCF layer or laminate, but few studies has been done
on the lamina mechanical properties of the materials. Since the NCF composites can be addressed
as being semi-laminar [6], the stiffness and strength of QNCF can be estimated from the view of
the mechanical properties of single QNCF lamina. After the evaluation, the QNCF lamina can be
equivalent to UD lamina combined with knock-down factor or effective mechanical properties of
lamina. Then, the general method can be applied to analysis the QNCF composites, such as CLT,
layerwise theory, FE-shell element, etc. Following this idea, a simplified modeling strategy is presented
for meso-scale analysis to predict effective stiffness properties and ply strength of QNCF.

Considering the limitations described above, there are two main contributions in this paper.
Firstly, the stiffness and strength of QNCF lamina composites is predicted, and the effect of in-plane
fiber distortion on the mechanical properties is studied at the lamina level. The results can be used to
create an equivalent continuum model for the composites at the macroscale level. Secondly, a novel
modeling strategy for the meso-scale features of QNCEF is presented. It is feasible for rapid modeling
and meshing due to the simply description of the inter-structure of QNCF.

2. Modeling Approach

To perform a meso-scale analysis based on mechanical properties of single NCF lamina, detailed
internal structure of continuous plies NCF composites should be known. Internal geometry of a
continuous plies NCF stitched by warp-knitting was investigated in Reference [4]. Based on this
verified geometry data, a continuous plies QNCF which has a layer sequence of (45° /90° /—45°/0°)
is selected for a mesomechanical model, this quasi-isotropic layer is widely used in engineering,
and its complex internal structure contains a variety of known types of stitch yarn induced fiber
distortion (SYD). In this way, the typical form of SYD in the QNCF composites can be accounted for
multiscale analysis. The stitching threads are ignored, following the assumption in Reference [18].
In this modeling strategy, QNCF laminate is considered as a semi-laminar, and is assumed to be
separated from others.
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2.1. Modeling Strategy Based on Mechanical Properties of Single NCF Lamina

The mesomechanical unit cell of a QNCF is shown in Figure 1a. The models include deviations
of the fiber orientations in inner and outer plies, such as cracks and channels. For continuous plies
NCE, the disturbance caused by the stitch in fiber direction is different in different plies. In the outer
fibrous plies, the stitching pulls fibers aside forming long “channels” in the 0° lamina and rhomboidal
“cracks” in 45° lamina. In the inner, rhomboidal “cracks” are induced in the 90° and —45° lamina, and
the size of these inner cracks is smaller than that of outer cracks. The direction of the large diagonal of
the rhomb and the channel corresponds to the fiber direction in the ply.
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Figure 1. The geometrical model of mesomechanical unit cell development for single quadriaxial
non-crimp fabric (QNCF) lamina: (a) unit cells of a QNCEF layer; (b) individual fibrous plies in the
QNCEF layer; and (c) geometrical model of unit cells of individual QNCF lamina.

The different openings in the individual plies in QNCF composites will lead to a difference
in mechanical properties of single NCF lamina. In property testing of NCF composites, different
non-crimped UD specimens are requires to test to determinate the mechanical properties of single
QNCF lamina. The schematic diagrams of production these different warp-knitted non-crimped UD
specimens are shown in Figure 2, and the angle between the fibers and the process direction are 90°,
0° and 45°, respectively. Remarkably, the fiber distortions of the UD specimens induced by the stitch
yarn are different. Geometrical model of unit cells of these different specimens, are shown in Figure 3.
These UD specimens also include different gaps and channels. After injection molding, the composite
laminates are cut out following in the fiber direction for mechanical testing. In meso-scale analysis, the
unit cells of QNCF should also include the meso-scale geometry features of different non-crimped UD
specimens as shown in Figure 3.
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Figure 2. Schematic diagram of production different warp-knitted unidirectional non-crimp fabric
(UD-NCF): (a) the production of 90° Layers; (b) the production of 0° layers; and (c) the production
of 45° layers. 1—Process direction; 2—Fiber direction; 3—Thread; 4—Transport system; 5—Weft
carriage system.
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Figure 3. Meso-scale geometrical model of unidirectional (UD) specimens with different angle between
fiber direction and process direction: (a) 90°; (b) 0°; and (c) 45°. 1—Process direction; 2—Fiber direction;
3—Face channel; 4—Inner crack; 5—Stitching yarn; 6—Face crack.

