jriried applied -
o sciences @’\"y
Article

Optoelectronic Properties and Structural
Characterization of GaN Thick Films on Different

Substrates through Pulsed Laser Deposition

Wei-Kai Wang 1'%, Shih-Yung Huang 2, Ming-Chien Jiang 3 and Dong-Sing Wuu 3
1
2

Department of Materials Science and Engineering, Da-Yeh University, Changhua 51591, Taiwan
Department of Industrial Engineering and Management, Da-Yeh University, Changhua 51591, Taiwan;
syh@mail. dyu.edu.tw

Department of Materials Science and Engineering, National Chung Hsing University,

Taichung 40227, Taiwan; jiang.player@gmail.com (M.-C.].); dsw@dragon.nchu.edu.tw (D.-S.W.)

*  Correspondence: wk@mail.dyu.edu.tw; Tel.: +886-4-851-1888

Academic Editor: Jiwang Yan
Received: 1 December 2016; Accepted: 11 January 2017; Published: 17 January 2017

Abstract: Approximately 4-pm-thick GaN epitaxial films were directly grown onto a GaN/sapphire
template, sapphire, Si(111), and Si(100) substrates by high-temperature pulsed laser deposition (PLD).
The influence of the substrate type on the crystalline quality, surface morphology, microstructure,
and stress states was investigated by X-ray diffraction (XRD), photoluminescence (PL), atomic force
microscopy (AFM), transmission electron microscopy (TEM), and Raman spectroscopy. Raman
scattering spectral analysis showed a compressive film stress of —0.468 GPa for the GaN/sapphire
template, whereas the GaN films on sapphire, Si(111), and Si(100) exhibited a tensile stress of 0.21,
0.177, and 0.081 GPa, respectively. Comparative analysis indicated the growth of very close to
stress-free GaN on the Si(100) substrate due to the highly directional energetic precursor migration
on the substrate’s surface and the release of stress in the nucleation of GaN films during growth by
the high-temperature (1000 °C) operation of PLD. Moreover, TEM images revealed that no significant
GaN meltback (Ga-Si) etching process was found in the GaN/Si sample surface. These results
indicate that PLD has great potential for developing stress-free GaN templates on different substrates
and using them for further application in optoelectronic devices.
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1. Introduction

Gallium nitride (GaN) and its related IlI-nitride materials are excellent wide direct band-gap
(3.4 eV) semiconductors due to their potential properties of high saturation velocity in an electric field,
high breakdown electric field, and electron mobility—all of which are necessary for the development
of next-generation devices and applications that are high frequency, highly efficient, and can effectively
power switching devices [1-3]. However, due to the lack of suitable native or lattice-matched substrates,
GaN epilyers are usually grown on sapphire, SiC, and Si substrates. This presents a serious problem,
as a high defect density and a large biaxial stress in the heteroepitaxy of the GaN epilayers are generated
by mismatches in the lattice structure and thermal expansion coefficients between the epilayers and the
Si substrate. These growth-induced defects (such as threading dislocations, stacking faults, voids, and
point defects) limit the performance and reliability of GaN-based devices [4-6]. ZnO-related materials
may be closely lattice-matched with GaN, but the drawback of the ZnO single crystalline wafer is
that it is still expensive [7]. Substrates that produce a low density of defects present the most effective
possible approach for reducing defects in epitaxial films. The most widely used methods for growing
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GaN with low defect density are hydride vapor phase epitaxy (HVPE) and metalorganic chemical
vapor deposition (MOCVD) [8,9]. GaN thin films with high-quality and low-density of defects can
also be grown by ion-beam assisted MBE [10,11]. The reaction chamber in an HVPE system is often
made of quartz, which is not operational under high temperature. An MOCVD system requires a
high-temperature growth process, which consumes considerable electric power and thereby produces
high running costs and the possibility of air pollution due to the toxicity of the metal-organic chemicals
in the precursor gas. Pulsed laser deposition (PLD) is a promising technique that can address these
problems [12-14]. PLD is interesting, as it allows for in situ processing of the multilayer structure via
multiple targets, stoichiometric transfer deposition from the target to the substrate, flexible doping
options for complex compositions, and a highly directionally distributed energetic precursor produced
by the laser ablation of a target. Most discussions on PLD focus on studying the influence of growth
conditions on the properties of GaN films [15-19]. Several previous studies have reported how PLD
enables the growth of high-quality IlI-nitrides on other substrates [20-24]. Since the considerable
scale and production cost of native GaN substrates would be too much, GaN templates on foreign
substrates are good choices for the heteroepitaxial deposition of GaN-based devices. In this study, the
crystalline quality, surface morphology, optoelectronic and structural properties related to GaN thick
film grown on different substrates as a GaN templates through high-temperature PLD are characterized
and compared.

