
applied  
sciences

Article

Nonlinear Integral Type Observer Design for State
Estimation and Unknown Input Reconstruction

Chao-Chung Peng

Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan;
ccpeng@mail.ncku.edu.tw; Tel.: +886-6-2757575 (ext. 63633)

Academic Editors: Chien-Hung Liu and Huei-Chu Weng
Received: 12 November 2016; Accepted: 4 January 2017; Published: 14 January 2017

Abstract: This paper is concerned with model-based robust observer designs for state observation
and its application for unknown input reconstruction. Firstly, a sliding mode observer (SMO),
which provides exponential convergence of estimation error, is designed for a class of multivariable
perturbed systems. Observer gain matrices subject to specific structures are going to be imposed such
that the unknown perturbation will not affect estimate precision during the sliding modes; Secondly,
to improve discontinuous control induced in the SMO as well as pursue asymptotic estimate precision,
a proportional-integral type observer (PIO) is further developed. Both the design procedures of the
SMO and PIO algorithms are characterized as feasibility issues of linear matrix inequality (LMI) and
thus the computations of the control parameters can be efficiently solved. Compared with the SMO,
it will be demonstrated that the PIO is capable of achieving better estimation precision as long as the
unknown inputs are continuous. Finally, a servo-drive flexible robot arm is selected as an example to
demonstrate the applications of the robust observer designs.
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1. Introduction

Sliding Mode Control (SMC) is a well-known control theory owing to its outstanding robustness
properties against to parametric uncertainties and external disturbances [1]. Sliding mode observer
(SMO) is a high performance state estimator well suited for nonlinear uncertain systems [2,3] with
only output information available.

Sliding mode observers (SMOs) have been successfully implemented in real control engineering
for state estimations. In [4], SMOs are designed for flux estimation of induction motors. For motion
control systems subject to nonlienar frictions, a SMO is applied to estimation friction state information
for achieving friction compensation purpose [5]. To get better control performance, recently a SMO [6]
and an extended type SMO [7] are employed to estimate unknown external disturbances as well
as modeling uncertainties in finite time. Building on the work [8], a SMO is applied to control
aero-elastic response of flapped wing for the suppression of external excitation [9]. For nominal
systems, high gain observer is also a good candidate for state estimation. However as pointed out
in [10], estimation performance will be degraded for systems in the presence of uncertainties and
disturbances. Therefore, the use of SMO is capable of enhancing estimation precision.

For many different control problems, searching the solutions of constrained equations may
not be an easy task. A better way is to replace these equations by inequalities and the design
problem can then be effectively solved by using linear matrix inequalities (LMIs) [11,12]. In this
decade, multi-object LMI techniques have been widely applied for the existence problem of robust
continuous/discrete time observer designs [13,14]. For SMO design, the work [8] provides a standard
method based on coordinate transformation. A necessary and sufficient condition is derived for
the switching surface determination. The designs were further refined and solved by LMIs [15].
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When applying the SMO presented in [16], the system input-out matrix must satisfy an algebra
equality, which can be taken as a minimization issue and was recently resolved via LMIs [17].

In recent years, SMO design has been widely investigated not only for state estimation [18,19],
but for recovery of uncertainties as well [20,21]. Building on the equivalent control in ideal sliding
modes [1], the core concept of model-based unknown input/faults reconstructions in control systems is
the generation of residual signals which act as indicators of external input. The idea behind the use of
the observer for disturbance recovery is to estimate the outputs of the system from the measurements
by using a class of SMO [20,21].

As a consequence, the first part of this paper concerns the structure of the SMO presented in [8,21]
and the fault reconstruction ideas [20] to develop a SMO design for achieving state estimation as well
as unknown input recovery. Existence of the SMO scheme is formulated in the form of LMIs such that
all the observer gains involved in the SMO can be efficiently determined. However, estimate precision
of SMO counts on the realization of infinite fast discontinuous control, which might be difficult to
achieve ideally. Therefore, a second part of the work presents a proportional-integral type observer
(PIO). The stability criterion of the PIO design is derived by the way of Lyapunov stability and the
choice of observer gains applied in the PIO is resorted to solve a specific LMI. Inspired by and compare
to the recent work [22], the proposed method is capable of reconstructing smooth as well as abrupt
unknown inputs in an asymptotic level even though the L2 condition is not satisfied.

Finally, simulations of a mechanical system subject to continuous and discontinuous unknown
inputs are both addressed. Comparison studies are carried out and the estimation properties of the
SMO and the PIO are also discussed.

2. Observer Design for Nonlinear Disturbed System

Consider the following nonlinear control system

.
x = Ax + Bu + Df(x, t)
y = Cx

(1)

where the matrices A ∈ Rn×n, B ∈ Rn×m, D ∈ Rn×q and C ∈ Rp×n are known. The last term
f(x, t) is denoted as a lumped perturbation term containing system nonlinearities and unknown input
signals. In this paper, we focus on the observer design for disturbance reconstruction as well as state
estimation. Thus, system models are assumed to be known. In addition without loss of generality,
the input/perturbation distribution matrices are of full rank. The following assumptions are imposed
in this paper.

Assumption 1. The matrices C and D satisfy that rank(CD) = q.

Assumption 2. The system is observable and the dimensions n > p ≥ m and p > q are considered.

Assumption 3. The nonlinear term is bounded by a known constant δ; that is ‖f(x, t)‖ ≤ δ.

Applying a state transformation x→ Tox in which To =
[
N (C) CT

]T
and T−1

o =[
N (C) CT(CCT)−1

]
, gives

.
x1 = A11x1 + A12x2 + B1u + D1f(x, t)
.
x2 = A21x1 + A22x2 + B2u + D2f(x, t)
y = x2

(2)

where N (•) denotes as null space D1 ∈ R(n−p)×q and D2 ∈ Rp×q.
Based on Assumptions 1 and 2, apply a coordinate transformation matrix TD similar to [20]

as follows
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TD =

[
In−p −D1

(
DT

2 D2
)−1DT

2
0 Tp

]
(3)

where Tp ∈ Rp×p is an orthogonal matrix satisfying TpD2 =

[
0

D222

]
l p− q
l q

.

Let D22 = TpD2 and then the system (2) in a new coordinate space can be further represented by

.
x1 = A11x1 + A12x2 + B1u
.
x2 = A21x1 + A22x2 + B2u + D22f(x, t)

y =
[

0 TT
p

]
x = TT

p x2

(4)

where A11 ∈ R(n−p)×(n−p), A12 ∈ R(n−p)×p, A21 ∈ Rp×(n−p), A22 ∈ Rp×p, B1 ∈ R(n−p)×m and
B2 ∈ Rp×m.

By using the coordinate transformations, the control systems are going to be represented by
a canonical form and hence the robust SMO design can be easily carried out.

For system (4), firstly apply the following observer

.
x̂1 = A11x̂1 + A12x̂2 + B1u + G1ey + Lv
.
x̂2 = A21x̂1 + A22x̂2 + B2u + G2ey + v

ŷ = TT
p x̂2

(5)

where ey = y− ŷ = TT
p (x2 − x̂2). G1 ∈ R(n−p)×p, G2 ∈ Rp×p and L ∈ R(n−p)×p are observer gain

matrices and v denotes as an observer control input. The SMO structure consists of switching terms
added to a Luenberger observer [23].

From (2) and (5), it leads to the following error dynamics

.
e1 = A11e1 + A12e2 −G1ey − Lv
.
e2 = A21e1 + A22e2 −G2ey − v + D22f(x, t)

ey = TT
p e2

(6)

Equation (6) can be represented as the following compact form

.
e1 = A11e1 +

(
A12 −G1TT

p

)
e2 − Lv

.
e2 = A21e1 +

(
A22 −G2TT

p

)
e2 − v + D22f(x, t)

ey = TT
p e2

(7)

Since only ey is available, design of an output based sliding surface So should depend on
ey (or e2) only. For example when So = e2 is selected, by applying v = ρsign(So) in which

ρ > ‖A21e1 + D22f(x, t)‖, then So =
.
So = 0 is attained in finite time. Therefore v is now replaced by

the so-called equivalent control denoted by veq.
During the sliding motions, the equivalent control effort can be represented by

veq = A21e1 + D22f(x, t) (8)

It is clear that the reconstruction of fault signals lies in the application of the equivalent output
injection concept [8,15,18]. Therefore, it is necessary to maintain an ideal sliding motion.