To improve the efficiency of meso-scale analysis, the QNCEF layer is decomposed into individual
plies as shown in Figure 1b. Considering that the testing method of mechanical properties of single
QNCEF lamina, the unit cells are select along fiber direction as shown in Figure 1b. Since inter —45° and
90° lamina have the same volume fraction and crack size, they are classified as one model. Then three
types of unit cells of individual QNCF lamina are formed, which are shown in Figure 1c. Although this
modeling strategy decomposes the QNCF layer, the major fiber architecture is still considered in the
model, including channel, inter small crack, face large crack, and local fiber contents.

2.2. Multiscale Modelling Procedure of QNCF Composites

The workflow of multiscale analysis in this paper is given in Figure 4. On the microscale,
mechanical properties of the resin and fiber are input to micro-scale analysis model, which are
then used to determine mechanical properties of the composites tows. A periodic microstructure
three-dimensional (3D) finite element (FE) model is constructed, with the assumption that fibers
are uniformly distributed in the matrix, as shown in Figure 4a. In this micromechanics model, the
fiber-matrix interface is modeled as perfectly bonded with nodes merged in a conventional mesh. In the
failure analysis process, the failure state of the interface is evaluated by the failure of fiber and matrix
that is adjacent to the interface. Similar modeling methods are explained in reference [7]. Henceforth,
the term “composite tows” is refers straight fiber tows impregnated with resin. “1-direction” and
“longitudinal direction” are the direction along the axial of the fiber, “2-direction” and “transverse
direction” are the direction transverse to the axial of the fiber, and “3-direction” is in the thickness
direction of the fabrics.
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Figure 4. The workflow of multiscale analysis: (a) microscale; and (b) mesoscale.
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On the mesoscale, three unit cells are used to describe the fiber distortion patterns in the NCF
plies (Figure 4b). The in-plane stiffness and strength of the NCF lamina are obtained by numerical
analysis. These 3D FE models of single NCF lamina are developed based on the previous geometries
(Figure 1c). The meso-scale models are shown in Figure 5, where Cell A is unit cell with a large crack,
Cell B is unit cell with a small crack, Cell C is unit cell with a channel, and b and [ are the width and
length of the crack, respectively. In this mechanical model, the local variation of fibers orientation
(Area with distorted fiber direction) is also shown in Figure 5.

The local variation of the fiber orientations can be localized near the crack in ply. It is assumed
that the width of the area with distorted fiber direction has the same size as small crack, which is
shown in Figure 5b. Based on the experiment data [4], the value of large crack width is 0.480 mm and
length is 7.20 mm, and the value of small crack width is 0.352 mm and length is 2.64 mm, and the
fiber in-plane crimp angle 0 = 4°. The fiber crimp angle can be modeled by the rotation of material
orientation according to the actual distorted fiber direction [11].

@ A

M Resin-rich zones

(c) s B Tows with distorted fibre direction

A ¥ Tows with main ply fibre direction
. = =
. 4
g

Figure 5. Finite element (FE) model of meso unit cells with different fiber distortion in the individual
non-crimp fabric (NCF) lamina: (a) Cell A; (b) Cell B; and (c) Cell C.

The volume fraction of composite tows (is also the local fiber volume fraction) is calculated
in Reference [4]. The averaged fiber volume fraction of the lamina Vf1 and the volume fraction of
composite tows V! are related according to the Equation (1).
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where Al is the cross-section of the lamina, At is the cross-section of the tow, and Sy,q is the area of a
crack or a channel per one knitting needle. A, B is the space of stitching loops, A is perpendicular to
the machine direction, B is in the machine direction (see Figure 1), and assuming B = 2.74 mm, and
A =5.07 mm in this paper.
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3. Boundary Conditions and Material Models

3.1. Boundary Conditions

To obtain homogenized material properties, it is necessary to apply normal and shear loads on the
micro and mesomechanical unit cells. A simplified periodic boundary condition is applied on these
unit cells [7], as shown in Figure 6.
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Figure 6. Two load cases for unit cells: (a) normal load: tension in x direction; and (b) shear load: shear
in x-y plane.

The displacement load oy is applied on the planes x = a1 (Figure 6a), and the corresponding
boundary conditions can be described as

M(O Y,z ) - 0 u(“l/y/ ) = 0y
v(x,0,2z) =
w(x,y,0) = 0 )
v(x,az,z) = v(ay,az,a3) = &, = const
w(x,y,a3) = w(ay, az,a3) = d, = const

Simple shear displacements are applied in x-direction (Figure 6b), and the boundary conditions is
as follows,
u(x,0,z) =
u(x,az,z) = 6x
v(x,0,z) =v(x,a2,z) =0
®G)
u(0,y,2) = u(a, y,z)
(

v(x,0,z) = v(x,a7,z)
w(x,y,0) = w(x,y,a3) =0
The boundary conditions of other direction are similar to Equations (2) and (3). In most finite
element analysis (FEA) commercial packages, the boundary conditions can be enforced using coupling
constraint equations. In addition, the boundary condition used in stiffness prediction process will be
adjusted, which will be introduced in the Section 3.2.