2. Experimental

All GaN film samples were deposited on different substrates by PLD at 1000 °C in a nitrogen
plasma ambient atmosphere. The chamber was pumped down to 10~ Torr before the deposition
process began, and N, gas (with a purity of 99.999%) was introduced. The working pressure once
the N, plasma was injected was 1.13 x 10~* Torr. A KrF excimer laser (A = 248 nm, Lambda Physik,
Fort Lauderdale, FL, USA) was employed as the ablation source and operated with a repetition rate of
1 Hz and a pulse energy of 60 mJ. The average growth rate of the GaN film was approximately 1 um/h.
The laser beam was incident on a rotating target at an angle of 45°. The GaN target was fabricated by
HVPE and set at a fixed distance of 9 cm from the substrate before being rotated at 30 rpm during film
deposition. In this case, ~4 um-thick GaN films were grown on a GaN/sapphire template (sample A),
sapphire (sample B), Si(111) (sample C), and Si(100) (sample D). For the GaN on sample A, a 2-pm
GaN layer was firstly deposited on sapphire substrate by MOCVD. Scanning electron microscopy
(SEM, S-3000H, Hitachi, Tokyo, Japan), transmission electron microcopy (TEM, H-600, Hitachi,
Tokyo, Japan), atomic force microscopy (AFM, DI-3100, Veeco, New York, NY, USA), double-crystal
X-ray diffraction (XRD, X'Pert PRO MRD, PANalytical, Almelo, The Netherlands), low-temperature
photoluminescence (PL, Flouromax-3, Horiba, Tokyo, Japan), and Raman spectroscopy (Jobin Yvon,
Horiba, Tokyo, Japan) were employed to explore the microstructure and optical properties of the GaN
templates deposited on different substrates. The electrical properties of the GaN films were determined
by Van der Pauw-Hall measurement under liquid nitrogen cooling at 77 K.

3. Results and Discussion

Figure 1 shows a low-temperature PL spectra (at 77 K) of GaN films grown on different substrates.
PL spectra of GaN grown on different substrates are dominated by the near-band-edge emission at
around 360 nm. The full width at half maximum (FWHM) of the GaN films produced on samples A
(4 nm) and B (8 nm) are narrower than that of the films grown on samples C (10 nm) and D (13 nm),
indicating the low defect density and high crystalline quality of the GaN films due to their lower lattice
mismatch, which is consistent with the XRD results. Similar trends of the yellow band-emission peak
on these samples were also observed (data not shown here). The yellow luminescence is related to
deep level defects in GaN [25]. Figure 2 shows a comparison of the typical XRD patterns of GaN (0002)
films grown on different substrates. It can be seen that there is a variation in the FWHM value of the
(0002) diffraction peak, and intensities of the GaN diffraction peak on the different substrates were
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obtained at around 34.5 degrees. The intensity of GaN (0002) in sample A is the strongest among all
samples, which indicates that the GaN films on the GaN/sapphire template are highly c-oriented and
have better crystalline quality. The FWHM of GaN (0002) values for samples A, B, C, and D were
measured at 0.19°, 0.51°, 0.79°, and 1.09°, respectively. However, the XRD peak intensity increases as
FWHM decreases; this is attributed to the increase in the crystallite size due to either the aggregation
of small grains or grain boundary movement during the growth process. Since the FWHM of the XRD
diffraction peak is relative to the average crystallite grain size in the film [26], the grain size of GaN
grown on the different substrates is calculated using the Debye-Scherer equation [27]:

