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Abstract: Electroencephalography (EEG) is considered the output of a brain and it is a bioelectrical
signal with multiscale and nonlinear properties. Motor Imagery EEG (MI-EEG) not only has a close
correlation with the human imagination and movement intention but also contains a large amount of
physiological or disease information. As a result, it has been fully studied in the field of rehabilitation.
To correctly interpret and accurately extract the features of MI-EEG signals, many nonlinear dynamic
methods based on entropy, such as Approximate Entropy (ApEn), Sample Entropy (SampEn), Fuzzy
Entropy (FE), and Permutation Entropy (PE), have been proposed and exploited continuously in
recent years. However, these entropy-based methods can only measure the complexity of MI-EEG
based on a single scale and therefore fail to account for the multiscale property inherent in MI-EEG.
To solve this problem, Multiscale Sample Entropy (MSE), Multiscale Permutation Entropy (MPE),
and Multiscale Fuzzy Entropy (MFE) are developed by introducing scale factor. However, MFE
has not been widely used in analysis of MI-EEG, and the same parameter values are employed
when the MFE method is used to calculate the fuzzy entropy values on multiple scales. Actually,
each coarse-grained MI-EEG carries the characteristic information of the original signal on different
scale factors. It is necessary to optimize MFE parameters to discover more feature information.
In this paper, the parameters of MFE are optimized independently for each scale factor, and the
improved MFE (IMFE) is applied to the feature extraction of MI-EEG. Based on the event-related
desynchronization (ERD)/event-related synchronization (ERS) phenomenon, IMFE features from
multi channels are fused organically to construct the feature vector. Experiments are conducted on
a public dataset by using Support Vector Machine (SVM) as a classifier. The experiment results of
10-fold cross-validation show that the proposed method yields relatively high classification accuracy
compared with other entropy-based and classical time–frequency–space feature extraction methods.
The t-test is used to prove the correctness of the improved MFE.

Keywords: motor imagery electroencephalography; feature extraction; multiscale fuzzy entropy;
independent optimization of parameters; complexity; t-test

1. Introduction

Stroke is a disease that causes lethal damage to human health. These patients often experience
motor dysfunction. It is critical to help these patients restore their motor function. Motor
Imagery Electroencephalography (MI-EEG) is a bioelectrical signal that carries enormous amounts of
physiological or disease information. As a result, much attention has been paid to its application in
the rehabilitation field. The active rehabilitation of patients can be realized by identifying MI-EEG.
The accurate feature extraction of MI-EEG is the key to its successful application [1,2].

MI-EEG is a nonlinear and non-stationary signal, and many researchers have devoted their efforts
to exploring its feature extraction from the perspective of the time, frequency, and spatial domains.
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There are three main kinds of classical feature extraction methods, i.e., Autoregressive (AR) model,
Wavelet Transform (WT), and Common Spatial Pattern (CSP). The basic idea of the AR model is making
use of the AR process to approximate a real EEG signal, and then using AR model coefficients as the
feature of the EEG signal. This method is simple and has good real-time performance, but it is a kind
of time domain analysis method for a stationary signal. The length of data segment determines the
resolution and accuracy of parameter estimation [3]. The WT method is able to take advantage of scale
and shift operations to perform multiscale decomposition and time–frequency domain localization,
effectively obtaining the time–frequency information of signals. Thus, the analysis of EEG signals
can benefit from WT [4]. However, recent studies do not support the use of wavelet features for the
discrimination of EEG signals because of redundant and irrelevant information contained in wavelet
coefficients [5]. The CSP method can find two directions that maximize variance for one class and
minimize variance for the opposite class by using the matrix simultaneous diagonalization theory [6].
The performance of CSP is closely related with its operational frequency band. Hence, setting a broad
frequency range in CSP generally yields poor classification accuracy [7]. To overcome this problem,
the Common Spatio-Spectral Pattern (CSSP) [8], Sub-band Common Spatial Pattern (SBCSP) [9], and
Filter Bank Common Spatial Pattern (FBCSP) [10] have been proposed on the basis of CSP and widely
applied to the feature extraction of EEG signal.