3.2. The Stiffness Calculation Method Based on Average Stress and Strain

To evaluate the stiffness properties of a heterogeneous material, it is necessary to calculate the
average stress and strain over the unit cells. The constitutive relation of the average stress and strain of
the homogeneous composite material [19] is shown in Equation (4).

Ox = Cocﬁzﬁ (4)

where o, 3 = 1,...,6. Cyp is the stiffness tensor.
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For an orthotropic material, the tensor Cg can be written in the form:

C11 C12 (13 0 0 0
Cx1 C2 (23 0 0 0
1 ¢ c3 0 0 0
Cup = 5
o 0 0 0 ¢y 0 O ®)
0 0 0 0 C55 0
L 0 0 0 0 0 ce6 |

Then, the relations between the effective engineering constant of composites and the stiffness
tensor Cy g can be written as

E; = C11 —2C12Co1/ (Cop + Co3)

Ey = [C11 (Co2 + Cp3) — 2C12Co1](Caz2 — C23) / (C11Co2 — C12Co1)

Gi2 = Ces, Gz = Cyy (6)
v12 = Cr2/ (Co2 + Cp3)

v23 = (C11C23 — C12Co1) / (C11Co2 — C12C1)

where E; and E; are longitudinal and transverse Young’s modulus. v1, and vp3 are Poisson’s ratios.

G2 is in-plane shear modulus.
To obtain the components of the stiffness tensor Cyp, the six components of strain 89].,
i,j=1,..., 3 are applied by enforcing the following boundary conditions on the displacement

components as shown in Figure 6.

ui(ay,y,z) —u;i(0,y,z) = ‘115?1
u;j(x,a,z) —u;(x,0,2z) = aze% (7)

ui(x,y,a3) — ui(x,y,0) = azed

0

The boundary conditions (Equation (7)) means that a;¢;; is the displacement required to enforce

a strain of s?j over a distance 4;. ]
Using Equation (7), a surface strain 8% can be applied on the unit cell. The relationship between
5% and s?j [19] can be written as
€p = &jj = &ji ®)
where p =i,ifi =jelsep=9—i—].
The volume average strain € in the unit cells equals to the applied surface strain s%,

_ 1 0 1 0 0 0
v

where V is the volume of unit cells, V; is the volume of fiber, and Vi, is the volume of matrix.
The corresponding volume average stress o« is described as:

To = %j GodV = & f oadV + f oadV (10)
|4

\%4
Vi Vin

where 0 is stress field in the unit cells.
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For discrete finite elements, Equation (10) can be written by

n m n m
0 =(L o+ ¥ ow)/(X Vu+ L Vi)
KMZ1 k=1 Ki=1 k=1 1)
n+m 1+]
Y oo/ X Vi
k=1 k=1

where 11 and m are the number of element representing the fiber and matrix in the FE model, respectively,
oy is the stress at the element integration point, and Vj is the volume of a single element.

The numerical homogenization method in this section can be carried out using the commercial
finite element software with scripting language, such as Abaqus and Python statements [19]. In Abaqus,
to determine the components C;;, with i = 1, 2, 3, in x-direction, symmetry boundary conditions are
applied on the planes of x =0, y = 0, z = 0. A uniform displacement is applied on the plane x = a;.
The y and z direction boundary are similarity to x-direction except for the loads applied on the
respective surfaces. To determine the shear modulus, the simple shear loads are applied in the three
principal planes. For postprocessing, a Python script is created to extract the stress of the integration
point. The stiffness tensor Cg is calculation by Equation (4) based on the average stress and strain,
and then the effective engineering constant can be obtained by Equation (6).

3.3. Multiscale Failure Analysis

3.3.1. Failure and Softening Formulation for Fiber

In this paper, the fiber is treated as a transversely isotropic material in micromechanical model,
thus some failure criteria for laminated composites can be applied to fiber failure analysis. A widely
used polynomial failure criterion for composite materials proposed by Tsai and Wu [20] is used.
The criterion can be expressed as:

FiGi+FijGiGj+FijkginUk >1 i,j,kzl,...,6 (12)

where 0, 0}, and oy are stress components. F;, Fj;, and F;; are components of the lamina strength
tensors in the principal material axes. The third-order tensor Fjj is usually ignored from a practical
standpoint due to the large number of material constants required. Then, the general polynomial
criterion can be reduced to a general quadratic criterion given by

