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Abstract: This paper studies the integral-based event-triggered asymptotic stabilization for a
continuous-time linear plant. Both actuator saturation and observer-based output feedback are
considered. The sensors and actuators are implemented in a decentralized manner and a type of
Zeno-free decentralized integral-based event condition is designed to guarantee the asymptotic
stability of the closed-loop systems. The positive lower bound of inter-event times is guaranteed by
enforcing the event conditions not to be triggered until some fixed intervals. A linear optimization
problem is introduced to find the largest stability region. Moreover, the co-design of the parameters
in event conditions and the controller gain matrices is proposed in terms of linear matrix inequalities.
Finally, two numerical examples are given to illustrate the efficiency and the feasibility of the
proposed results.
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1. Introduction

In the last decade, event-triggered control attracts more and more attention due to the advantages
of reducing the number of control task executions and the cost of communication resources. In this
control strategy, the control task execution is decided by an event instead of a certain fixed period of
time. The latter is known as periodic sampling or time-triggered control [1]. The event is generated
by the designed event condition, which is a state-related criterion. Therefore, event-triggered control
can make the control tasks executed when necessary as the way a human performs [2]. In [3–5],
the authors studied the state-feedback event-triggered control from an input-to-state stable point
of view and proposed several types of event conditions to guarantee the asymptotic stability of
the closed-loop systems. It is noted that the aforementioned works assumed that all the states are
available to the controller, but this assumption is excessive and inappropriate in some situations.
Therefore, [6,7] studied the dynamic output feedback event-triggered control for certain and
uncertain linear systems. Furthermore, the quantization effect on the dynamic output-feedback
event-triggered control was considered in [8]. Ref. [9] applied a cyclic small-gain approach to
analyze the event-triggered control systems with partial states and output feedback. The centralized
or decentralized event-triggered control in networks was studied in [10–12]. The latest survey on
event-triggered control can be found in [13,14]. To further improve the sampling performance, such as
enlarging the average inter-event time or equivalently decreasing the sampling numbers within a fixed
time interval, a novel integral-based event-triggered control scheme was recently proposed in [15,16].
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Literally, the integral-based event-triggered control utilizes the integrals of the measurement signals to
construct the event conditions. By this means, this control scheme can allow the Lyapunov function
to be non-decrescent between two consecutive triggering instants. Consequently, the integral-based
event-triggered control can be proved to yield better sampling performance than the scheme in [3].

Additionally, actuator saturation is a ubiquitous phenomenon in practical control systems due
to the limitation of the facilities. It has been observed that the actuator saturation has a remarkable
effect on the performance of the control systems (see [17] and the references therein). There are few
literatures studied event-triggered control with saturated inputs. In [18] and its follow-up work [19],
the authors studied event-triggered output feedback control for linear systems with actuator saturation,
where the practical stability is guaranteed. Then, they applied the anti-windup approach to improve
the performance of the systems. For a discrete-time linear plant, the event-triggered control subject
to actuator saturation was studied in [20]. Recently, Ref. [21] studied the event-triggered asymptotic
stabilization of a continuous-time plant with saturated inputs in both static state feedback and dynamic
output feedback configurations. A kind of centralized relative event condition is employed in [21],
which is also applied in [3,22].

In this paper, we study the event-triggered asymptotic stabilization of a continuous-time linear
plant with output feedbacks and saturated inputs. The contributions of this paper are described as
follows. First, the decentralized event-triggered control with actuator saturation and output feedback
is considered. In some situations, such as implementations over Wireless Sensor Actuator Networks,
the sensors and actuators are grouped physically into several nodes and each of them has no access to
the measurements of the others (see, e.g., [23–25]). As a result, the event condition of each node can
only utilize its own measurement, and, hence, the event-triggered control in this paper is executed
in a decentralized manner. Second, a type of Zeno-free integral-based event condition is proposed to
ensure the asymptotic stability. By enforcing the decentralized event conditions to not be triggered
until some fixed intervals, the positive lower bound of inter-event time is guaranteed. Then, beyond
these intervals, the integral-based event conditions are used to improve the sampling performance.
Compared to [25], a different mathematical technique (which is based on the Cauchy–Schwarz
inequality) is employed to design these intervals analytically from the integral-based event conditions.
To the best of our knowledge, the existing contributions on integral-based event-triggered control
(see, e.g., [15,16,26]) did not involve the decentralised output feedback configuration and/or the
saturated input signals.

The remainder of this paper is organised as follows. After the necessary notation is introduced in
Section 3, a decentralized integral-based event-triggered output feedback saturated control system
is formulated in Section 2. The main results of this paper are included in Section 4. Two numerical
examples are provided to illustrate the efficiency and the feasibility of the proposed results in Section 5.
Finally, the conclusions of this paper are drawn in Section 6.

2. Preliminaries

The set of real numbers is denoted by R. The set of nonnegative integers is denoted by N≥0.
The transpose of a matrix A ∈ Rn×m is denoted by AT ∈ Rm×n. |s| represents the absolute value of
a scalar s. The Euclidian norm of a vector x ∈ Rn is denoted by ‖x‖, and let ‖x‖∞ denote its infinity
norm, i.e., ‖x‖∞ = maxi=1,...,n |xi|. tr(A) represents the trace of a matrix A and its induced two-norm is
denoted by ‖A‖ :=

√
max λ{AT A}, where λ{AT A} denotes all of the eigenvalues of AT A. An asterisk

(∗) in the matrix is used to present a symmetry block. For a symmetric matrix P ∈ Rn×n, P > 0 (P ≥ 0)
denotes that it is positive (semi-)definite, and, similarly, P < 0 (P ≤ 0) means that it is a negative
(semi-)definite matrix. Let Im ∈ Rm×m (0m×n ∈ Rm×n) represent the identity (zero) matrix, and, for
brevity, we sometimes omit the subscript of Im (0m×n) if there is no confusion from the contexts. The
saturation function for a scalar s with upper bound c, satc(·), is defined as satc(s) = sign(s)min{c, |s|},
where sign(·) denotes the sign function. In addition, the vector saturation function is defined
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as satc(x) = (satc(x1), . . . , satc(xn)) with x = (x1, . . . , x2)
T. For a group of points, p1, p2, . . . , pl ,

the convex hull of these points is defined as co{pk, k = 1, . . . , l} = {
l

∑
k=1

αk pk|
l

∑
k=1

αk = 1,αk ≥ 0}.