D = 0.9A/FWHMcos0 1)

where D is the crystallite size, A is the X-ray wavelength, and 0 is the diffraction angle. The crystallite
sizes of samples A, B, C, and D are estimated to be 57, 20, 13, and 9 nm, respectively. These results
indicate that the crystalline quality of GaN films grown on samples A and B is better than that of the
films grown on samples C and D.

PL at low temperature of 77 K
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Figure 1. Low-temperature photoluminescence (PL) spectra (at 77 K) of GaN films grown on different
substrates. FWHM: full width at half maximum.
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Figure 2. X-ray diffraction (XRD) measurements results of GaN films grown on different substrates.

Figure 3 shows plane-view SEM pictures of GaN films grown on various substrates. The surface
morphologies show different features, as they are strongly dependent on the types of substrates used.
The surface of GaN films in samples A and B was mirror-like, indicating less of a lattice mismatch
between GaN and sapphire (Figure 3a,b). The smooth surface might be due to the high kinetic energy
needed by PLD for GaN precursor migration and diffusion on the substrates’ surface [28]. A rough GaN
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film surface, meanwhile, was observed in sample C (Figure 3c). Sample D presented an incomplete
island coalescence process with a hexagonal structure, as shown in Figure 3d. This result indicates
that GaN films on Si(100) have a hexagonal phase. The different GaN film structure of the grains can
be attributed to the different lattice structure of the Si substrate [29]. The surface morphology and
roughness of the GaN films grown on different substrates were carried out by AFM measurements
with the scanning area of 10 x 10 um?, as shown in Figure 4. In Figure 4, the root-mean-square RMS
values for samples A, B, C, and D are 2.1, 3.4, 14.3, and 17.7 nm, respectively. The film grown in
samples A and B exhibited quite a smooth surface, with the RMS roughness being 3.4 and 2.1 nm,
respectively, and the RMS surface roughness of samples C and D was estimated as 14.3 and 17.7 nm,
respectively. The large values for the surface roughness of the GaN films in samples C and D might be
due to the large lattice mismatch between the film and the substrates. A decrease in surface roughness
occurs with an increase in grain size, as mentioned in the XRD results.

(a) Sample A

Figure 3. Scanning electron microscopy (SEM) surface image of GaN films grown on different
substrates: (a) GaN/sapphire template (sample A); (b) sapphire (sample B); (c) Si(111) (sample C);
(d) Si(100) (sample D).
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Figure 4. Atomic force microscopy (AFM) observations of GaN films grown on different substrates.
RMS: root-mean-square.

The electrical resistivity of the GaN films grown on different substrates is shown in Figure 5a.
The electrical resistivity of the four samples was found to be in the range 16.2-32.8 (3-cm. The electrical
resistivity of sample D was the largest, while that of sample A was the smallest. The electrical resistivity
correlates with defect density, and the high defect density in the films may cause a decrease in the
electrical resistivity [30]. The values of electrical resistivity of samples C and D were very close,
which is consistent with the structural features of the films grown on these substrates, as discussed



Appl. Sci. 2017, 7, 87 50f9

above. As electrical resistivity is inversely proportional to the carrier concentration and carrier
mobility, the electrical resistivity of the films grown on the different substrates can be determined
from their measurements. Low-temperature Hall measurement data from GaN films grown on the
different substrates are shown in Figure 5b,c. Sample A showed the lowest carrier concentration and
highest carrier mobility, thereby resulting in an increased number of conductive paths. The carrier
concentration in sample D was higher than that in the others, whereas its carrier mobility was the
lowest. This can be attributed to the existence of a high intrinsic defect and several grain boundaries in
the film. These defects trap and scatter moving electrons, thus decreasing their mobility in the GaN
films [31,32].
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Figure 5. Variation in (a) resistivity; (b) carrier concentration; and (c) mobility of GaN films with
different substrates.