On the other hand, the reduced order dynamics in the sliding mode is dominated by

.
e1 = (A11 − LA21)e1 − LD22f(x, t) (9)
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By using preceding coordinate transformation, it can be clearly observed from (9) that the pair
(A, C) is observable, it follows that the pair (A11, A21) is observable as well. Let A11 := A11 − LA21,
it is obviously that can be achieved by appropriate choices of L. Nevertheless, the reduced order
dynamics is going to be perturbed by the perturbation term f(x, t) through the observer gain matrix L.
The asymptotic estimation level can be reached by applying L = 0 as long as λ(A11) < 0 is naturally
satisfied. Nevertheless, this achievement depends on the property of A11, which may not always be
the case. As a consequence, the following task is dedicated to design an appropriate control structure
for (9) so that exponential estimation level could be obtained. If e1 → 0 could be attained, it follows
that f(x, t)→

(
DT

22D22
)−1DT

22veq .
To this aim, further apply a coordinate transformation to system (7) by e = TLe in which

TL =

[
In−p −L

0 Ip

]
& T−1

L =

[
In−p L

0 Ip

]
(10)

Then, (7) can be represented by

.
e1 = A11e1 +

(
A12 −G1TT

p

)
e2 − LD22f(x, t)

.
e2 = A21e1 +

(
A22 −G2TT

p

)
e2 − v + D22f(x, t)

ey = T−1
p e2

(11)

where the matrices are given by A11 = A11 − LA21, A12 = A12 − LA22 + A11L− LA21L, A21 = A21,
A22 = A21L + A22, G1 = G1 − LG2 and G2 = G2.

Designing the following gain matrices G1 = A12Tp

G2 =
(

A22 −As
22

)
Tp

⇔

 G1 = A12Tp + LG2

G2 =
(

A22 −As
22

)
Tp

(12)

and applying to (11) follows

.
e1 = A11e1 − LD22f(x, t)
.
e2 = A21e1 + As

22e2 − v + D22f(x, t)
(13)

where As
22 is also a decision variable needs to be determined. Equation (13) shows that the estimation

precision might be deteriorated by f(x, t). Fortunately, owing to the property p > q, there exists
a design degree of freedom on the selection of the gain matrix L such that the error dynamics (9) is
insensitive to f(x, t). Therefore, the control object is to consider a structural constrain imposing on
an observer gain matrices and solve them through LMIs.

By assigning the specific structure L =
[

L1 L2

]
=
[

L1 0
]
, where L1 ∈ R(n−p)×(p−q) and

L2 ∈ 0(n−p)×q, one can easily get
A11 = A11 − LA21 = A11 −

[
L1 L2

][ A211

A212

]
= A11 − L1A211

LD22 = L

[
0

D222

]
=
[

L1 L2

][ 0
D222

]
= L2D222 = 0

(14)

where A211 ∈ R(p−q)×(n−p) and A212 ∈ Rq×(n−p).
Therefore, the design object turns into a feasibility problem on the selection of L1 such that

λ
(
A11

)
= λ(A11 − L1A211) < 0.
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Based on (14), let X =

[
e1

e2

]
and
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Then system (13) turns into 

 
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0
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AcXX  (17) 

Consider the linear part of (17) and a positive definite symmetric matrix  21,PPdiagP , the 

nominal closed-loop dynamics is said to be quadratic stable if the inequality 

0PAcPAcT  (18) 

is attained. 
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Consider Shur complement, the quadratic stability is achieved if and only if following 

inequalities are simultaneously guaranteed. 
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guaranteed. Therefore, it leads to a two steps design. The following is going to propose a convenient 

way to resolve the preceding issues simultaneously via a LMI design, where the specific structure of 
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Proposition 1. For the observer error dynamics (17), by applying the following sliding controller  
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(21) 

and 

    22, Dx t  (22) 

where 0  is a given value, then the prescribed sliding motions are eventually fulfilled as long as the 

following inequality is feasible 

022211  PKKCKKCPAPA TTTT  (23) 

where 
11 PLK   and 

22 PLK   are both control variables requiring to be determined. 

Moreover, the high gain feedback is avoidable by further considering the following minimization process: 

=

[
A11 0
A21 As

22

]
, consider a system partition

Appl. Sci. 2017, 7, 67 5 of 19 

Based on (14), let 









2

1

e

e
X  and 










s
AA

A

2221

11 0
Ac , consider a system partition 

 21 LCLAAc   (15) 

where the matrices are defined by 

   

   

     

 

 

     
































































pqpnpnqpn

pqp

pnp

ppnpnpn

qpnpqpp

qpnpn

00

0
,

0

00

00

0
,

0

0

211

22

2

1

1

21

11

A

A

L

A

A

s CL

LA

 (16) 

Then system (13) turns into 

 










t,

0

22 xfDv
AcXX  (17) 

Consider the linear part of (17) and a positive definite symmetric matrix  21,PPdiagP , the 

nominal closed-loop dynamics is said to be quadratic stable if the inequality 

0PAcPAcT  (18) 

is attained. 

The left-hand-side of (18) can be rewritten in detail as follows 

   


























ss
APPAAP

PALAAPPLAA

FF

FF

222222212

2212111112111

23

31 :
T

TTT

 (19) 

Consider Shur complement, the quadratic stability is achieved if and only if following 

inequalities are simultaneously guaranteed. 

0

0,0

3

1

231

21






FFFF

FF
T

  
 (20) 

It can be easily found that to achieve the quadratic stability, one has to firstly determine L  and 
Ts

A22  to satisfy 01 F  and 02 F . In addition, one must finally check whether 03

1

231  
FFFF

T
 is also 

guaranteed. Therefore, it leads to a two steps design. The following is going to propose a convenient 

way to resolve the preceding issues simultaneously via a LMI design, where the specific structure of 

L  needs to be considered. 

Proposition 1. For the observer error dynamics (17), by applying the following sliding controller  

 

 











0|

,

22

2

2

eeeTseeS

sP

sP
xv

yyyo p

p

t
 

(21) 

and 

    22, Dx t  (22) 

where 0  is a given value, then the prescribed sliding motions are eventually fulfilled as long as the 

following inequality is feasible 

022211  PKKCKKCPAPA TTTT  (23) 

where 
11 PLK   and 

22 PLK   are both control variables requiring to be determined. 

Moreover, the high gain feedback is avoidable by further considering the following minimization process: 

=

Appl. Sci. 2017, 7, 67 5 of 19 

Based on (14), let 







=

2

1

e

e
X  and 








=

sAA

A

2221

11 0
Ac , consider a system partition 

( )21 LCLAAc +−=  (15) 

where the matrices are defined by 

( ) ( )

( ) ( )

( ) ( ) ( )

( )

( )

( ) ( ) ( )




















=








−

=









=








=

×+−−×+−

×−

−×

×−−×−

+−×−×

+−×−

pqpnpnqpn

pqp

pnp

ppnpnpn

qpnpqpp

qpnpn

00
0

,
0

00

00
0

,
0
0

211

22
2

1
1

21

11

A

A

L

A

A

s CL

LA

 (16) 

Then system (13) turns into 

( )






+−

+=
t,

0

22 xfDv
AcXX  (17) 

Consider the linear part of (17) and a positive definite symmetric matrix ( )21 ,PPdiag=P , the 
nominal closed-loop dynamics is said to be quadratic stable if the inequality 

0<+ PAcPAc T  (18) 

is attained. 
The left-hand-side of (18) can be rewritten in detail as follows 

( ) ( )












+
−+−=








ss APPAAP

PALAAPPLAA

FF

FF

222222212

2212111112111

23

31 :
T

TTT

 (19) 

Consider Shur complement, the quadratic stability is achieved if and only if following 
inequalities are simultaneously guaranteed. 

0
0,0

3
1

231

21

<−
<<

− FFFF

FF
T

   (20) 

It can be easily found that to achieve the quadratic stability, one has to firstly determine L  and 
TsA22  to satisfy 01 <F  and 02 <F . In addition, one must finally check whether 03

1
231 <− − FFFF T  is also 

guaranteed. Therefore, it leads to a two steps design. The following is going to propose a convenient 
way to resolve the preceding issues simultaneously via a LMI design, where the specific structure of 
L  needs to be considered. 