Fi01 + F0p 4+ F303 4+ 2F 150109 + 2F30103 + 2F30703 + Fiq 0‘12

13
+F220'22 + F330‘32 + F440‘42 + F55(Y52 + F66G62 >1 (13)

For the mechanical properties of the dry fibers, the fiber manufacturer only provides tension and
compressive strength parameters; therefore, Equations (12) and (13) are modified as

Fi01 + B0y + F303 + 2F1p01 0 + 2F31 03071 + 2Fx30203 + Fi1092

14
+Fp0o% + F3o3? > 1 (14)
where the tensors in Equations (13) and (14) can be determined as follows.
1 1 1 1 1 1
A=z h=w-whz -7
Pllzm/ Fzzzm/ F33:m (15)

-1

_ —1 _ -1 _
Fp = 2/ XX Y1’ Fy = 2/ Y1 Yo ZrZc’ F3 2V Z1ZcX1Xc

where X7, Y1, and Z are the tensile strength in 1-direction, 2-direction, and 3-direction, respectively.
Xc, Yc, and Zc are the compression strength in 1-direction, 2-direction, and 3-direction, respectively.
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The modified Tsai-Wu Criterion is an expression that only considers the tensile and compressive
strength, and we use the criterion to determine the initial failure of the fiber.

Post-initial failure in fiber direction is modeled by a gradual unloading model, where one or more
of the elastic material properties of a lamina are set to zero or a small fraction of the original value once
failure is detected. The degradation equations are given in Reference [21]. Furthermore, in the finite
element models, the material softening laws with Tsai-Wu failure criteria have been implemented
using user defined subroutines USDFLD (User subroutine to redefine field variables at a material
point) of Abaqus (Version 6.11, Dassault systemes simulia Corp, Providence, RI, USA, 2011).

For a micromechanical analysis, the properties of fibers are essential, the material data of 12K
Toray T700 50C are used in the analysis of this paper as shown in Table 1. The elastic data are
cited from Reference [13], tensile strength is obtained from data sheet of the fiber manufacturer,
compressive strength are calculated with an empirical correction k = 0.8, and the empirical correction
is determined according to the ratio of compressive strength and tensile strength of T300 fiber, the data
are summarized in the World-Wide Failure Exercise [22].

Table 1. The mechanical properties of fiber carbon.

Parameter Value
Tensile modulus, GPa Eq =230, Ep =28
Poisson’s ratio v12 = 0.23
Shear modulus, Gpa Gg1p =50
Tensile strength, Mpa Xer, Yer, Zer = 4900
Compressive strength, Mpa Xee, Yic, Zic = 3920

3.3.2. Elastic-Plastic Material Model for Epoxy Resin

This elastic-plastic material model is intended to describe the mechanical performance of the pure
resin, such as, the matrix in micromechanical model and the resin-rich zone in mesomechanical model.
The elastic properties of resin (Epoxy resin Epikote 828) are obtained from Reference [13]. The plastic
deformation and failure data of Epikote 828 are obtained from References [23,24]. In summary,
the matrix properties utilized in this paper are presented in Table 2.

Table 2. Mechanical properties of Matrix.

Tensile Modulus Poisson’s Ratio Tensile Failure Compressive Yield
o = 85.25MPa o = 133MPa
Em=273GPa Um =04 e =3.62% € = 6.5%

To account different yielding behavior under uniaxial tension, uniaxial compression and shear,
the von Mises criterion and the Drucker-Prager yield criterion are chosen. The von Mises are used to
define the yield and inelastic flow behavior of a metal at relatively low temperatures. In this paper, this
criterion is applied to describe the tensile behaviors of the epoxy resin. The Drucker-Prager criterion is
applied to model the failure behavior of the pure matrix materials under compression and shear load.
Marklund [2] has proved that using this criterion to predict failure of matrix materials is feasibility,
and the two criteria are readily available in Abaqus.

3.3.3. Failure Model for Composites Tows

A 3D progressive failure model [21] is used to predict the final failure of composites tows.
This failure model connects the material elastic properties with internal state variables that functions of
the type of damage. Before the local structural failures develop, the composite tows typically behave
are considered as linear elastic manner, and the constitutive relations for undamaged are given by
Equation (4).
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To detect the onset 3D failure including fiber direction failure and transverse direction failure, the
modified Hashin failure criterion is used. In each direction, the tensile and compressive failures are
handled separately. The failure modes are modified for the case of 3D Stress as follow.