To deal with the saturation property, we introduce some lemmas for later use. Define D as the
set of m-demision diagonal matrices whose diagonal elements are either 1 or 0. Obviously, there are
2m elements in D. Label all elements in D as D+

j , j ∈ M := {1, 2, . . . , 2m} and denote D−j = I − D+
j .

For a positive definite matrix P ∈ Rn×n, define an ellipsoid Γ(P) by

Γ(P) := {x ∈ R|xTPx ≤ 1}.

For a given matrix H ∈ Rm×n, denote the j-th row of H as hj. Then, we define

L(H) := {x ∈ Rn|
∣∣hjx

∣∣ ≤ 1, j ∈ 1, . . . , 2}.

With these definitions, we introduce the following lemmas.

Lemma 1. [27] For a given u, v ∈ Rm with u = (u1, u2, . . . , um)T and v = (v1, v2, . . . , vm)T,
suppose ‖v‖∞ ≤ 1. Then,

sat(u) ∈ co{D+
j u + D−j v|j ∈ M}.

Lemma 2. [28] For a given Γ(P) and L(H), if(
1 hj
∗ P

)
≥ 0, j ∈ {1, . . . , m},

where hj denotes the jth row of H, then Γ(P) ⊂ L(H).

3. Problem Formulation

For clarity, the decentralized event-triggered output feedback saturated control system is
illustrated in Figure 1 at first, and the specific details will be given later.
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Figure 1. Decentralized event-triggered output feedback control system with saturated inputs.

Consider the following linear time-invariant plant with saturated input

ẋ = Ax + Bsat(ū),

y = Cx,
(1)
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where x ∈ Rn, ū ∈ Rm, and y ∈ Rq are, respectively, the state vector, the control input, and the
output. A, B, C are constant matrices of appropriate dimensions. (A, B) is supposed to be controllable,
and (A, C) is supposed to be observable. For briefness, we assume that in the following analysis,
the upper bound for the saturation function is c = 1 and the subscript c is dropped. As shown in
Figure 1, both control signal u(t) and output y(t) are implemented in a decentralized manner. Hence,
they are, respectively, partitioned into p actuator nodes and r sensor nodes, i.e., u = (uT

1 , . . . , uT
p)

T and
y = (yT

1 , . . . , yT
r )

T, where us ∈ Rms , s ∈ {1, 2, . . . , p} and yl ∈ Rql , l ∈ {1, 2, . . . , r}. ms (ql) denotes the
dimension of the sth (lth) actuator (sensor) node and satisfies σp

s=1ms = m (σr
l=1ql = q). To identify the

nodes, we introduce the matrices Πs
u ∈ Rms×m and Πl

y ∈ Rql×q defined as

Πs
u = (0ms×m1 , ..., 0ms×ms−1 , Ims , 0ms×ms+1 , ..., 0ms×mp),

Πl
y = (0ql×q1 , ..., 0ql×ql−1 , Iql , 0ql×ql+1 , ...0ql×qr ).

Thus, us = Πs
uu and yl = Πl

yy. Because of the communication constraints, either between sensors
and observer, or between observer and actuators, the information cannot be transmitted continuously.

Denote yl(tl
kl
), l = 1, . . . , r, kl ∈ N≥0 as the latest sampled value at the lth sensor node, which is

available for the observer-based controller to calculate the control signal. us(ts
js), s = 1, . . . , p, js ∈ N≥0

is the latest sampled actuator signal applied to the system. The triggering instants t1
k1

, . . . , tr
kr

, t1
j1

, . . . , tp
jp

are decided by the designed event condition. It is worth noting that different sensor nodes and different
actuator nodes are sampled asynchronously. Thus, at time t, the latest available output ȳ(t) is

ȳ(t) = (yT
1 (t

1
k1
), . . . , yT

r (t
r
kr
))T,

and the input ū(t) is
ū(t) = (uT

1 (t
1
j1), . . . , uT

p(t
p
jp
))T.

Moreover, it is supposed that the first triggering instants of all the nodes are the initial instant,
i.e., tl

0 = ts
0 := t0, for l = 1, . . . , r and s = 1, . . . , p.

Therefore, the observer-based controller can be described as

˙̂x = Ax̂ + L(ȳ− Cx̂) + Bsat(ū),

u = Kx̂,
(2)

where x̂ is the state of observer. The matrices K and L are gain matrices to be designed. Denote the
observer error by z = x̂− x. Then, its dynamic becomes

ż = ˙̂x− ẋ = Az + L(ȳ− Cx̂). (3)

Define the sampling error as E = (eT
u , eT

y )
T, where eu = ū− u and ey = ȳ− y. Then, we introduce

the following decentralized integral-based event condition for each sensor/actuator node:

ts
js+1 = inf

t
{t ≥ ts

js + τ
s
u|
∫ t

ts
js

‖eus‖
2dω > σs

u

∫ t

ts
js

‖us‖2dω}, s = 1, . . . , p, (4a)

tl
kl+1 = inf

t
{t ≥ tl

kl
+ τl

y|
∫ t

tl
kl

∥∥eyl

∥∥2dω > σl
y

∫ t

tl
kl

‖yl‖2dω}, l = 1, . . . , r, (4b)

where σl
y, τl

y,σs
u and τs

u are positive constants to be designed.