Proposition 1. For the observer error dynamics (17), by applying the following sliding controller  

( )

{ }







====ℜ∈==

=

0|

,

22

2

2

eeeTseeS

sP

sP
xv

yyyo p
p

tρ
 (21) 

and 

( ) ηδρ +≥ 22, Dx t  (22) 

where 0>η  is a given value, then the prescribed sliding motions are eventually fulfilled as long as the 
following inequality is feasible 

022211 <+−−−−+ PKKCKKCPAPA αTTTT  (23) 

where 11 PLK =  and 22 PLK =  are both control variables requiring to be determined. 
Moreover, the high gain feedback is avoidable by further considering the following minimization process: 

− (L1C +L2) (15)

where the matrices are defined by

Appl. Sci. 2017, 7, 67 5 of 19 

Based on (14), let 







=

2

1

e

e
X  and 








=

sAA

A

2221

11 0
Ac , consider a system partition 

( )21 LCLAAc +−=  (15) 

where the matrices are defined by 

( ) ( )

( ) ( )

( ) ( ) ( )

( )

( )

( ) ( ) ( )




















=








−

=









=








=

×+−−×+−

×−

−×

×−−×−

+−×−×

+−×−

pqpnpnqpn

pqp

pnp

ppnpnpn

qpnpqpp

qpnpn

00
0

,
0

00

00
0

,
0
0

211

22
2

1
1

21

11

A

A

L

A

A

s CL

LA

 (16) 

Then system (13) turns into 

( )






+−

+=
t,

0

22 xfDv
AcXX  (17) 

Consider the linear part of (17) and a positive definite symmetric matrix ( )21 ,PPdiag=P , the 
nominal closed-loop dynamics is said to be quadratic stable if the inequality 

0<+ PAcPAc T  (18) 

is attained. 
The left-hand-side of (18) can be rewritten in detail as follows 

( ) ( )












+
−+−=








ss APPAAP

PALAAPPLAA

FF

FF

222222212

2212111112111

23

31 :
T

TTT

 (19) 

Consider Shur complement, the quadratic stability is achieved if and only if following 
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where 0>η  is a given value, then the prescribed sliding motions are eventually fulfilled as long as the 
following inequality is feasible 
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Consider Shur complement, the quadratic stability is achieved if and only if following 
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where 0  is a given value, then the prescribed sliding motions are eventually fulfilled as long as the 

following inequality is feasible 
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Consider Shur complement, the quadratic stability is achieved if and only if following 
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and 
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where 0  is a given value, then the prescribed sliding motions are eventually fulfilled as long as the 

following inequality is feasible 
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where 
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22 PLK   are both control variables requiring to be determined. 

Moreover, the high gain feedback is avoidable by further considering the following minimization process: 
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is attained.
The left-hand-side of (18) can be rewritten in detail as follows[

F1 FT
3

F3 F2

]
:=

[
(A11 − LA21)

TP1 + P1(A11 − LA21) AT
21P2

P2A21 AsT
22 P2 + P2As

22

]
(19)

Consider Shur complement, the quadratic stability is achieved if and only if following inequalities
are simultaneously guaranteed.

F1 < 0, F2 < 0

F1 − FT
3 F−1

2 F3 < 0
(20)

It can be easily found that to achieve the quadratic stability, one has to firstly determine L and
AsT

22 to satisfy F1 < 0 and F2 < 0. In addition, one must finally check whether F1 − FT
3 F−1

2 F3 < 0 is also
guaranteed. Therefore, it leads to a two steps design. The following is going to propose a convenient
way to resolve the preceding issues simultaneously via a LMI design, where the specific structure of L
needs to be considered.

Proposition 1. For the observer error dynamics (17), by applying the following sliding controller{
v = ρ(x, t) P2s

‖P2s‖

So =
{

ey = ey ∈ Rp
∣∣s = Tpey = e2 = e2 = 0

} (21)

and
ρ(x, t) ≥ δ‖D22‖+ η (22)

where η > 0 is a given value, then the prescribed sliding motions are eventually fulfilled as long as the following
inequality is feasible
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Consider Shur complement, the quadratic stability is achieved if and only if following 
inequalities are simultaneously guaranteed. 

0
0,0

3
1

231

21

<−
<<

− FFFF

FF
T

   (20) 

It can be easily found that to achieve the quadratic stability, one has to firstly determine L  and 
TsA22  to satisfy 01 <F  and 02 <F . In addition, one must finally check whether 03

1
231 <− − FFFF T  is also 

guaranteed. Therefore, it leads to a two steps design. The following is going to propose a convenient 
way to resolve the preceding issues simultaneously via a LMI design, where the specific structure of 
L  needs to be considered. 

Proposition 1. For the observer error dynamics (17), by applying the following sliding controller  

( )

{ }







====ℜ∈==

=

0|

,

22

2

2

eeeTseeS

sP

sP
xv

yyyo p
p

tρ
 (21) 

and 

( ) ηδρ +≥ 22, Dx t  (22) 

where 0>η  is a given value, then the prescribed sliding motions are eventually fulfilled as long as the 
following inequality is feasible 

022211 <+−−−−+ PKKCKKCPAPA αTTTT  (23) 

where 11 PLK =  and 22 PLK =  are both control variables requiring to be determined. 
Moreover, the high gain feedback is avoidable by further considering the following minimization process: 
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Moreover, the high gain feedback is avoidable by further considering the following minimization process: 

− CTKT
1 −K1C −KT
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where K1 = PL1 and K2 = PL2 are both control variables requiring to be determined.
Moreover, the high gain feedback is avoidable by further considering the following minimization process:
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min ` subject to

 −` KT
1 KT

2
K1 −` 0
K2 0 −`

 < 0 and P > I (24)

The matrices applied in (21)–(24) are going to be addressed in the following proof.

Proof of the quadratic stability. Select as a Lyapunov function V = X TPX in which P = PT =[
P1 0
0 P2

]
> 0. Taking the time derivative leads to

.
V = X T(
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.
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where 11 PLK =  and 22 PLK =  are both control variables requiring to be determined. 
Moreover, the high gain feedback is avoidable by further considering the following minimization process: 

− CTKT
1 −K1C −KT

2 −K2 + 2αP < 0 (27)

Due to the structure of the observer gain, the auxiliary control variables K1 and K2 are respectively
imposed to be with the following specific configuration

K1 =

[
∗(n−p)×(p−q) 0(n−p)×(n−p+q)

0p×(p−q) 0p×(n−p+q)

]

K2 =

[
0(n−p)×(n−p) 0(n−p)×p

0p×(n−p) ∗p×p

] (28)

where the symbol “*” stands for undetermined nonzero sub-matrices and the solutions are going to be
carried out via LMI solver.

To avoid high gain feedback, let K =

[
K1

K2

]
and consider ‖K‖ < `, where ` is going to be

minimized. The minimization problem can be characterized as the following LMI:

min ` subject to

 −` KT
1 KT

2
K1 −` 0
K2 0 −`

 < 0 and P > 1 (29)

Note that provided (27) and (29) are feasible, it can be concluded that the inequalities

A11P1 + P1A11 < −2αP1

AsT
22 P2 + P2As

22 < −2αP2
(30)

are guaranteed as well.
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Proof of the existence of sliding motions. For sliding dynamics, apply a Lyapunov function as follows

Vs = sTP2s (31)

Based on (30), taking the time derivative of (31) gives

.
Vs = sT

(
AsT

22 P2 + P2As
22

)
s

+2sT(P2A21e1 − P2v + P2D22f(x, t)
)

≤ −2αsTP2s + 2sT(P2A21e1 − P2v + P2D22f(x, t)
)

≤ −2αsTP2s− 2‖P2s‖
(
η − ‖A21e1‖

)
(32)

Since only system outputs are available, the norm bound ‖A21e1‖ is not available. Therefore,
prescribed sliding motions might not be attained immediately for an arbitrary given η. It is well known
that a large value of η is capable of realizing approaching phase immediately but unavoidably brings
about serious control chattering. Examine again the Lyapunov function presented in (25). Owing to the
properties of the quadratic stability, the observer system trajectories will eventually enter the sliding
domain and therefore the prescribed sliding modes can be fulfilled in finite time. In other words,
there must exist positive constants ϕ and ϕ∗ such that the condition ϕ ≥ η − ‖A21e1‖ ≥ ϕ∗ > 0 could
be eventually satisfied. Under this circumstance, (32) reduces to

.
Vs ≤ −2αsTP2s− 2ϕ∗‖P2s‖

≤ −2αVs − 2ϕ∗λ1/2
min(P2)

√
Vs

(33)

where ‖P2s‖2 =
(

P1/2
2 s

)T
P
(

P1/2
2 s

)
≥ λmin(P2)‖P1/2

2 s‖2
= λmin(P2)Vs is utilized in (33).