Fiber failure mode [25],

2 2 2
o >0 fi= () +(82) +(52) 5 fuz 16)
011 2
o <0 fio= (32) 5 Aoz 7)
Matrix failure mode,
2 2 2
(o) T T
022 > 0 = frnt = <Y2T2) + (Si) + (Si) ;o fme>1 (18)
2 2 2
O T T
022 < 0 = fme = <Y2c2) + (SZ) + (5222) i fme>1 (19)

where S5, S13 and Sy3 are the strength for shear in 1-2 plane, shear in 1-3 plane and shear in 2-3 plane,
respectively. T2, T13 and T3 are the shear stress in 1-2 plane, shear in 1-3 plane and shear in 2-3 plane,
respectively. o117 and oy, are normal stress in 1-direction and 2-direction, respectively. fy; and f., are
the failure indices for fiber tension and fiber compression, respectively. fn is the failure indices for
matrix tension or shear cracking. fmc is the failure indices for matrix compression or shear cracking.

The material stiffness changes, after local failures within the tows. The effects of damage on the
stiffness of the tows are represented using internal state variables. These state variables associated
with crack density under loading, a more detailed description is given in [21].

The progressive failure model is implemented as a user-defined material model using Abaqus
user interface UMAT (user subroutine to define a material’s mechanical behavior). In this procedure,
a nonlinear analysis is performed until a converged solution is obtained.

4. Results and Discussion

The stiffness and strength of QNCF lamina are obtained using the meso-scale analysis procedure.
The numerical predictions of QNCF lamina are compared with the experimental results of the
non-crimped UD laminate in Reference [13]. In the experiment, mechanical properties of non-crimped
UD specimens with warp-knitted was reported, however, that is just one the types of UD specimens
mentioned in this paper.

In this section, E, ES, EX, G},, Gi;, v!,, and v} are the elastic properties of the composite tows for
tensile in 1-direction, tensile in 2-direction, tensile in 3-direction, shear in 1-2 plane, shear in 1-3 plane,
Poisson’s ratio in 1-2 plane and Poisson’s ratio in 1-3 plane, respectively. X%, Xt, Y1, Y§, and S},
are the strength of composite tows for tension in 1-direction, compression in 1-direction, tension in
2-direction, compression in 2-direction and shear in 1-2 plane, respectively. E} is the longitudinal
Young’s modulus of QNCF lamina, and E} is the transverse Young’s modulus of QNCF lamina, and
0112 is the Poisson’s ratio in 1-2 plane of QNCF lamina and G%z in the in-plane shear modulus of QNCF
lamina. Xrlr, ch, Y%, Y(I:, and 5112 are the strength of QNCF lamina for tension in 1-direction, compression
in 1-direction, tension in 2-direction, compression in 2-direction and shear in 1-2 plane, respectively.

4.1. Mechanical Properties of the UD Composite Tows

In QNCF lamina, the area except for resin-rich zones can be considered as UD composites,
and V! of the outer and inner plies are different. The QNCF fabric laminate to be analyzed by the
mechanical models with V} = 42.1%. This fiber volume fraction is experimental measurements values
in Reference [13]. In this case, according to Equation (1), Vft is shown in Table 3. As the diameter of



Appl. Sci. 2016, 6,267 110f17

inner stitching yarn for the QNCF layer is small, the volume of the resin-rich zones is about 3.34% of
the total volume of the NCF lamina, which contributes to Vft in the inner —45° and 90° lamina close to
Vfl as shown in Table 3. In addition, the stitching yarn can cause obvious fiber cracking in the outer 45°
and 90°, which makes V} in outer layer higher than that in inner layer.

Table 3. V} of each lamina with Vfl =42.1%.

Ply 45° —45° 90° 0°
vt 48.1% 43% 43% 47.3%

The mechanical properties of composite tows obtained with the micro-scale analysis procedure
are shown in Table 4. E!, E}, G},, v},, and v}, are calculated by the numerical homogenization method,
and Ef and G}, are determined by transversely isotropic material assumption. The stiffness properties
of the UD tows estimated by an averaging technique based on the rule of mixtures (RM) [26] is also
given in Table 4. This analytical model can calculate the value of E{ and v},, but has a less accurate
result for G!, and E} because of the assumption of rectangle section for fiber. Therefore, the analytical
values of E}, v!, are used in this section.

According to Table 4, it is clear that the results obtained using the numerical models are consistent
with those obtained using the RM. Among the unit cells, composite tows in Cell A has the highest
fiber volume fraction (V} = 48.1%), correspondingly, the longitudinal Young’s modulus of the tows is
also higher than the other two cases. This is because the longitudinal Young’s modulus of composites
is a fiber-dominated property. For the numerical predictions of Ef and G!,, the tows with high local
fiber volume fraction also has a larger transverse and shear modulus compared with low fiber volume
fractions. This can be interpreted that although the transverse and shear modulus of UD composite
materials are matrix-dominated, the fiber volume fraction, the ratio of matrix property and fiber
property also affects the modulus simultaneously [26].