Remark 1. In Ref. [15], the centralised state feedback was considered, and it was proved that the positive
minimum inter-event time can be ensured automatically by the integral part of the event condition (4). According
to [22,24], however, it is difficult to avoid Zeno behaviors in both the decentralised and the output feedback
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configurations. Hence, we introduce the positive constants τl
y and τs

u to guarantee the positive minimum
inter-event time. For example, the minimum inter-event time of u1 cannot obviously be less than τ1

u.

From Label (1) and Label (3), the closed-loop system becomes

ẋ = Ax + Bsat(Kx + Kz + eu),

ż = (A− LC)z + Ley.
(5)

Therefore, the main interest of this paper is to design the gain matrices K, L and the decentralized
integral-based event condition (4) such that the closed-loop system (5) is asymptotically stable. To this
end, we first assume the gain matrices to be given and provide results for designing the event condition.
Then, we consider the co-design problem of the gain matrices and the event condition.

4. Theoretical Results

In this section, we provide the main results of this paper. First, we propose a method based
on linear matrix inequality (LMI) to design the event condition (4) in the case that the gain matrices
are supposed to be given. Then, we will study the synthesis of the gain matrices. Let the argument
variable be Xc = (xT, zT)T. Motivated by [21], we initially use Lemma 1 to deal with the saturation
nonlinearity, which shows that if ‖HXc‖∞ ≤ 1 for a matrix H = (H1, H2), Hi ∈ Rm×n, i = 1, 2, then

Bsat(Kx + Kz + eu) ∈ co{BD+
j (Kx + Kz + eu) + BD−j (H1x + H2z), j ∈ M}.

Now, consider the state Xc in the set {Xc ∈ R2n| ‖HXc‖∞ ≤ 1}. At this moment, the closed-loop
system (5) is translated into the following form:

ẋ ∈ co{(A + BD+
j K + BD−j H1)x + (BD+

j K + BD−j H2)z + BD+
j eu, j ∈ M},

ż = (A− LC)z + Ley.
(6)

Then, we study the stability of this differential inclusion. Let V = xTP1x + zTP2z with P1, P2 being
n-dimension positive definite matrices. The derivative of V along the trajectories of Label (6) is

V̇ ∈ co{2xTP1 Acx + 2xTP1BD+
j Kz + 2xTP1BD−j H2z + 2xTP1BD+

j eu

+ 2zTP2(A− LC)z + 2zTP2Ley, j ∈ M},

with Ac = A + BD+
j K + BD−j H1. From the fact 2xTP1BD+

j Kz ≤ ε1zTz + 1
ε1

xTP1BD+
j K(P1BD+

j K)Tx
for any ε1 > 0,

V̇ ∈ co{xT(2P1 Ac +
1
ε1

P1BD+
j K(P1BD+

j K)T)x + 2xTP1BD−j H2z

+ 2xTP1BD+
j eu + zT(2P2(A− LC) + ε1 I)z + 2zTP2Ley, j ∈ M}.

(7)

According to Label (7), a sufficient condition for V̇ < 0 is

XT
c

(
ϕ11 P1BD−j H2

∗ ϕ22

)
Xc + 2XT

c

(
P1BD+

j 0
0 P2L

)
E < 0, j ∈ M, (8)

where ϕ11 = P1 Ac + AT
c P1 +

1
ε1

P1BD+
j K(P1BD+

j K)T and ϕ22 = P2(A − LC) + (A − LC)TP2 + ε1 I.
Due to the fact that, for any ε2 > 0,

2XT
c

(
P1BD+

j 0
0 P2L

)
E ≤ ε2ETE +

1
ε2

XT
c

(
P1BD+

j 0
0 P2L

)(
(P1BD+

j )
T 0

0 LT PT
2

)
Xc,
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if the following matrix inequality holds for some positive scalar ρ0,(
ϕ11 +

1
ε2
(P1BD+

j )(P1BD+
j )

T + ε2ρ
2
0 I P1BD−j H2

∗ ϕ22 + ε2ρ
2
0 I + 1

ε2
P2L(P2L)T

)
< 0, j ∈ M, (9)

then V̇ < ε2(−ρ2
0XT

c Xc + ETE).
By a Schur complement, Label (9) is equivalent to

ψ11 P1BD−j H2 P1BD+
j 0 P1BD+

j K
∗ ψ22 0 P2L 0
∗ ∗ −ε2 I 0 0
∗ ∗ ∗ −ε2 I 0
∗ ∗ ∗ ∗ −ε1 I

 < 0, j ∈ M, (10)

where ψ11 = P1 Ac + Ac
TP1 + ε2ρ

2
0 I, ψ22 = P2(A − LC) + (A − LC)TP2 + (ε1 + ε2ρ

2
0)I and

Ac = A + BD+
j K + BD−j H1. Hence, at this moment, V̇ < ε2(−ρ2

0XT
c Xc + ETE). If the event

condition (4) ensures
∫ t

t0
ETEds ≤ θρ2

0
∫ t

t0
XT

c Xcdω with θ ∈ (0, 1), then V(t) − V(0) =
∫ t

t0
V̇ds <

−(1 − θ)ε2ρ
2
0
∫ t

t0
XT

c Xcdω ≤ 0. As a result, if the ellipsoid Γ(P1, P2) := {(xT, zT)T ∈ R2n|xTP1x +

zTP2z ≤ 1} satisfies
Γ(P1, P2) ⊂ {Xc ∈ R2n| ‖HXc‖∞ ≤ 1}, (11)

then the set Γ(P1, P2) is an invariant set of the closed-loop system (5). Consequently, ‖HXc‖∞ ≤ 1
holds for all t ≥ t0. This means that the closed-loop system is stable. From Lemma 2, a sufficient
condition for Label (11) is  1 h+l h−l

∗ P1 0
∗ ∗ P2

 ≥ 0, l = 1, . . . , m, (12)

where h+l is the lth row of H1 and h−l is the lth row of H2. Then, we propose the following theorem to
obtain the asymptotic stability.