Equation (33) shows that the system trajectories hit the sliding manifold in finite time tr described
as follows

tr = tp +
1
α
· ln
(

α

ϕ∗λ1/2
min(P2)

Vs
(
tp
)1/2

+ 1

)
(34)

where tp stands for a time instant in which the approaching condition is attained.

Remark 1. The requirements of quadratic stability and fulfillment of sliding motions can be formulated
as a feasibility problem of a single LMI subject to a specific matrix configuration. By using the preceding
LMIs (23) and (24), the gain pair

(
L1, As

22

)
can be simultaneously determined without inducing high gain

phenomenon and the resulting observer error dynamics is with a guaranteed convergence speed.

3. Robust Proportional-Integral Type Observer Design

In the preceding section, a sliding observer with systematic control gain generation is developed.
However, the robustness of the SMO relies on the realization of infinite fast control switching and
thereby estimate precision depends on computation speed. It has been pointed out that in the ideal
sliding motions, the discontinuous control stands for the necessary input effort to main the systems in
sliding modes and compensate unknown perturbations [20]. Therefore, the external unknown signals
should be recovered by filtering the control signals or by using boundary layer techniques. However,
the estimation precision will be unavoidable deteriorated. To avoid the discontinuous control effort
applied in observer and simultaneously reconstruct external unknown inputs, the following work is to
inherit the previous SMO design framework and integrate the ideas presented in [24,25] for smooth
multivariable robust observer design.

Referring to (12), the pair
(
G1, G2

)
is now designed by



Appl. Sci. 2017, 7, 67 8 of 18

{
G1 = A12Tp

G2 = A22Tp
(35)

Considering (14) together with (35), one can represent the observer error dynamics (13) by

.
e1 = A11e1
.
e2 = A21e1 − v + D22f(x, t)

(36)

where A11 is already Hurwitz.

Proposition 2. Suppose that there exists a known function ζ(t) such that ‖
.
f(x, t)‖ ≤ ζ(t) for ∀t. For the

transformed system (36), the estimation error dynamics is asymptotic stable by applying the following
proportional-integral control

v = KPe2 +
∫ t

0
(KIe2 + ξsgn(e2))dτ (37)

where KP ∈ Rp×p, KI ∈ Rp×p, ξ = diag(ξi) and sgn(e2) = sign(e2i) with i = 1 · · · p.
The control gains applied in (37) satisfy

PAT +AP −LTBT −BL+ 2βP < 0

ξ > ζ(t)
(38)

where β > 0, P = P−1, P = PT > 0, L = KP , and the matrices are with the following specific structures

A =

 A11 0 0
0 0 Ip

A21A11 0 0

 ∈ R(n+p)×(n+p)

B =

 0
0
Ip

 ∈ R(n+p)×p,K =
[

0 KI KP

] (39)

and
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Note that 23P  is non-negative diagonal matrix. 

Proof. Substituting (37) into (36) yields 

    td
t

,sgn 22
0

2221212

1111
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To address the stability of the observer error dynamics, let 32 ee   and then (41) can be 

represented by an augmented system described as follows 

(40)

Note that P23 is non-negative diagonal matrix.

Proof. Substituting (37) into (36) yields

.
e1 = A11e1
.
e2 = A21e1 −KPe2 −

∫ t
0 (KIe2 + ξsgn(e2))dτ + D22f(x, t)

(41)

To address the stability of the observer error dynamics, let
.
e2 = e3 and then (41) can be represented

by an augmented system described as follows

.
e1 = A11e1
.
e2 = e3
.
e3 = A21A11e1 −KPe3 −KIe2 − ξsgn(e2) + D22

.
f(x, t)

(42)

Define an augmented state variable by
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Note that the extended system (43) is only used for stability analysis and control gain 

determination purposes. No extra state information needs to be involved for the  

observer implementation. 

By applying  tξ , the closed-loop observer dynamics can be governed by the following 

auxiliary system 

  2sgn
~

eξ BAC xx  (45) 

where  idiag 
~~
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~

,
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Note that the sub-matrices utilized in 2P  have to meet the following two conditions: (i) the sub-

matrices are all of diagonal forms and (ii) all the elements among them are positive. 

Based on conditions (i) and (ii), for (46), one can derive that 
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As a consequence, the quadratic stability is attained if 0 CC PAPAT  and 
i

23P  are positive. 

These stability conditions can be interpreted as a feasibility problem of a LMI described as follows. 

Consider the following system representation 

BKAAC   (49) 

where the system matrices A , B  and K  are defined in (39). 

The control gain matrix 
1L  used in 11A  is directly applied from the solution of (23). The rest 

control object is to determine K  such that 0V  is achieved. 

= col(e1, e2, e3) and represent (42) in the compact form
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Define an augmented state variable by  321 ,, eeecolx  and represent (42) in the compact form 
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Note that the extended system (43) is only used for stability analysis and control gain 

determination purposes. No extra state information needs to be involved for the  

observer implementation. 

By applying  tξ , the closed-loop observer dynamics can be governed by the following 
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,
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Note that the sub-matrices utilized in 2P  have to meet the following two conditions: (i) the sub-

matrices are all of diagonal forms and (ii) all the elements among them are positive. 

Based on conditions (i) and (ii), for (46), one can derive that 
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As a consequence, the quadratic stability is attained if 0 CC PAPAT  and 
i

23P  are positive. 

These stability conditions can be interpreted as a feasibility problem of a LMI described as follows. 

Consider the following system representation 

BKAAC   (49) 

where the system matrices A , B  and K  are defined in (39). 

The control gain matrix 
1L  used in 11A  is directly applied from the solution of (23). The rest 

control object is to determine K  such that 0V  is achieved. 

= AC
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Define an augmented state variable by  321 ,, eeecolx  and represent (42) in the compact form 
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Note that the extended system (43) is only used for stability analysis and control gain 

determination purposes. No extra state information needs to be involved for the  

observer implementation. 
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Note that the sub-matrices utilized in 2P  have to meet the following two conditions: (i) the sub-

matrices are all of diagonal forms and (ii) all the elements among them are positive. 

Based on conditions (i) and (ii), for (46), one can derive that 
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 (48) 

As a consequence, the quadratic stability is attained if 0 CC PAPAT  and 
i

23P  are positive. 

These stability conditions can be interpreted as a feasibility problem of a LMI described as follows. 

Consider the following system representation 

BKAAC   (49) 

where the system matrices A , B  and K  are defined in (39). 

The control gain matrix 
1L  used in 11A  is directly applied from the solution of (23). The rest 

control object is to determine K  such that 0V  is achieved. 

+ B
(
−ξsgn(e2) + D22

.
f(x, t)

)
(43)

in which

AC =

 A11 0 0
0 0 Ip

A21A11 −KI −KP

 ∈ R(n+p)×(n+p) (44)

Note that the extended system (43) is only used for stability analysis and control gain determination
purposes. No extra state information needs to be involved for the observer implementation.

By applying ξ > ζ(t), the closed-loop observer dynamics can be governed by the following
auxiliary system
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Define an augmented state variable by  321 ,, eeecolx  and represent (42) in the compact form 
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Note that the extended system (43) is only used for stability analysis and control gain 

determination purposes. No extra state information needs to be involved for the  

observer implementation. 
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Note that the sub-matrices utilized in 2P  have to meet the following two conditions: (i) the sub-

matrices are all of diagonal forms and (ii) all the elements among them are positive. 

Based on conditions (i) and (ii), for (46), one can derive that 
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As a consequence, the quadratic stability is attained if 0 CC PAPAT  and 
i

23P  are positive. 

These stability conditions can be interpreted as a feasibility problem of a LMI described as follows. 