Table 4. The engineering constants of the composite tows with different fiber volume fraction obtained
using micromechanical model/GPa.

Model Vi E| E, =Ej U1 vis Gy, = Gis Gy
Ref-RM 42.1% 98.41 - 0.328 - - -
Ref-FEM 42.1% 98.44 6.196 0.323 0.557 2.303 1.990
In Cell A 48.1% 111.98 6.987 0.313 0.542 2.658 2.267
InCell B 43% 100.36 6.293 0.322 0.551 2.352 2.029
InCell C 47.3% 110.16 6.917 0.314 0.542 2.607 2.243

“Ref-RM” is reference value obtained with the rule of mixtures, and “Ref-FEM” is reference value
obtained by micromehanical model for UD un-stitched composites, and “In Cell A”, “In Cell B” and
“In Cell C” mean that the composite tows in Cell A, Cell B and Cell C, respectively.

The numerical predicted strength properties of composite tows with different fiber volume
fractions are shown in Table 5. The analytical values of X! and X{. based on the RM are also presented
for a comparison. The analytical values are obtained by Equations (20) and (21). The existing
simple analytical models cannot accurately predict transverse strength and shear strength at the
micromechanical level. Therefore, the analytical results of YE, Y(tj, and 552 are not presented here.

Xt = X¢r {Vft + V;E‘l‘} (20)

XE = Xec [Vft + v } (21)
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where V{ is the matrix volume fraction of composite tows.

Compared with the reference values (Ref-RM), the numerical predictions value (Ref-FEM) X% and
X¢& of composite tows are decreased by 14.5% and 27%, respectively. Although the difference is obvious,
considering that the RM is less accurate in the prediction of strength than the predicting of elastic
properties, this comparison just illustrates the possible strength value of this material with different
volume fraction. Therefore these strength properties of UD tows obtained by micromechanical model
still can be used for the calculation of the meso-scale model, and this paper compares the numerical
predicted and experimental values on the mesoscale.

Table 5. Strength of composite tows obtained using micromechanical model/MPa.

Model Vi Xy Xc Yp Ye St
Ref-RM 42.1% 2095.2 1677.3 - - -
Ref-FEM 42.1% 1792.3 1224 72.3 148.0 72.5
InCell A 48.1% 2247 1871 81.0 160.8 73.6
InCell B 43% 1906 1460 75.0 154.7 72.3
InCellC 47.3% 2234 1850 80.2 156.7 73.7

4.2. In-Plane Stiffness of QNCF Lamina

According to the inter-structure of QNCF lamina, three kinds of unit cells have been established.
Certainly, the predicted results with any of the three unit cells cannot represent the actual values.
As the method of taking data average is commonly used in the data processing of composite stiffness
test, the averaged value of the predicted results employing the three unit cells is taken as stiffness
properties of the QNCF lamina.

The displacement load is applied on the surface of the three kinds of representative volume
elements, and the deformation and stress distribution of the three unit cells are shown in Figure 7.

s, s11 $,522 b S, 512
163.2 jZEaannn Ty 6.9 6.8
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Figure 7. Deformed shape and contour plot of stress in different displacement loads.

The estimated in-plane effective engineering constants E%, Eé, 0112, and G%z are listed in Table 6.
The averaged stiffness of the three unit cells and the numerical homogenization results obtained by
micromechanical model for UD composite tows are also presented in Table 6 as a reference.
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The averaged stiffness obtained with the three unit cells are in a good agreement with experimental
results. The elastic data of UD laminate test in Reference [13] are used in this comparison. The average
value of E} and v}, are 0.9% and 6.3% higher than the corresponding experiment results, respectively,
and the average value of G}, is 5.3% lower than the test value. Considering that, the procedures
for predicting the stiffness is done in the linear elastic range of the material, and the stiffness of the
constituent materials attributed to the numerical calculation are experimental data, and reasonable
boundary conditions are used in the numerical homogenization method, which make it possible to get
a relatively accurate results.