Theorem 1. Consider the closed-loop system (5). Suppose that there exist a group of solutions {P1 > 0, P2 > 0,
ρ2

0 > 0, h+l , h−l } to the LMIs (10) and (12) for some ε1, ε2 > 0. If the parameters in event condition (4) satisfy
the following conditions:

1.
p
∑

s=1
‖Πs

uK̄‖2
σs

u +
r
∑

l=1

∥∥∥Πl
yC̄
∥∥∥2
σl

y < θρ2
0,

2. τs
u ≤

√
σs

u
L2

1+θρ
2
0L2

2
, s = 1, . . . , p, and, τl

y ≤
√

σl
y

L2
1+θρ

2
0L2

2
, l = 1, . . . , r,

where θ ∈ (0, 1), L1 =
∥∥Ā
∥∥+ ‖B̄‖ ‖K̄‖+ ‖B̄‖ ‖H‖, L2 = ‖B̄‖+ ‖L̄‖ and the matrices are

Ā =

(
A 0
0 A− LC

)
, B̄ =

(
B
0

)
, L̄ =

(
0
L

)
, K̄ =

(
K K

)
, C̄ =

(
C 0

)
.

Then, for any initial state in the ellipsoid Γ(P1, P2), the corresponding closed-loop system (5) is
asymptotically stable.

Proof of Theorem 1. If it is shown that the parameters in the theorem can guarantee
∫ t

t0
ETEdω ≤

θρ2
0
∫ t

t0
XT

c Xcdω for t ∈ [t0, ∞), then the stability can be proved directly according to the preceding
analysis. To this end, we first consider the derivative of Xc. From Label (6),

Ẋc ∈ co{(Ā + B̄D+
j K̄ + B̄D−j H)Xc + B̄D+

j

(
I 0

)
E + L̄

(
0 I

)
E}, j ∈ M,
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which leads to∥∥Ẋc
∥∥ ≤ (

∥∥Ā
∥∥+ ‖B̄‖ ‖K̄‖+ ‖B̄‖ ‖H‖) ‖Xc‖+ (‖B̄‖+ ‖L̄‖) ‖E‖ ≤ L1 ‖Xc‖+ L2 ‖E‖ . (13)

Similarly, one has

d
dt
‖eus‖ ≤ ‖ėus‖ ≤

∥∥Πs
uK̄Ẋc

∥∥ ≤ L1,us ‖Xc‖+ L2,us ‖E‖ , s = 1, . . . , p, (14a)

d
dt
∥∥eyl

∥∥ ≤ ∥∥ėyl

∥∥ ≤ ∥∥∥Πl
yC̄Ẋc

∥∥∥ ≤ L1,yl ‖Xc‖+ L2,yl ‖E‖ , l = 1, . . . , r, (14b)

where L1,us = ‖Πs
uK̄‖ L1, L2,us = ‖Πs

uK̄‖ L2, L1,yl =
∥∥∥Πl

yC̄
∥∥∥ L1, and L2,yl =

∥∥∥Πl
yC̄
∥∥∥ L2.

Denote by {tk}∞
k=0 =

p
∪

s=1
{ts

js} ∪
r
∪

l=1
{tl

kl
} the overall triggering instants. By definitions, there may

exist more than one node being triggered for some tk. In addition, since there is no Zeno phenomenon,
lim
k→∞

tk = ∞.

Initially, by contradiction, we prove the inequality
∫ t

t0
ETEdω ≤ θρ2

0
∫ t

t0
XT

c Xcdω for t ∈ [t0, t1).
If Xc(t0) = 0, the conclusion holds obviously. In the case Xc(t0) 6= 0, assume the positive instant
T0 > t0 (it allows being infinity) as the first time when

∫ T0
t0
‖E‖2 dω = θρ2

0
∫ T0

t0
‖Xc‖2 dω. Such a T0

exists because of E(t0) = 0. If T0 ≥ t1, the inequality holds. If T0 < t1,
∫ t

t0
ETEdω ≤ θρ2

0
∫ t

t0
XT

c Xcdω
for t ∈ [t0, T0], and, at this point, it can be proved that for t ∈ [t0, T0],∫ t

t0

‖eus‖
2dω ≤ σs

u ‖Πs
uK̄‖2

∫ t

t0

‖Xc‖2dω,
∫ t

t0

∥∥eyl

∥∥2dω ≤ σl
y

∥∥∥Πl
yC̄
∥∥∥2 ∫ t

t0

‖Xc‖2dω. (15)

To illustrate Label (15), for example, we consider eu1 .
First, in the case T0 − t0 ≤ τ1

u, Label (14a) implies that

‖eu1‖
2 ≤ (

∫ t

t0

L1,u1 ‖Xc‖+ L2,u1 ‖E‖dω)2

≤ 2(t− t0)
∫ t

t0

(
L1,u1 ‖Xc‖

)2
+
(

L2,u1 ‖E‖
)2dω,

(16)

where the last inequality employs the Cauchy–Schwarz inequality and the fact that (a+ b)2 < 2a2 + 2b2.
By integrating Label (16), one has

∫ t

t0

‖eu1‖
2dω ≤ (t− t0)

2
∫ t

t0

(
L1,u1 ‖Xc‖

)2
+
(

L2,u1 ‖E‖
)2dω. (17)

Since
∫ t

t0
ETEdω ≤ θρ2

0
∫ t

t0
XT

c Xcdω for t ∈ [t0, T0], Label (17) leads to

∫ t

t0

‖eu1‖
2dω ≤ (t− t0)

2(L2
1,u1

+ θρ2
0L2

2,u2
)
∫ t

t0

‖Xc‖2dω.