Consider the following system representation 

BKAAC   (49) 

where the system matrices A , B  and K  are defined in (39). 

The control gain matrix 
1L  used in 11A  is directly applied from the solution of (23). The rest 

control object is to determine K  such that 0V  is achieved. 

= AC
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Note that the extended system (43) is only used for stability analysis and control gain 

determination purposes. No extra state information needs to be involved for the  

observer implementation. 

By applying  tξ , the closed-loop observer dynamics can be governed by the following 
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Note that the sub-matrices utilized in 2P  have to meet the following two conditions: (i) the sub-

matrices are all of diagonal forms and (ii) all the elements among them are positive. 

Based on conditions (i) and (ii), for (46), one can derive that 
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As a consequence, the quadratic stability is attained if 0 CC PAPAT  and 
i

23P  are positive. 

These stability conditions can be interpreted as a feasibility problem of a LMI described as follows. 

Consider the following system representation 

BKAAC   (49) 

where the system matrices A , B  and K  are defined in (39). 

The control gain matrix 
1L  used in 11A  is directly applied from the solution of (23). The rest 

control object is to determine K  such that 0V  is achieved. 

+ B
(
−ξ̃sgn(e2)

)
(45)

where ξ̃ = diag
(

ξ̃i

)
, ξ̃i ∈

[
ξ̃+i , ξ̃−i

]
, ξ̃+i = ‖ξ‖+ max(ζ(t)) > 0 and ξ̃−i = ‖ξ‖ −max(ζ(t)) > 0.

For (45), the following Lyapunov candidate is proposed

V =
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Note that the extended system (43) is only used for stability analysis and control gain 

determination purposes. No extra state information needs to be involved for the  

observer implementation. 

By applying  tξ , the closed-loop observer dynamics can be governed by the following 
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Note that the sub-matrices utilized in 2P  have to meet the following two conditions: (i) the sub-

matrices are all of diagonal forms and (ii) all the elements among them are positive. 

Based on conditions (i) and (ii), for (46), one can derive that 
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As a consequence, the quadratic stability is attained if 0 CC PAPAT  and 
i

23P  are positive. 

These stability conditions can be interpreted as a feasibility problem of a LMI described as follows. 

Consider the following system representation 

BKAAC   (49) 

where the system matrices A , B  and K  are defined in (39). 

The control gain matrix 
1L  used in 11A  is directly applied from the solution of (23). The rest 

control object is to determine K  such that 0V  is achieved. 
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Note that the sub-matrices utilized in 2P  have to meet the following two conditions: (i) the sub-

matrices are all of diagonal forms and (ii) all the elements among them are positive. 

Based on conditions (i) and (ii), for (46), one can derive that 
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As a consequence, the quadratic stability is attained if 0 CC PAPAT  and 
i

23P  are positive. 

These stability conditions can be interpreted as a feasibility problem of a LMI described as follows. 

Consider the following system representation 

BKAAC   (49) 

where the system matrices A , B  and K  are defined in (39). 

The control gain matrix 
1L  used in 11A  is directly applied from the solution of (23). The rest 

control object is to determine K  such that 0V  is achieved. 
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2 stands for the i-th diagonal element in the P23 and the i-th element in the e2,
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Note that the sub-matrices utilized in 2P  have to meet the following two conditions: (i) the sub-

matrices are all of diagonal forms and (ii) all the elements among them are positive. 

Based on conditions (i) and (ii), for (46), one can derive that 
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As a consequence, the quadratic stability is attained if 0 CC PAPAT  and 
i

23P  are positive. 

These stability conditions can be interpreted as a feasibility problem of a LMI described as follows. 

Consider the following system representation 

BKAAC   (49) 

where the system matrices A , B  and K  are defined in (39). 

The control gain matrix 
1L  used in 11A  is directly applied from the solution of (23). The rest 

control object is to determine K  such that 0V  is achieved. 
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Note that the sub-matrices utilized in 2P  have to meet the following two conditions: (i) the sub-
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As a consequence, the quadratic stability is attained if 0 CC PAPAT  and 
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23P  are positive. 

These stability conditions can be interpreted as a feasibility problem of a LMI described as follows. 

Consider the following system representation 

BKAAC   (49) 

where the system matrices A , B  and K  are defined in (39). 

The control gain matrix 
1L  used in 11A  is directly applied from the solution of (23). The rest 

control object is to determine K  such that 0V  is achieved. 
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Note that the sub-matrices utilized in 2P  have to meet the following two conditions: (i) the sub-

matrices are all of diagonal forms and (ii) all the elements among them are positive. 

Based on conditions (i) and (ii), for (46), one can derive that 
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As a consequence, the quadratic stability is attained if 0 CC PAPAT  and 
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These stability conditions can be interpreted as a feasibility problem of a LMI described as follows. 

Consider the following system representation 

BKAAC   (49) 

where the system matrices A , B  and K  are defined in (39). 

The control gain matrix 
1L  used in 11A  is directly applied from the solution of (23). The rest 

control object is to determine K  such that 0V  is achieved. 
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Note that the sub-matrices utilized in 2P  have to meet the following two conditions: (i) the sub-

matrices are all of diagonal forms and (ii) all the elements among them are positive. 

Based on conditions (i) and (ii), for (46), one can derive that 
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As a consequence, the quadratic stability is attained if 0 CC PAPAT  and 
i

23P  are positive. 

These stability conditions can be interpreted as a feasibility problem of a LMI described as follows. 

Consider the following system representation 

BKAAC   (49) 

where the system matrices A , B  and K  are defined in (39). 

The control gain matrix 
1L  used in 11A  is directly applied from the solution of (23). The rest 

control object is to determine K  such that 0V  is achieved. 
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Note that the extended system (43) is only used for stability analysis and control gain 

determination purposes. No extra state information needs to be involved for the  

observer implementation. 
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Note that the sub-matrices utilized in 2P  have to meet the following two conditions: (i) the sub-

matrices are all of diagonal forms and (ii) all the elements among them are positive. 

Based on conditions (i) and (ii), for (46), one can derive that 

 

    
    

   

  0
~

2

sgn
~

2

sgn
~

2sgn
~

sgn
~

~
2

1
223

2232

22232

2

1
2322



















p

i

i

i

iTT

TTT

TT

T
T

TT

p

i

ii

i

iTT

e

esigne





PPAPA

PPAPA

PPB

PBPAPA

PPPV

CC

CC

CC

xx    

xx    

x    

xxx    

xxxx

eξe

eξeeξ

eξ



 (48) 

As a consequence, the quadratic stability is attained if 0 CC PAPAT  and 
i

23P  are positive. 

These stability conditions can be interpreted as a feasibility problem of a LMI described as follows. 

Consider the following system representation 

BKAAC   (49) 

where the system matrices A , B  and K  are defined in (39). 

The control gain matrix 
1L  used in 11A  is directly applied from the solution of (23). The rest 

control object is to determine K  such that 0V  is achieved. 
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Note that the extended system (43) is only used for stability analysis and control gain 
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observer implementation. 
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Note that the sub-matrices utilized in 2P  have to meet the following two conditions: (i) the sub-

matrices are all of diagonal forms and (ii) all the elements among them are positive. 

Based on conditions (i) and (ii), for (46), one can derive that 
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As a consequence, the quadratic stability is attained if 0 CC PAPAT  and 
i

23P  are positive. 

These stability conditions can be interpreted as a feasibility problem of a LMI described as follows. 

Consider the following system representation 

BKAAC   (49) 

where the system matrices A , B  and K  are defined in (39). 

The control gain matrix 
1L  used in 11A  is directly applied from the solution of (23). The rest 

control object is to determine K  such that 0V  is achieved. 
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Note that the extended system (43) is only used for stability analysis and control gain 

determination purposes. No extra state information needs to be involved for the  

observer implementation. 

By applying  tξ , the closed-loop observer dynamics can be governed by the following 

auxiliary system 

  2sgn
~

eξ BAC xx  (45) 

where  idiag 
~~

ξ ,   iii 
~

,
~~

,    0max
~

 ti  ξ  and    0max
~

 ti  ξ . 