Table 6. In-plane stiffness of the NCF (non-crimp fabric) lamina obtained with mesomechanical analysis

procedure (GPa).
Description Vlf V} E; El2 71112 Glu
Cell A 42.1% 48.1% 93.45 6.07 0.349 2.301
Cell B 42.1% 43% 93.85 6.11 0.347 2.322
Cell C 42.1% 47.3% 98.16 6.1 0.324 2.2
Average 42.1% - 95.15 6.09 0.34 2.274
Ref-FEM 42.1% - 98.44 6.196 0.323 2.303
Experiment [13] 42.8% + 0.8% - 943 + 8.2 - 0.32 £+ 0.04 24 +0.8

When we compare the average value with the reference value (Ref-FEM), as shown in Table 6,
E} is reduced by 3.34%, but this difference is not significant. The maximum difference of E} is
about 4.8% among the three unit cells. To consider the same averaged fiber volume fraction, this
difference in the elastic properties could be caused by fiber distortion. This result is consistent
with the view of Reference [13], which concluded that absence of a significant difference in stiffness
between experimental results and classical laminate theory predictions. We confirm this conclusion
by multiscale analysis. Stitch yarn induces the localized crack in the fibrous ply. If the width of the
localized crack is seen as the amplitude of fiber waviness, the amplitude of a single crack (for large
crack, b = 0.48 mm) accounts for 9.5% of the unit cell width (A = 5.07 mm). With a constant fiber volume
fraction, these localized in-plane cracks are such small amplitude and waviness angle that effect on
stiffness might be not obvious. Stitching has minor effect on the in-plane stiffness of continuous
plies, which is different from traditional conclusions. It is generally considered that the stitching can
reduce the in-plane stiffness by 10%—20% [15,27], these contrary conclusions may only be applicable
for stiffness of the open structure NCF composite.

For Eé and G%z, the average values are almost the same as the reference values (Ref-FEM in Table 6):
they are reduced by 1.7% and 1.3% compared to the reference values, respectively. The transverse
and shear modulus of the QNCF lamina are separately close to the UD. The possible reason for this
phenomenon is that the stitch yarn induces fiber distortion, which occurs in the direction of fiber
tows, and the transverse and shear modulus of composite materials are matrix-dominated. Moreover,
considering that there is no change in matrix properties, the difference between the predictions
employing the three unit cells and the reference value is not obvious.

4.3. In-Plane Strength of QNCF Lamina

The in-plane strength is predicted by meso-scale failure model. The progress failure model is
introduced in Section 3.3.3 that used to predict the failure of composite tows. The von Mises criterion
and the Drucker—Prager yield criterion are introduced to predict the failure of the resin pocket under
different loads. Failure analysis is performed by the Abaqus commercial FE code combined with the
user subroutine UMAT, axial displacement load and in-plane shear load are applied on the surface of
the unit cells, and then the predictions of in-plane strength are listed in Table 7.

The strength data of non-crimp UD laminate that tested in Reference [13] are used in this section
as a comparison. Each of these three unit cells represents a QNCF lamina, and the predicted strength
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of each unit cell represents possible values of the QNCF lamina. For these reasons, the individual
prediction of each unit cell and average value are both compared with experimental results. Similar to
that described above, the averaged value of the predicted results is taken as strength properties of the
QONCEF lamina.

Table 7. In-plane strength of the non-crimp fabric (NCF) lamina evaluated with mesomechanical failure
analysis procedure/MPa.

Description Vi vt x4 b.¢8 Yh Yk sty
Cell A 42.1% 48.1% 1314.4 10551  66.7 148.1 69.4
Cell B 42.1% 43% 1247.6 965.2 69.5 150.2 703
Cell C 42.1% 47.3% 1557.5 13404 701 153.0 72.8

Average 42.1% - 1373.2 11202  68.8 150.4 70.8
Ref-FEM 42.1% - 1792.3 1224 723 148.0 715
EXP‘[*%‘]““ 42.8% + 0.8% - 1233 - 59.6 - 71.3

Compared with the experimental results in reference [13], the average value of X} obtained using
the above three unit cells is 11.4% higher than the experimental results. Figure 8 shows the fiber tension
failure modes in the unit cells and Figure 9a presents the stress-strain response of the unit cells subjected
to uni-axial tension parallel to fiber. As shown in Figure 9a, the numerically determined curves agree
well with the experiment, although a slight overestimate of the tensile strength is observed.
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Figure 9. Typical stress-strain curve of micromechanical non-crimp fabric (NCF) unit cells computations:
(a) longitudinal tensile loads in 1-direction; and (b) shear in 1-2 plane.

Although fiber reinforced composite materials are often considered as brittle materials, a certain
non-linear behavior is observed in Figure 9a. This non-linear behavior is caused by material stiffness
degradation after local failures within the composite tow. In fact, the test data in Reference [13] also
have a stiffness reduction. For non-crimp UD laminate in the test, the initial Young’s modulus is
94.3 GPa, and Young’s modulus is 82.8 GPa in the end of the test. It can be concluded that stiffness of
the laminate is reduced by 12.2% at the ultimate failure.
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As shown in Figure 9a, the curves of Cell A and Cell B have more obvious stiffness reduction
compared with that of Cell C. This result can be explained by the rhomboidal cracks in the laminas
which are more likely to cause stress concentration compared with the channels in the 0° lamina.
The QNCEF layer discussed in this work is composited with four laminas, and three laminas are
provided with the cracks, so the lamina with the cracks is more representative of the actual stress state.
Compared with Cell C, Cell A and Cell B are unit cells with cracks, thus the numerical predictions
employing these two kinds of unit cells are closer to the experiment values.