Due to item 2 and the fact T0 − t0 ≤ τ1
u,
∫ t

t0
‖eus‖

2dω ≤ σs
u ‖Πs

uK̄‖2 ∫ t
t0
‖Xc‖2dω for t ∈ [t0, T0].

In the case T0 > τ1
u, Label (15) can be obtained by the integral part of the event condition (4).

In fact, ∫ t

t0

‖eu1‖
2dω ≤ σ1

u

∫ t

t0

‖u1‖2dω ≤ σ1
u

∥∥∥Π1
uK̄
∥∥∥2 ∫ t

t0

‖Xc‖2dω.

The similar analysis can be applied to other eus and eyl by using Label (14a) and Label (14b).
Hence, Label (15) holds for t ∈ [t0, T0].
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Thus, according to the item 1 in the theorem, for t ∈ (t0, T0],

∫ t

t0

‖E‖2dω =
∫ t

t0

p

∑
s=1
‖eus‖

2 +
r

∑
l=1

∥∥eyl

∥∥2dω

≤ (
p

∑
s=1
‖Πs

uK̄‖σs
u +

r

∑
l=1

∥∥∥Πl
yC̄
∥∥∥σl

y)
∫ t

t0

‖Xc‖2dω

< θρ2
0

∫ t

t0

‖Xc‖2 dω.

Namely,
∫ T0

t0
‖E‖2dω < θρ2

0
∫ T0

t0
‖Xc‖2 dω, which contradicts the definition of T0. Therefore,∫ t

t0
‖E‖2dω ≤ θρ2

0
∫ t

t0
‖Xc‖2 dω for t ∈ [t0, t1).

Next, we consider the interval [tk, tk+1). At this point, assume that Label (15) and
∫ t

t0
ETEdω ≤

θρ2
0
∫ t

t0
XT

c Xcdω hold for t ∈ [t0, tk). Define Tk > tk as the first time when
∫ Tk

t0
ETEdω = θρ2

0
∫ Tk

t0
XT

c Xcdω.

If the event conditions in all of the nodes are triggered at tk, then
∫ tk

t0
ETEdω ≤ θρ2

0
∫ tk

t0
XT

c Xcdω as well
as E(tk) = 0, and, hence, Tk is proved to obviously exist. If there are some nodes where the event
conditions are not triggered at tk, for example us, one has

∫ tk
t0
‖eus‖

2dω < σs
u ‖Πs

uK̄‖2 ∫ tk
t0
‖Xc‖2dω.

As a result,
∫ tk

t0
ETEdω < θρ2

0
∫ tk

t0
XT

c Xcdω implies the existence of Tk.

For us, if ts
js = tk, then

∫ tk
t0
‖eus‖

2dω ≤ σs
u ‖Πs

uK̄‖2 ∫ tk
t0
‖Xc‖2dω. By analyzing the case of Tk − tk ≥

τs
u or Tk − tk < τs

u, one has
∫ t

tk
‖eus‖

2dω ≤ σs
u ‖Πs

uK̄‖2 ∫ t
tk
‖Xc‖2dω, t ∈ [tk, Tk]. This means that Label

(15) holds for t ∈ [tk, Tk]. If ts
js < tk, there must exist 0 ≤ k̄ < k such that ts

js = tk̄. Then, one can prove
Label (15) for t ∈ [tk̄, Tk] via the parallel process for the case of ts

js = tk, where tk is replaced by tk̄. As a

result,
∫ t

t0
ETEdω ≤ θρ2

0
∫ t

t0
XT

c Xcdω can be proved for t ∈ [tk, tk+1) by the contradiction with Tk.

Then, by induction, one has
∫ t

t0
ETEdω ≤ θρ2

0
∫ t

t0
XT

c Xcdω for t ∈ [t0, ∞). Thereby, the stability can

be proved. Moreover, the stability implies the uniform continuity of ‖Xc‖2. The limit of the monotone
decreasing function −(1− θ)ε2ρ

2
0
∫ t

t0
XT

c Xcdω exists, since the function is lower bounded by −V(0).

Then, from Barbalat’s Lemma (see [29] for more details), ‖Xc‖2 converges to zero. Therefore, the
closed-loop system is asymptotically stable and the proof is completed.

Remark 2. The proof of Theorem 1 implies that, to guarantee the stability, one can also adopt a time-triggered
control where the sampling period of sensor and actuator nodes are τs

u, s = 1, . . . , p and τl
y, l = 1, . . . , r,

respectively. Hence, for stability, the event conditions are not necessary. However, the time-triggered control
is not preferable to save communication resources. As shown in the Simulation section, by introducing
event-triggered control, quite a larger average inter-event time can be obtained.

For given K, L and ρ0, the ellipsoid Γ(P1, P2) describes the admissible region for initial states such
that the closed-loop system is asymptotically stable. Thereby, one may expect to find the largest one
among them. To define the “largest”, a measure that can reflect the geometrical size of Γ(P1, P2) is
required. Generally, the measure is often considered as volume. However, Ref. [30] pointed out that
the volume optimization can lead ellipsoids to be “flat” in some directions. On the contrary, the trace
optimization yields the ellipsoids that tend to be homogeneous in all directions. Referring to [18,30],
we consider the following optimization problem to find the largest ellipsoid for given K, L, ρ0 and
some ε1, ε2 > 0:

min−tr(P−1
1 + P−1

2 )

subject to (10) and (12),
(18)

where the optimization variables are {P1, P2, H1, H2}. However, the optimization problem (18) is
nonlinear subject to P−1

1 and P−2
2 . Hence, to transfer the above problem into a linear form, we propose
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the following theorem, where the LMI optimization problem can be solved by the standard LMI
toolbox in MATLAB (8.4.0.150421, The MathWorks, Natick, Massachusetts, United States, 2014).