With the development of nonlinear dynamics, it has been proved that the brain is a nonlinear
dynamic system, and EEG can be considered as the output of the system. To obtain a better classification
result, some researchers try to use various complexity measures—for example, dimensions and
entropies—to extract the features of EEG signals. However, their calculations frequently face the
problem of insufficient data points. Moreover, most defined dimensions and entropies display
the limitations of experimental data in the application since all recorded signals are polluted
by noise in some way, which prevents accurate estimation. In order to address the insufficient
and noisy data problems in physiological signals, Pincus [11] put forward Approximate Entropy
(ApEn), which can measure the complexity of time series. Once introduced, ApEn has been widely
used in physiological signals such as EEG [12,13] and has shown its advantages compared with
most complexity measures—for instance, the correlation dimension and the Lyapunov exponent.
Nevertheless, it lacks relative consistency and the result relies heavily on the data length, which is
caused by self-matching. To tackle these problems, Richman [14] presented Sample Entropy (SampEn),
in which there is no self-matching. Once put forward, SampEn has a certain application in the feature
extraction of EEG [15,16]. Zhou et al. calculated the SampEn of the MI-EEG signal and the classification
accuracy was between 50% and 87.8% with a Linear Discriminant Analysis (LDA) classifier [15];
Wang et al. used SampEn as the feature of MI-EEG, and the classification rate was between 75.48%
and 78.68% by using Support Vector Machine (SVM) optimized by a Genetic Algorithm (GA) [16].
These applications indicate that SampEn possesses relative consistency and is less dependent on data
length. However, the Heaviside function is used to measure the similarity definition of reconstructed
vectors in the computation of ApEn and SampEn, and this results in a lack of continuity for both
the two statistical measures because of the mutation of the Heaviside function. With regard to this
disadvantage, Chen et al. developed a new statistic, Fuzzy Entropy (FE), which can evaluate the
self-similarity of time series [17]. Compared with the calculation procedure of ApEn and SampEn, FE
replaces the Heaviside function with fuzzy membership function. It not only has stronger relative
consistency and is less dependent on data length, but also achieves continuity and more resistance to
noise. FE has been widely applied in EEG. Tian et al. extracted the features of MI-EEG signals based on
FE and the average classification accuracy was 87.22% by a LDA classifier [18]; Xu et al. made use of FE
to extract attention level features from EEG signals and the average identification rate reached 81% with
a SVM classifier [19]. In addition, Permutation Entropy (PE), which was introduced by Bandt et al. in
2002 [20], can also detect dynamic complexity changes in time series, and it has been widely applied to
the analysis of EEGs [21,22]. Meanwhile, PE has some limitations. It is unable to extract the complexity
information from data with spiky features or abrupt changes in magnitude and easily ignores the
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information contained in a small probability event. Subsequently, Weighted-Permutation Entropy
(WPE) [23] and Permutation Rényi Entropy (PEr) [24] were introduced to improve the performance
of PE and be exploited for the feature extraction of EEG. However, ApEn, SampEn, PE, and FE are
single-scale based and therefore fail to account for the multiple scales inherent in brain electrical
activities. So, Costa et al. proposed Multiscale Entropy (MSE) by introducing a scale factor on the
basis of SampEn [25,26]. MSE can measure the complexity of time series over multiple scales instead
of a single scale and can be used in the EEG signals of sleep staging and fatigue driving [27,28].
Motivated by the merits of PE and MSE, Aziz and Arif put forward Multiscale Permutation Entropy
(MPE) [29]. Ouyang et al. extracted the features of EEG by calculating its MPE and the classification
accuracy was 90.6% with a LDA classifier [30]. Furthermore, Morabito et al. proposed Multivariate
Multi-Scale Permutation Entropy (MMPE) to incorporate the simultaneous analysis of multi-channel
data as a unique block and applied it to a complexity analysis of Alzheimer’s disease EEGs [31].
Zheng et al. came up with Multiscale Fuzzy Entropy (MFE) by combining FE and scale factor, and
used rolling bearing fault type recognition [32]. At present, MFE is mainly applied on fault diagnosis
and has shown its superiority to most complexity measures such as ApEn, SampEn, FE, PE, and so
on. Recently, Azami et al. proposed the so-called refined composite multivariate multiscale fuzzy
entropy (RCmvMFE) based on MFE, and applied it to feature extraction on intracranial EEG data and
fantasia data; the average classification accuracies on the two datasets were 96% and 75% with a SVM
classifier, respectively [33]. However, there are few reports about the application of MFE in MI-EEG
signal analysis. In addition, the same parameter values are employed to calculate MFE on multiple
different scales using the MFE method. As a matter of fact, from the perspective of signal processing,
the essence of the coarse-grained process of time series is to sample the signal after low-pass filtering,
and each coarse-grained time series carries the characteristic information of the original signal on
different scale factors and has its own complexity. Therefore, it is necessary to optimize and use
the different parameters in the calculation of MFE on different scale factors. This will make it more
reasonable to measure the complexity of a signal and enhance the adaptability of MFE. In this paper,
MFE is improved by using independent optimization strategy for the parameters on different scale
factors, and improved MFE (IMFE) is applied to the feature extraction of MI-EEG.