From Table 7, Y} is 15.3% higher than test value, and the average shear strength is close to
test value. For composite tows under shear loading, the nonlinear behavior of material should be
considered in failure analysis. Generally, this nonlinear behavior is caused by micro crack and plasticity
of matrix. According to the failure model above, the internal state variables of material degradation
are used to analyze the combined influence of the two factors. The engineering analysis method is also
used in Reference [21] to predict matrix shear cracking. Based on this method, the stress-strain response
of the unit cells subjected to simple shear load are shown in Figure 9b. The stiffness decreased about
¢ = 1.8% due to local damage in matrix according to Figure 9b. After elastic range, the nonlinear curves
are obtained. With the progressive damage method, reasonable shear behaviors are obtained. However,
since mechanical properties of the fiber /matrix interface are modeled perfectly in a conventional mesh,
a high transverse strength value is predicted. Considering the dispersion parameters of strength of
composites and the reference experiment is only for one type of non-crimped UD specimen, therefore,
the three unit cells given here can predict in-plane strength of the QNCF lamina with sufficient
engineering accuracy.

As can be seen in Table 7, in the fiber direction, the longitudinal tensile strength XlT obtained
by employing Cell B with fiber waviness is 19.8% lower than Cell C, and the average value of X}
is 23.4% lower than the reference value (Ref-FEM). For longitudinal compressive strength X%, the
maximum difference among the three unit cells reaches to 28.0%. Generally, the differences between
mechanical properties obtained using the cells with fiber waviness and the cell with no waviness are
quite obvious. The average value can still be reduced by approximately 20% relative to the reference
value. Considering the same volume friction of the three unit cells, this difference could be caused
by the local stress concentration, which is a result of fiber waviness induced by the stitch yarn in this
material. This difference between the three unit cells or difference between the average value and the
reference value is obvious. Moreover, this may explain the results of Bibo [14] who found that the
tensile strength of NCF composite is 34.7% lower than the UD composites and the compress strength
is 40% lower than the UD, which is caused by the effect of the stitching in the materials.

The difference of Y} or Y} between the three unit cells and the corresponding reference value
(Ref-FEM) is not obvious, Sy, is also a similar trendy. This indicates that fiber disturbance has no
significant effect on the strength in the direction transverse to the fibers. According to the failure
mechanism, the transverse strength and shear strength are also matrix-dominated, and it has little
relation with the strength of the fiber itself. Therefore, the changes of transverse and shear strength of
NCF lamina caused by fiber disturbance are insensitivity.

5. Conclusions

From the view of mechanical properties of single non-crimp fabric (NCF) lamina, the in-plane
stiffness and strength of quadriaxial non-crimp fabric (QNCF) composites and the effect of in-plane
fiber distortion on mechanical properties are estimated. A new modeling strategy for the meso-scale
features of QNCF is presented. The idea of this modeling approach is derives from the testing method
of mechanical properties of single NCF lamina. According to this idea, the complex inter-structure of
QNCEF is decomposed into some individual ply, and the unit cells along fiber direction are selected.
This simplified engineering modeling approach can improve the efficiency of modeling in multiscale
analysis of QNCF. Furthermore, it can be used to create an equivalent continuum model for continuous
plies NCF at macroscale level, such as engineering models based on semi-laminar consideration.
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In accordance with this modeling strategy, the stiffness and strength of composites are evaluated on
the meso-scale, and the following results are obtained.

(1) The modeling strategy based on mechanical properties of single NCF lamina can be used to
evaluate in-plane stiffness and strength of QNCF composite lamina. The E%, G%z, and 5112 are in
agreement with experimental results; v}, is 5.9% higher than experimental results; and X}, Y} are
11.4%, 15.3% higher than test value, respectively.

(2) The effects of in-plane fiber distortion, induced by the stitch yarn on longitudinal elastic modulus,
is not significant, and modulus of the QNCF lamina has a difference of 3.34% compared with
the same type UD un-stitched composites. This conclusion on the stiffness of QNCF composites
is different from the open structure NCF composite in which the stitching may reduce in-plane
elastic properties by 10%—20%. In addition, stitching induces an assignable effect on longitudinal
strength of QNCF lamina, and has only slight effect on transverse stiffness and transverse strength
of the materials.
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