Theorem 2. The solutions to Label (18) can be obtained from the following LMI optimization problem:

min−tr(Q1 + Q2) subject to

ϕ̄11 BD−j H̄2 BD+
j 0 BD+

j K ε2ρ0Q1 0 0
∗ ϕ̄22 0 L 0 0 ε2ρ0Q2 ε1Q2

∗ ∗ −ε2I 0 0 0 0 0
∗ ∗ ∗ −ε2I 0 0 0 0
∗ ∗ ∗ ∗ −ε1I 0 0 0
∗ ∗ ∗ ∗ ∗ −ε2I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε2I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε1I


< 0, j ∈ M, (19)

 1 h̄+l h̄−l
∗ Q1 0
∗ ∗ Q2

 ≥ 0, l = 1, . . . , m, (20)

where ϕ̄11 = AQ1 + BD+
j KQ1 + BD−j H̄1 + (AQ1 + BD+

j KQ1 + BD−j H̄1)
T, and ϕ̄22 = (A− LC)Q2 +

Q2(A− LC)T. The LMI variables are positive definite matrices Q1,Q2, and matrices H̄1, H̄2. h̄+l and h̄−l are
the lth row of H̄1 and H̄2, respectively. Moreover, the solutions to Label (18) are {Q−1

1 , Q−1
2 , H̄1Q−1

1 , H̄2Q−1
2 }.

Proof of Theorem 2. Using the Schur complement, Label (20) is equivalent to
ϕ̄11 + ε2ρ

2
0Q2

1 BD−j H̄2 BD+
j 0 BD+

j K
∗ ϕ̄22 + (ε2ρ

2
0 + ε1)Q2

2 0 L 0
∗ ∗ −ε2I 0 0
∗ ∗ ∗ −ε2I 0
∗ ∗ ∗ ∗ −I

 < 0.

Pre- and post-multiplying both sides of the above inequality by diag{Q−1
1 , Q−1

2 , I, I, I}, it is
transformed to

Q−1
1 ϕ̄11Q−1

1 +ρ2
0I Q−1

1 BD−j H̄2Q−1
2 Q−1

1 BD+
j 0 Q−1

1 BD+
j K

∗ Q−1
2 ϕ̄22Q−1

2 +(ε2ρ
2
0 + ε1)I 0 Q−1

2 L 0
∗ ∗ −I 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −ε1I

 < 0. (21)

By denoting P1 = Q−1
1 , P2 = Q−1

2 , H1 = H̄1Q−1
1 and H2 = H̄2Q−1

2 , Label (21) is the same as
Label (10) obviously. By a similar process, it is proved that Label (20) is equivalent to Label (12) with
h+l = h̄+l Q−1

1 and h−l = h̄−l Q−1
2 . Therefore, the proof is completed.

For given gain matrices K and L, if the LMIs (10) and (12) are feasible, one can design the
parameters in event condition (4) according to Theorem 1 and give the largest ellipsoid by solving the
LMI optimization problem in Theorem 2. Hence, in the following, we focus attention on how to find
such gain matrices, i.e., a controller synthesis jointly with the parameters in the event condition.
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Theorem 3. For the closed-loop system (5), if there exist positive definite matrices Q1, P2, matrices Yk YL, h̄+l ,
and h−l , l = 1, . . . , m, and a positive scalar ρ1 such that the following LMIs hold for some ε1, ε2 > 0:

Λ11 BD−j H2 BD+
j 0 BD+

j YK
√
ε2Q1 0

∗ Λ22 0 YL 0 0
√
ε2I

∗ ∗ −ε2I 0 0 0 0
∗ ∗ ∗ −ε2I 0 0 0
∗ ∗ ∗ ∗ −2ε1Q1 + ε1I 0 0
∗ ∗ ∗ ∗ ∗ −ρ1I 0
∗ ∗ ∗ ∗ ∗ ∗ −ρ1I


< 0, j ∈M, (22)

 1 h̄+l h−l
∗ Q1 0
∗ ∗ P2

 ≥ 0, l = 1, . . . , m, (23)

where Λ11 = AQ1 + BD+
j YK + BD−j H̄1 + (AQ1 + BD+

j YK + BD−j H̄1)
T and Λ22 = P2A−YLC + (P2A−

YLC)T + ε1I. h̄+l and h−l are, respectively, the lth row of H̄1 and H2. Then, {Q−1
1 , P2,ρ−1

1 , h̄+l Q−1
1 , h−l } are the

solutions to the LMIs (10) and (12) with K = YKQ−1
1 and L = P−1

2 YL.

Proof of Theorem 3. Due to the Schur complement and the fact that −Q2
1 ≤ −2Q1 + I,

Label (22) yields 
Λ11 + ε2ρ

−1
1 Q2

1 BD−j H2 BD+
j 0 BD+

j Yk

∗ Λ22 + ε2ρ
−1
1 I 0 YL 0

∗ ∗ −ε2I 0 0
∗ ∗ ∗ −ε2I 0
∗ ∗ ∗ ∗ −ε1Q2

1

 < 0. (24)

Pre- and post-multiplying both sides of Label (24) by diag{Q−1
1 , I, I, I, Q−1

1 } and substituting
YKQ−1

1 = K and YL = P2L into Label (24), one has that Label (24) is equivalent to
Λ̄11 Q−1

1 BD−j H2 Q−1
1 BD+

j 0 Q−1
1 BD+

j K
∗ Λ̄22 0 P2L 0
∗ ∗ −ε2I 0 0
∗ ∗ ∗ −ε2I 0
∗ ∗ ∗ ∗ −ε1I

 < 0, (25)

where Λ̄11 = Q−1
1 A + Q−1

1 BD+
l K + Q−1

1 BD−l H̄1Q−1
1 + (Q−1

1 A + Q−1
1 BD+

l K + Q−1
1 BD−l H̄1Q−1

1 )T +

ε2ρ
−1
1 I, and Λ̄22 = P2(A− LC) + (A− LC)TP2 + (ε1 + ε2ρ

−1
1 )I. By denoting P1 = Q−1

1 , H1 = H̄1Q−1
1

and ρ2
0 = ρ−1

1 , Label (25) is the same as Label (10). This shows that Label (22) is a sufficient condition for
Label (10). Similarly, by pre- and post-multiplying both sides of Label (23) by diag{1, Q−1

1 , I}, Label (23)
is equivalent to Label (12). Therefore, the proof is completed.