The paper is organized as follows. In Section 2, the basic principles of FE, MFE, and SVM are
briefly introduced. Section 3 describes the working process of IMFE in detail. In the next section,
extensive experiments are conducted on a publicly available dataset. Section 5 concludes the paper.

2. Primary Theory

2.1. Fuzzy Entropy

Fuzzy Entropy (FE) is defined to measure the complexity and irregularity of the time series; the
computation process of FE is as follows [18,19]:

1. Assume that a time series is denoted as X = {x(i) : 1 ≤ i ≤ N}, where N is the length of time
series. Then, the mean x0(i) of m consecutive x(i) values can be calculated as follows:

x0(i) =
1
m

m−1

∑
j=0

x(i + j), (1)

where parameter m is called the embedding dimension and is a positive integer. Then m
dimensional vector Xm

i (i = 1, 2, · · · , N −m) is reconstructed as:

Xm
i = {x(i), x(i + 1), · · · , x(i + m− 1)} − x0(i). (2)



Appl. Sci. 2017, 7, 92 4 of 20

2. Suppose that dm
ij ( i, j = 1 ∼ N −m; j 6= i) is denoted as the maximum distance between Xm

i and
Xm

j . Then, dm
ij can be calculated according to Equation (3):

dm
ij = max(

∣∣∣x(i + k)− x0(i)− (x(j + k)− x0(j))
∣∣∣) , (3)

where k = 1, 2, · · · , m− 1.
3. Suppose that µ(dm

ij , n, r) is denoted as a fuzzy function:

µ(dm
ij , n, r) = exp(−

(dm
ij )

n

r
), (4)

where exp(·) denotes the exponential function, parameter n is the boundary gradient, and r is the
boundary width. Then the similarity degree Dm

ij between Xm
i and Xm

j is given as:

Dm
ij (n, r) = µ

(
dm

ij , n, r
)

. (5)

4. Φm(n, r) is obtained from Equation (6):

Φm(n, r) =
1

N −m

N−m

∑
i=1

(
1

N −m− 1

N−m

∑
j=1,j 6=i

(Dm
ij )). (6)

5. Repeat Steps (1)–(4) for obtaining m + 1 dimensional vector Xm+1
i , and Φm+1(n, r) can be

described as

Φm+1(n, r) =
1

N −m

N−m

∑
i=1

(
1

N −m− 1

N−m

∑
j=1,j 6=i

(Dm+1
ij )). (7)