To further clarify the stress behaviors among the four samples, Raman scattering spectroscopy
was performed, and the results are shown in Figure 6. The E;-high phonon mode is very sensitive to
biaxial strain, and is extensively used to characterize the in-plane stress state of the GaN epilayer [33].
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Figure 6. Raman spectra of GaN films for samples MGS (metalorganic chemical vapor deposition
(MOCVD)-grown GaN on sapphire), A, B, C, and D.
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The relationship between biaxial stress and Raman shift can be shown by the formula:
o=Aw/k )

where ¢ is the biaxial stress, Aw is the Raman shift, and k is the Raman stress coefficient of
6.2 cm~1.GPa~! for GaN [34]. Generally, a blue shift in an E-high phonon peak indicates compressive
stress, while a red shift indicates tensile stress [35]. It has been found that an E;-high peak position is
substrate dependent, which implies that there are different stress states in those samples. In the present
case, the GaN E;-high peaks of samples MGS (MOCVD-grown GaN on sapphire), A, B, C, and D were
evaluated as 520.7, 569.7, 565.5, 565.7, and 566.3 cm 1, respectively. Compared to the intrinsic value
of 566.8 cm ! for the stress-free GaN, samples B, C, and D were under tensile stress, while sample A
was under compressive stress [36]. This can be due to the rapid release of stress in the nucleation of
GaN films during the initial growth by high-temperature (1000 °C) PLD. This observed result is also
consistent with those reported by Wang et al. [37]. Sample D had minimum stress, likely caused by the
growth of polygonal island structures and defects generated in the films, which is consistent with the
SEM results [38]. There is a large difference in the lattice mismatch and thermal expansion between
GaN and Si when compared to the GaN/sapphire template and sapphire. The calculated values of
stress for GaN grown on different substrates are shown in Figure 7. The Raman spectra of the MGS
sample is displayed for comparison, as shown in Figure 7. The GaN E; peak of MGS was evaluated at
570.2 cm~ ! with a compressive stress value of —0.548 GPa, which is larger than the compressive stress
value of —0.468 for sample B. It can be concluded that the PLD growth method is beneficial for the
release of stress in the films.
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Figure 7. Residual stress and its corresponding E, Raman shift for samples MGS, A, B, C, and D.

Cross-sectional TEM images were used to investigate the GaN-on-5i meltback-etching reaction
with PLD operating at a high temperature of 1000 °C. Previously, it was reported that the
meltback-etching process caused by alloying reaction Ga with Si leads to a rough GaN surface and
deep hollows in the Si substrate [39,40]. Figure 8a,b shows the TEM images of the GaN films grown on
Si(111) and Si(100), respectively. From Figure 8a,b, it can clearly be observed that no significant Ga-Si
meltback occurred at the GaN/Si surface; this is likely because of the suppressed interaction between
the GaN epitaxy films and the Si substrates developed through PLD.
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Si (111)

Figure 8. Cross-sectional TEM pictures of GaN films on samples (a) C and (b) D.

4. Conclusions

We investigated the GaN thick films grown on a GaN/sapphire template, sapphire, Si(111),
and S5i(100) by high-temperature PLD. The substrate effect on GalN crystalline growth quality, surface
morphology, stress behavior, and interface property were studied. This paper demonstrates the
potential of using high-temperature PLD as a growth method for preparing GaN templates that exhibit
improved device performance.
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