Remark 3. In Label (10), scalars ε1, ε2 > 0 are two free parameters for improving the feasibility of the LMI.
To make the LMI feasible, properly large ε1 and ε2 are expected. On the one hand, ε1 has a counter effect on
the feasibility. In fact, as shown in the last column, for a fixed P1, ε1 is expected to be large enough, which,
however, may yield a large P2. On the other hand, for a large P2, as shown in the forth column, a large ε2 is
expected as well. To eliminate the effect of large ε2, as shown in ψ11, ρ0 is required to be small enough, which can
always be satisfied. Therefore, to make Label (10) feasible, large ε1 and ε2 are expected, although too large ε1 and
ε2 lead ρ0 to be very small. Since a small ρ0 would make the event condition more easy to be triggered, small
ε1, ε2 are expected to improve the sampling performance. To balance the feasibility of LMIs and the sampling
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performance, one may follow a two-step procedure for choosing the proper free parameters. First, one should
select large enough ε1, ε2 such that the LMIs are feasible. Second, to obtain a large ρ0, one should gradually
decrease the values of the free parameters until the obtained ρ0 is satisfactory or the LMIs are not feasible. The
above analysis is also applicable to the LMIs in Theorems 2 and 3.

Remark 4. In Ref. [25], the decentralised relative event condition is employed, i.e.,

ts
js+1 = inf

t
{t ≥ ts

js + τ
s
u| ‖eus‖ > σs

u ‖us‖}, s = 1, . . . , p,

tl
kl+1 = inf

t
{t ≥ tl

kl
+ τl

y|
∥∥eyl

∥∥ > σl
y ‖yl‖}, l = 1, . . . , r.

Similar to the analysis in [15] (Theorem 2), the integral-based event condition (4) is better than the relative
one to some degree.

For example, we consider the node u1. For the same triggering input u1(t1
k1
), the next triggering instant

t1
k1+1 decided by the relative event condition cannot be larger than that decided by Label (4). In fact, when t1

k1+1
determined by the relative event condition is τ1

u, the statement is obvious. In addition, when t1
k1+1 > τ1

u, from
the relative event condition, one has that ‖eu1‖ ≤ σ1

u ‖u1‖ for all t ∈ [t1
k1

, t1
k1+1). Clearly, the inequality also

holds if one integrates on both sides. Thus, the input signal at t1
k1+1 that is decided by the relative event condition

would not satisfy the integral-based event condition (4), and the statement is valid.

5. Simulation

5.1. Design of Event Conditions and Controllers

In this subsection, we provide numerical simulations to illustrate the feasibility of Theorems 1
and 3. Consider the following plant borrowed from [25] with

A =


0 1 0 0
−48.6 −1.25 48.6 0

0 0 0 1
19.5 0 −19.5 0

 , B =


0

21.6
0
0

 , C =

(
1 0 0 0
0 1 0 0

)
. (26)

Hence, we suppose that there are two sensor nodes, y1 and y2, and one actuator node, u1, in the
plant. The initial states of the plant and the observer are, respectively, selected as

xT(0) =
(

0 −4.5 −0.05 1.5
)

; x̂T(0) =
(
−0.05 −5.4 −0.25 1.8

)
.

Then, by solving the LMIs in Theorem 3 with ε1 = 8 and ε2 = 17, a group of feasible solutions are
ρ0 = 0.08, the gain matrices

K =
(
−0.0962 −0.3757 −0.3768 −0.2257

)
, LT =

(
8.5835 3.9595 9.1535 −1.1554
1.9763 45.9760 8.6555 −14.5631

)
,

and the ellipsoid Γ(P1, P2) with

P1 =


1.1606 0.0813 −0.8561 0.1488
0.0813 0.0406 −0.0401 0.0325
−0.8561 −0.0401 0.9802 −0.0607
0.1488 0.0325 −0.0607 0.1063

 ,



Appl. Sci. 2017, 7, 11 12 of 16

P2 =


9.4717 3.1637 −8.4906 6.2623
3.1637 2.2400 −3.3975 4.6866
−8.4906 −3.3975 9.4641 −6.3464
6.2623 4.6866 −6.3464 11.9925

 .

By simple calculation, the initial states belong to the above ellipsoid. According to Theorem 1
with θ = 0.9375, the decentralized integral-based event conditions of the sensor and actuator nodes are
designed as

t1
j1+1 = inf

t
{t ≥ t1

j1 + 3.5000× 10−4|
∫ t

t1
j1

‖eu1‖
2dω > 0.0025

∫ t

t1
j1

‖u1‖2dω},

t1
k1+1 = inf

t
{t ≥ t1

k1
+ 3.0000× 10−4|

∫ t

t1
k1

∥∥ey1

∥∥2dω > 0.0020
∫ t

t1
k1

‖y1‖2dω},

t2
k2+1 = inf

t
{t ≥ t2

k2
+ 3.0000× 10−4|

∫ t

t2
k2

∥∥ey2

∥∥2dω > 0.0020
∫ t

t2
k2

‖y2‖2dω}.