For (45), the following Lyapunov candidate is proposed 

 


p

i

i

i

iT e
1

222

~
2 PPV xx  (46) 

where 
i

22P  and 
ie2  stands for the i-th diagonal element in the 

23P  and the i-th element in the 
2e , 

respectively. In addition, 0 TPP  and it is with the following specific structures 

p

p

p

pn





























2223

2321

2

2

1

20

0

PP

PP
P      ,

P

P
P

 
(47) 

Note that the sub-matrices utilized in 2P  have to meet the following two conditions: (i) the sub-

matrices are all of diagonal forms and (ii) all the elements among them are positive. 

Based on conditions (i) and (ii), for (46), one can derive that 

 

    
    

   

  0
~

2

sgn
~

2

sgn
~

2sgn
~

sgn
~

~
2

1
223

2232

22232

2

1
2322



















p

i

i

i

iTT

TTT

TT

T
T

TT

p

i

ii

i

iTT

e

esigne





PPAPA

PPAPA

PPB

PBPAPA

PPPV

CC

CC

CC

xx    

xx    

x    

xxx    

xxxx

eξe

eξeeξ

eξ



 (48) 

As a consequence, the quadratic stability is attained if 0 CC PAPAT  and 
i

23P  are positive. 

These stability conditions can be interpreted as a feasibility problem of a LMI described as follows. 

Consider the following system representation 

BKAAC   (49) 

where the system matrices A , B  and K  are defined in (39). 

The control gain matrix 
1L  used in 11A  is directly applied from the solution of (23). The rest 

control object is to determine K  such that 0V  is achieved. 
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Note that the extended system (43) is only used for stability analysis and control gain 

determination purposes. No extra state information needs to be involved for the  

observer implementation. 
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Note that the sub-matrices utilized in 2P  have to meet the following two conditions: (i) the sub-

matrices are all of diagonal forms and (ii) all the elements among them are positive. 

Based on conditions (i) and (ii), for (46), one can derive that 
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As a consequence, the quadratic stability is attained if 0 CC PAPAT  and 
i

23P  are positive. 

These stability conditions can be interpreted as a feasibility problem of a LMI described as follows. 

Consider the following system representation 

BKAAC   (49) 

where the system matrices A , B  and K  are defined in (39). 

The control gain matrix 
1L  used in 11A  is directly applied from the solution of (23). The rest 

control object is to determine K  such that 0V  is achieved. 
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Note that the extended system (43) is only used for stability analysis and control gain 

determination purposes. No extra state information needs to be involved for the  

observer implementation. 
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Note that the sub-matrices utilized in 2P  have to meet the following two conditions: (i) the sub-

matrices are all of diagonal forms and (ii) all the elements among them are positive. 

Based on conditions (i) and (ii), for (46), one can derive that 
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As a consequence, the quadratic stability is attained if 0 CC PAPAT  and 
i

23P  are positive. 

These stability conditions can be interpreted as a feasibility problem of a LMI described as follows. 

Consider the following system representation 

BKAAC   (49) 

where the system matrices A , B  and K  are defined in (39). 

The control gain matrix 
1L  used in 11A  is directly applied from the solution of (23). The rest 

control object is to determine K  such that 0V  is achieved. 
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As a consequence, the quadratic stability is attained if 0 CC PAPAT  and 
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These stability conditions can be interpreted as a feasibility problem of a LMI described as follows. 
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1L  used in 11A  is directly applied from the solution of (23). The rest 

control object is to determine K  such that 0V  is achieved. 
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As a consequence, the quadratic stability is attained if 0 CC PAPAT  and 
i

23P  are positive. 

These stability conditions can be interpreted as a feasibility problem of a LMI described as follows. 

Consider the following system representation 

BKAAC   (49) 

where the system matrices A , B  and K  are defined in (39). 

The control gain matrix 
1L  used in 11A  is directly applied from the solution of (23). The rest 

control object is to determine K  such that 0V  is achieved. 

T(AT
CP + PAC

)

Appl. Sci. 2017, 7, 67 9 of 19 

   t,sgn 22223111213

32

1111

xfDeξeKeKeAAe

ee

eAe

IP












 (42) 

Define an augmented state variable by  321 ,, eeecolx  and represent (42) in the compact form 

    t,sgn 222 xfDeξ   BAC xx  (43) 

in which 

   pnpn

p























PI KKAA

I

A

1121

11

00

00

CA  (44) 

Note that the extended system (43) is only used for stability analysis and control gain 

determination purposes. No extra state information needs to be involved for the  

observer implementation. 

By applying  tξ , the closed-loop observer dynamics can be governed by the following 

auxiliary system 

  2sgn
~

eξ BAC xx  (45) 

where  idiag 
~~

ξ ,   iii 
~

,
~~

,    0max
~

 ti  ξ  and    0max
~

 ti  ξ . 

For (45), the following Lyapunov candidate is proposed 

 


p

i

i

i

iT e
1

222

~
2 PPV xx  (46) 

where 
i

22P  and 
ie2  stands for the i-th diagonal element in the 

23P  and the i-th element in the 
2e , 

respectively. In addition, 0 TPP  and it is with the following specific structures 

p

p

p

pn





























2223

2321

2

2

1

20

0

PP

PP
P      ,

P

P
P

 
(47) 

Note that the sub-matrices utilized in 2P  have to meet the following two conditions: (i) the sub-

matrices are all of diagonal forms and (ii) all the elements among them are positive. 

Based on conditions (i) and (ii), for (46), one can derive that 

 

    
    

   

  0
~

2

sgn
~

2

sgn
~

2sgn
~

sgn
~

~
2

1
223

2232

22232

2

1
2322



















p

i

i

i

iTT

TTT

TT

T
T

TT

p

i

ii

i

iTT

e

esigne





PPAPA

PPAPA

PPB

PBPAPA

PPPV

CC

CC

CC

xx    

xx    

x    

xxx    

xxxx

eξe

eξeeξ

eξ



 (48) 

As a consequence, the quadratic stability is attained if 0 CC PAPAT  and 
i

23P  are positive. 

These stability conditions can be interpreted as a feasibility problem of a LMI described as follows. 

Consider the following system representation 

BKAAC   (49) 

where the system matrices A , B  and K  are defined in (39). 

The control gain matrix 
1L  used in 11A  is directly applied from the solution of (23). The rest 

control object is to determine K  such that 0V  is achieved. 

− 2∑
p
i=1 P

i
23ξ̃i

∣∣∣ei
2

∣∣∣ ≤ 0

(48)

As a consequence, the quadratic stability is attained if AT
CP + PAC < 0 and P i

23 are positive.
These stability conditions can be interpreted as a feasibility problem of a LMI described as follows.

Consider the following system representation

AC = A−BK (49)

where the system matrices A, B and K are defined in (39).
The control gain matrix L1 used in A11 is directly applied from the solution of (23). The rest

control object is to determine K such that
.
V < 0 is achieved.

In a similar manner, the control object can be reached by considering

AT
CP + PAC < −2βP (50)

which is equivalent to ATP + PA−KTBTP −PBK+ 2βP < 0. Pre- and post multiplying P = P−1

results in
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PAT +AP −LTBT −BL+ 2βP < 0 (51)

where L = KP is applied.

Moreover, control gain minimization can be achieved by imposing the following minimization
process further

min γ subject to

[
−γ LT

L −γ

]
< 0 and P > I (52)

Ramark 2. By using the similar concept of the equivalent control injection, since it has been proven that the
estimation errors approach to zero asymptotically, from system (36) it reveals that v→ D22f(x, t) . In other
words, the perturbation term can be reconstructed by measuring the control signals (37) and thus the disturbance
can be easily recovered.

Remark 3. When applying SMO, low pass filters (LPFs) should be used for disturbance recovery. As point
out in [1], the time constant applied in the LPFs needs to be sufficiently small to pass the slow component of
the equivalent effort but is large enough to eliminate the high frequency component [26]. In other words, the
cut-off frequency needs to be sufficient larger than the frequency of external disturbance so as to reach good
estimation precision. The other way to reconstruct the unknown perturbation is to applied boundary layer
technique [20,21,27] and the estimation precision depends on the size of the boundary layer. For the proposed
PIO, the disturbance can be observed without incorporating extra LPFs and the resulting estimation precision
can reach asymptotic level. Moreover, since the control algorithm used in the PIO is continuous, it is suitable for
practical computer implementations as demonstrated in the previous works [24,25].