Figure 2 shows the convergence of the plant state and the observer error at the origin. The top
row of Figure 3 provides the input signal trajectory, which is saturated at the initial stage of the control
process. The bottom row of Figures 3 and 4 show the evolutions of the inter-event times of the actuator
and sensor nodes. Table 1 provides the sampling numbers of the nodes u1, y1 and y2 of the proposed
scheme. By simple calculations, the average inter-event times are 0.0044 s, 0.0119 s and 0.0048 s for,
respectively, u1, y1 and y2. All of them are quite larger than τ1

u, τ1
y and τ2

y. Hence, compared to the
time-triggered manner, event-triggered control can save more communication resources without loss of
stability. Meanwhile, we also make a comparison among the proposed integral-based event-triggered
control scheme and some existing ones, i.e., the centralized relative event-triggered control in [21] and
the decentralized one in [25]. The evolutions of the inter-event times are also depicted in Figures 3 and
4. Obviously, almost all of the inter-event times decided by (4) are larger than those by the decentralized
relative event condition, like the analysis in Remark 4. The sampling numbers for the two schemes are
given in Table 1. Although the centralized event-triggered control scheme contradicts the decentralized
configuration in Figure 1, comparing it with our scheme still contributes to illustrating the advantages
of integral-based event condition. As shown in Table 1, on the one hand, the sampling numbers for
centralized event-triggered control in [21] are less than those for the decentralized relative event
condition in [25]. This accords with the analysis in [24], that is, the decentralization would weaken
the sampling performance. On the other hand, for each channel, the total samplings numbers for the
proposed scheme (i.e., 900 samplings for the controller-to-actuator channel and 1162 samplings for
the sensor-to-controller channel) are less than those for the scheme in [21] (i.e., 1654 samplings for the
controller-to-actuator channel and 1392 samplings for the sensor-to-controller channel). This illustrates
that, in this simulation, the integral-based event condition can save more communication resources
than the relative event condition even though the latter operates in a centralized way. Additionally,
for the proposed scheme, the sampling performance of y1 is better than that of u1 and y2. To balance
the sampling performance of these nodes, one can properly decrease σ1

y and increase σ1
u,σ2

y within the
range decided by Theorem 1.

Table 1. Sampling numbers for different event-triggered control schemes.

Node The Proposed Scheme The Scheme in [21] The Scheme in [25]

u1 900 1654 3180
y1 331 696 748
y2 831 696 1803
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Figure 2. Trajectories of the plant state and the observer error. (a) state trajectories; (b) observer
error trajectories.
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Figure 3. (top row): input signal; (bottom row): evolutions of inter-event times in node u1.
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Figure 4. (top row): evolutions of inter-event times in nodes y1; (bottom row): evolutions of inter-event
times in nodes y2.
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5.2. Optimization of the Ellipsoid for Initial States

In this subsection, we provide the simulation results about the ellipsoid Γ(P1, P2). For ease of
presentation, we consider the following two-dimensional plant borrowed from [21] with

A =

(
−1.7741 0.4815
−7.68374 2.0741

)
, B =

(
8
8

)
, C =

(
6 9

)
.

Then, according to Theorem 3, one can obtain the parameter ρ0 and the gain matrices K, L.
With ε1 = 30, ε2 = 17, a group of solutions to the LMIs in Theorem 3 are ρ0 = 0.2, K = (−2.5738, 1.2988),

L =

(
−0.6418
2.8786

)
, P1 = Q−1

1 =

(
1.2450 −0.7870
−0.7870 0.5891

)
, and P2 =

(
73.2137 19.5689
19.5689 18.3229

)
.

For convenience of plotting the ellipsoid, we consider the case that the initial state of the observer
in Label (2) is x̂(0) = 0, and correspondingly z(0) = −x(0). In this situation, the set Γ(P1, P2) can
reduce to Γ0(P1 + P2)× {(0, 0)T} with Γ0(P1 + P2) = {xT ∈ Rn|xT(P1 + P2)x ≤ 1}. Hence, one can
evaluate the size of Γ(P1, P2) by Γ0(P1 + P2) to some degree.

More importantly, Γ0(P1 + P2) is a two-dimensional ellipsoid and can be plotted in the plane.
Figure 5 shows the boundary of the ellipsoid Γ0(P1 + P2) with different ρ0, P1, and P2. First, we plot

the ellipsoid with ρ0 = 0.2 and the original P1 and P2 obtained from Theorem 3. Then, according to
Theorem 2, one can obtain the optimized version for ρ0 = 0.2, and it is plotted by the solid curve.
Obviously, Theorem 2 can enlarge the ellipsoid for fixed gain matrices K and L. Moreover, Figure 5
provides the curves with the parameters obtained from Theorem 2 for different ρ0. The results show
that the size of the ellipsoid increases by decreasing ρ0, which indicates that there is a trade-off between
the sampling performance and the admissible region for initial states such that the closed-loop system
is asymptotically stable.
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Figure 5. The ellipsoids for the initial state.

6. Conclusions

This paper has focused on the decentralized integral-based event-triggered asymptotic
stabilization for a continuous-time linear plant with actuator saturation and output feedback.
The communications between the sensor-controller channel and those between the controller–actuator
channel were both considered. The sensors and actuators are implemented in a decentralized manner
and the event-triggered control is executed in a decentralized manner. For given controller gain
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matrices, a type of Zeno-free decentralized event condition was designed to obtain the asymptotic
stability of the closed-loop systems. The positive lower bound of inter-event times was guaranteed
by enforcing the event conditions not to be triggered until some fixed intervals. Then, beyond
these intervals, the integral-based event conditions were employed to further improve the sampling
performance. A linear optimization problem was introduced to find the largest region for initial
states such that the closed-loop system is asymptotically stable. Moreover, the co-design of the
parameters in event conditions and the controller gain matrices was solved by means of LMI. Finally,
two numerical examples were given to illustrate the efficiency and the feasibility of the proposed
results. Some extensions of this paper include applying the integral-based event-triggered control to
the distributed networked control [10] or multi-agent systems [31] with actuator saturations.
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