4. Numerical Example

In this section, a single link robot arm is considered for the SMO designed. The resulting estimation
performance will be later compared with the one by PIO. Some advantages of the PIO are going to be
carried out. The dynamics of a disturbed single link robot arm with a revolute elastic joint rotating in
a vertical plane is described as follows [28]:

.
x =


0 1 0 0
− k

Jl
− Fl

Jl
k
Jl

0
0 0 0 1
− k

Jm
0 k

Jm
− Fm

Jm


︸ ︷︷ ︸

A

x +


0
0
0
1
Jm


︸ ︷︷ ︸

B

u

+


0
1
0
0


︸ ︷︷ ︸

D


0

− glM
Jl

sin(x1) + d(t)
0
0


︸ ︷︷ ︸

f(x,t)

y =

[
0 1 0 0
0 0 1 0

]
︸ ︷︷ ︸

C

x

(53)

where the state vector is given by x =
[

x1 x2 x3 x4

]T
. The states x1, x2, x3 and x4 are the link

displacement, the link velocity, the rotor displacement and the rotor angular velocity. The rest of
system parameters are summarized in Table 1.
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Table 1. System parameters.

Parameter Definitions Value Unit

Link inertia (Jl) 4 N·m2

Motor rotor inertia (Jm) 4 N·m2

Elastic constant (k) 15 N·m/rad
Link mass (M) 0.15 kg

Gravity constant (g) 9.8 N/kg
Length for center of mass (l) 0.3 m

Viscous coefficient (Fl) 0.006 N·s/rad
Viscous coefficient (Fm) 0.005 N·s/rad

Before the controlling, a practical condition is imposed to the control problem. That is, only two
sensors are available. One is an encoder used to measure angular position and the other is a tachometer
used to measure angular velocity. This is important to equip the sensors at proper places. For example,
suppose that the encoder and the tachometer are used to measure angular position and angular velocity

of the link, respectively. It leads to an output matrix C =

[
1 0 0 0
0 1 0 0

]
.

Applying coordinate transformation gives

A11 =

[
0 1.0000

−3.7500 −0.0013

]
and A211 = 01×2 (54)

It is evident that the pair (A11, A211) is not observable, but the system contains two stable invariant
zeros λ(A11) located at −0.006 ± 1.9365j. Note that since the invariant zeros are located in the
left-half-plane, the SMO and PIO designs remain applicable through the coordinate transformation
technique. However, since the unmovable zeros are close to the imaginary axis, it leads to a slow
observation speed.

In contrast, when the encoder is used for motor position measurement, it results in the output
matrix as the one shown in (53). Applying coordinate transformation gives the system as described
in (4), where the resulting system matrices are
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It can be observed that the pair  21111,AA  is now fully observable and therefore the observation 

performance can be improved. 

For the SMO, consider 1  and then the control matrices returned by the MATLAB LMI-

toolbox are 
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3x  and 
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displacement, the link velocity, the rotor displacement and the rotor angular velocity. The rest of 

system parameters are summarized in Table 1. 

Table 1. System parameters. 
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It can be observed that the pair  21111,AA  is now fully observable and therefore the observation 

performance can be improved. 

For the SMO, consider 1  and then the control matrices returned by the MATLAB LMI-

toolbox are 
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It can be observed that the pair (A11, A211) is now fully observable and therefore the observation
performance can be improved.

For the SMO, consider α = 1 and then the control matrices returned by the MATLAB

LMI-toolbox are
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Based on the given system parameters listed in Table 1, the nonlinearity satisfies 

  1103.0, txf . 

For the PIO, the control matrices generated by the MATLAB LMI toolbox are given as follows: 
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


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




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3538.220288.0

0272.02876.22
,

8043.210283.0

0278.07396.21
IP KK    (57) 

where 1  is applied to achieve a desired decay speed. 

For the lumped perturbation term  t,xf , there exists a positive constant 8.1  such that 

      8.1cos, 122222 













 tdxx

J

glM
t

l

 DxfD  and thereby the robust gains 2i  are considered. 

To compare with the method [22], in the following simulations, two types of external unknown inputs 

are considered to simulate  td . One is a continuous sine wave and the other is a discontinuous saw-

tooth-like wave. The continuous unknown input is generated by      ttdtd 2sin25.01   and the 

discontinuous one is generated by (using a MATLAB script) 

      135.65.0floor20102*025.02  tttdtd . It is clear that the time derivative of the discontinuous 

one does not satisfy 2L  condition. However, the SMO can still recovery its  

profile accurately. 

In the following simulations, the discontinuous control applied in the SMO is replaced by a sigmoid 

function [20,27]. The unknown input is estimated by considering the approximation: 






sP

sP
v

2

2
eq

 

 t,22121 xfDeA  , where 1  and 005.0  are used which lead to in 89.0 . 

Figure 1 shows that the observer states approach to the real system states by using the SMO. The 

corresponding estimation errors are depicted in Figure 2. Note that the values of  tx2
~

 are obviously 

larger than other state estimation errors. This is because that the unknown input directly affects in 

the direction of 2x  and the sigmoid-function-based control applied in the SMO cannot completely 

eliminate the unknown input. 



Appl. Sci. 2017, 7, 67 12 of 18

Appl. Sci. 2017, 7, 67 12 of 19 

































0024.10021.000

0021.00070.100

004078.22094.4

002094.45959.13

0

0

2

1

P

P
P   







































































6187.20141.0

0141.05881.2
0

00

0

00

00

0
4893.2

8148.0

00

0

22

2222

2222

2222

2

3212

32

3212

321

1

s
A

L

L

L

 (56) 

Based on the given system parameters listed in Table 1, the nonlinearity satisfies 

  1103.0, txf . 

For the PIO, the control matrices generated by the MATLAB LMI toolbox are given as follows: 
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where 1  is applied to achieve a desired decay speed. 

For the lumped perturbation term  t,xf , there exists a positive constant 8.1  such that 

      8.1cos, 122222 
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 DxfD  and thereby the robust gains 2i  are considered. 

To compare with the method [22], in the following simulations, two types of external unknown inputs 

are considered to simulate  td . One is a continuous sine wave and the other is a discontinuous saw-

tooth-like wave. The continuous unknown input is generated by      ttdtd 2sin25.01   and the 

discontinuous one is generated by (using a MATLAB script) 

      135.65.0floor20102*025.02  tttdtd . It is clear that the time derivative of the discontinuous 

one does not satisfy 2L  condition. However, the SMO can still recovery its  

profile accurately. 

In the following simulations, the discontinuous control applied in the SMO is replaced by a sigmoid 

function [20,27]. The unknown input is estimated by considering the approximation: 

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 t,22121 xfDeA  , where 1  and 005.0  are used which lead to in 89.0 . 

Figure 1 shows that the observer states approach to the real system states by using the SMO. The 

corresponding estimation errors are depicted in Figure 2. Note that the values of  tx2
~

 are obviously 

larger than other state estimation errors. This is because that the unknown input directly affects in 

the direction of 2x  and the sigmoid-function-based control applied in the SMO cannot completely 

eliminate the unknown input. 

(56)

Based on the given system parameters listed in Table 1, the nonlinearity satisfies ‖f(x, t)‖ ≤ δ = 0.1103.
For the PIO, the control matrices generated by the MATLAB LMI toolbox are given as follows:
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Based on the given system parameters listed in Table 1, the nonlinearity satisfies 

  1103.0, txf . 

For the PIO, the control matrices generated by the MATLAB LMI toolbox are given as follows: 
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where 1  is applied to achieve a desired decay speed. 

For the lumped perturbation term  t,xf , there exists a positive constant 8.1  such that 
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 DxfD  and thereby the robust gains 2i  are considered. 

To compare with the method [22], in the following simulations, two types of external unknown inputs 

are considered to simulate  td . One is a continuous sine wave and the other is a discontinuous saw-

tooth-like wave. The continuous unknown input is generated by      ttdtd 2sin25.01   and the 

discontinuous one is generated by (using a MATLAB script) 

      135.65.0floor20102*025.02  tttdtd . It is clear that the time derivative of the discontinuous 

one does not satisfy 2L  condition. However, the SMO can still recovery its  

profile accurately. 

In the following simulations, the discontinuous control applied in the SMO is replaced by a sigmoid 

function [20,27]. The unknown input is estimated by considering the approximation: 






sP

sP
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 t,22121 xfDeA  , where 1  and 005.0  are used which lead to in 89.0 . 

Figure 1 shows that the observer states approach to the real system states by using the SMO. The 

corresponding estimation errors are depicted in Figure 2. Note that the values of  tx2
~

 are obviously 

larger than other state estimation errors. This is because that the unknown input directly affects in 

the direction of 2x  and the sigmoid-function-based control applied in the SMO cannot completely 

eliminate the unknown input. 

KP =

[
21.7396 0.0278
0.0283 21.8043

]
, KI =

[
22.2876 0.0272
0.0288 22.3538

]
(57)

where β = 1 is applied to achieve a desired decay speed.
For the lumped perturbation term f(x, t), there exists a positive constant ζ = 1.8 such that

‖D22
.
f(x, t)‖ ≤ ‖D22‖

(∣∣∣ glM
Jl

x2 cos(x1)
∣∣∣+ ∣∣∣ .

d(t)
∣∣∣) ≤ ζ = 1.8 and thereby the robust gains ξi = 2

are considered. To compare with the method [22], in the following simulations, two types of
external unknown inputs are considered to simulate d(t). One is a continuous sine wave and
the other is a discontinuous saw-tooth-like wave. The continuous unknown input is generated
by d(t) ≡ d1(t) = 0.25 sin(2πt) and the discontinuous one is generated by (using a MATLAB script)
d(t) ≡ d2(t) = 0.025 ∗ (2|10t− 20 f loor(0.5t)− 6.5| − 13). It is clear that the time derivative of
the discontinuous one does not satisfy L2 condition. However, the SMO can still recovery its
profile accurately.

In the following simulations, the discontinuous control applied in the SMO is replaced by
a sigmoid function [20,27]. The unknown input is estimated by considering the approximation:
veq ≈ ρ P2s

‖P2s‖+ε
≈ A21e1 + D22f(x, t), where ρ = 1 and ε = 0.005 are used which lead to in η ≈ 0.89.

Figure 1 shows that the observer states approach to the real system states by using the SMO.
The corresponding estimation errors are depicted in Figure 2. Note that the values of x̃2(t) are obviously
larger than other state estimation errors. This is because that the unknown input directly affects in
the direction of x2 and the sigmoid-function-based control applied in the SMO cannot completely
eliminate the unknown input.
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Figure 1. State observation by sliding mode observer (SMO). 
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Figure 2. Estimation error responses by SMO. 

Examining the sliding trajectories as illustrated in Figure 3. It is obvious that the approaching 

phase does not occur immediately, but remains being realized in finite time under the approaching 

condition (33). Put it clearly, since the closed-loop observation error dynamics is exponentially stable, 

it follows that the circumstance 121eA  is eventually achieved such that the approaching 

condition (33) is finally fulfilled. Figure 4 demonstrates the unknown disturbance reconstruction by 

the way of equivalent control injection. 

Figure 1. State observation by sliding mode observer (SMO).
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Figure 1. State observation by sliding mode observer (SMO). 
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Figure 2. Estimation error responses by SMO.

Examining the sliding trajectories as illustrated in Figure 3. It is obvious that the approaching
phase does not occur immediately, but remains being realized in finite time under the approaching
condition (33). Put it clearly, since the closed-loop observation error dynamics is exponentially
stable, it follows that the circumstance ‖A21e1‖ < η is eventually achieved such that the approaching
condition (33) is finally fulfilled. Figure 4 demonstrates the unknown disturbance reconstruction by
the way of equivalent control injection.Appl. Sci. 2017, 7, 67 14 of 19 
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Figures 5–7 are the results by using the proposed PIO. Different to Figure 2, the estimation
performance can be further improved by using the proposed PIO. Figure 6 illustrates the main
advantage of the PIO; that is, the perturbations are successfully eliminated. The disturbance recovery
property is demonstrated in Figure 7. Detail comparison will be discussed later.
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Figures 8–11 are used to demonstrate the main difference between the SMO and the PIO for
discontinuous unknown input reconstruction. Since the SMO is a class of discontinuous control
strategy, it is able to reconstruct the non-smooth unknown input rapidly. Figures 8 and 9 clearly show
the fast recovery property of the SMO.

Figures 10 and 11 illustrate that the control signals generated by PIO deviate from the true value
of the unknown input at 2 s, 4 s, 6 s and 8 s. This because that the magnitude at these points changes
with infinite fast speed, that is ‖D22

.
f(x, t)‖ → ∞ . There is no continuous compensator can compensate

such the critical situation. However, after these critical points, the time derivatives of the disturbance
turn into finite and therefore the unknown input reconstruction can be successfully obtained.Appl. Sci. 2017, 7, 67 16 of 19 
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To make quantitative comparison, the simulation results are summarized in Table 2. Table 2 

contains two categories: the first one is the estimation precision comparison for system subject to 

continuous unknown input and the second one is for system suffering the discontinuous one. For 

system with continuous disturbance  td1
, simulation results show that the estimation conducted by 

applying the PIO is better than those obtained by using the SMO. In contrast, when system is subject 
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To make quantitative comparison, the simulation results are summarized in Table 2. Table 2
contains two categories: the first one is the estimation precision comparison for system subject
to continuous unknown input and the second one is for system suffering the discontinuous one.
For system with continuous disturbance d1(t), simulation results show that the estimation conducted
by applying the PIO is better than those obtained by using the SMO. In contrast, when system is subject
to discontinuous disturbance d2(t), SMO can still reach fast estimation even though the disturbance is
not differentiable and the L2 condition for the signal time derivative is not satisfied [22]. Therefore,
the input reconstruction performance by SMO is better than those by PIO in the sense of maximum
estimate errors. However, it is argued that most of disturbances in the real world are continuous and
no continuous control effort is capable of precisely eliminating discontinuous disturbances. As a result,
under this circumstance the resulting estimation performances conducted by the PIO will be better
than those conducted by the SMO. Additionally, since no discontinuous control component is directly
applied in the PIO, the robust integral type observer will be an adequate choice for bandwidth limited
hardware realizations.

Table 2. Observation precision comparison (t ≥ 6 s).

Performance Indices
max|x̃1(t)| max|x̃2(t)| max|x̃3(t)| max|x̃4(t)| max

∣∣∣d̃(t)
∣∣∣

1
k ∑k

i=1|x̃1(t)| 1
k ∑k

i=1|x̃2(t)| 1
k ∑k

i=1|x̃3(t)| 1
k ∑k

i=1|x̃4(t)| 1
k ∑k

i=1

∣∣∣d̃(t)
∣∣∣

d1(t)
SMO

5.3352 × 10−4 0.0027 5.2854 × 10−6 5.1507 × 10−4 0.0170
1.4163 × 10−4 0.0012 2.1532 × 10−6 1.8376 × 10−4 0.0077

PIO
5.3233 × 10−4 1.0138 × 10−6 1.3686 × 10−6 5.1937 × 10−4 0.0048
1.4084 × 10−4 9.3354 × 10−8 2.1170 × 10−7 1.8101 × 10−4 0.0017

d2(t)
SMO

5.3181 × 10−4 0.0032 5.8621 × 10−6 5.1517 × 10−4 0.3389
1.4173 × 10−4 0.0013 1.9428 × 10−6 1.8237 × 10−4 0.0068

PIO
5.3245 × 10−4 0.0103 8.7710 × 10−7 5.1956 × 10−4 0.3517
1.4084 × 10−4 8.6742 × 10−4 1.4003 × 10−7 1.8100 × 10−4 0.0126

5. Conclusions

This paper has proposed robust observer designs for a class of nonlinear systems. In order to
achieve precise state estimation and unknown input reconstruction simultaneously, designs of the
SMO and the PIO are subject to specific system structures. Sufficient conditions for the existence of
the robust observers are characterized in terms of LMIs. Therefore, the observer gains could be easily
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and efficiently determined. For systems subject to continuous unknown input, the PIO is capable
of estimating system states precisely as well as recovering unknown input. For systems subject to
discontinuous unknown input, the SMO can reach fast disturbance estimation. Moreover, there are no
specific forms imposed on the unknown inputs, and hence the application varieties can be extended.
Finally, applications of the proposed SMO and the PIO for a single link flexible robot arm are given to
demonstrate the state estimation as well as the unknown input reconstruction properties.
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