6. The FE of time series {x(i) : 1 ≤ i ≤ N} can be calculated as follows:

FE(X, m, n, r) = lim
N→∞

(ln Φm(n, r)− ln Φm+1(n, r)), (8)

where ln(·) denotes the natural logarithm function. If N is finite, FE(X, m, n, r) can be
expressed as

FE(X, m, n, r, N) = ln Φm(n, r)− ln Φm+1(n, r). (9)

2.2. Multiscale Fuzzy Entropy

Multiscale Fuzzy Entropy (MFE) is defined to measure the complexity and irregularity of time
series based on multiple scale factors. A brief description of MFE is as follows [32]:

1. Assume that a time series is denoted as X = {x(i) : 1 ≤ i ≤ N}, where N is the length of time
series. Coarse-grained time series {y(τ)} is constructed as {y1(τ), y2(τ), · · · , yN/τ(τ)}, where τ

is a positive integer. yj(τ) is computed based on Equation (10):

yj(τ) =
1
τ

jτ

∑
i=(j−1)τ+1

x(i), 1 ≤ j ≤ N
τ

. (10)

For τ = 1, the time series {y(1)} is an original time series. The length of each coarse-grained
time series equals the length of the original time series divided by scale factor τ. The coarse-grained
procedure is shown in Figure 1.
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2. The FE of each coarse-grained time series can be computed according to Equations (1)–(9) and
MFE is expressed by Equation (11) as a function of scale factor τ. This procedure is called
MFE analysis.

MFE(X, τ, m, n, r) = FE(y(τ), m, n, r) (11)

Here, parameter r = 0.1 ∼ 0.25SD, SD is the standard deviation of the original time series, and it

is calculated by SD =

√
1
N

N
∑

i=1
(x(i)− x)2. Here, x = 1

N

N
∑

i=1
x(i).

2.3. Support Vector Machine

The theory of Support Vector Machines (SVM) has received much attention in recent years.
The basic idea of SVM is as follows. In the first place, it maps input points to a high dimensional
feature space by nonlinear transformation and then finds an optimal classification hyperplane by
maximizing the margin between two classes in this space. In this paper, SVM is chosen as a classifier
to recognize MI-EEG and the radial basis function is selected as the kernel function. Furthermore, the
parameters of SVM, including the kernel parameter and the error penalty factor, are optimized by
using traversal searching method.

3. Description of Feature Extraction

Based on the idea of independent optimization of parameters, the normal MFE is improved, and
the improved MFE (IMFE) method is applied to the feature extraction of MI-EEG. The specific steps
can be summarized as follows:

1. The optimal selection of time interval for MI-EEG

Suppose that the original MI-EEG signal of the Lth channel in a trial is X0
L =

[xL,1, · · ·, xL,d, · · ·, xL,e · ··, xL,k]
T ∈ RK×1, L = 1, 2, · · ·, C, where C and K are the number of channels

and sampling points per trial, respectively. The FE time series of every channel of MI-EEG is calculated
for each training sample of different imaginary tasks. To obtain the mean FE time series, they are
superimposed and then averaged for every imaginary task. The optimal sampling interval may be
determined to ensure there is a significant difference between the mean fuzzy entropies of MI-EEG
on two channels for every imaginary task. A new EEG signal X1

L can be constituted by selecting the
optimal sampling interval of the data points from the original EEG signal X0

L and it can be expressed
as X1

L = [xL,d, · · ·, xL,e]
T ∈ RN×1, where d is the first selected point from X0

L, e is the last selected point
from X0

L, N is the number of selected data points from X0
L, and N = d− e + 1.

2. The Coarse-Grained Procedure of MI-EEG

The coarse-grained MI-EEG signals of X1
L on multiple scale factors τ = 1, 2, · · · , τmax

can be obtained according to Section 2.2 and denoted as X1
L,1, X1

L,2, · · ·X1
L,j, · · ·, X1

L,τmax
in turn,

where L = 1, 2, · · ·, C, τmax is the maximum of scale factor τ and X1
L,j represents the coarse-grained

MI-EEG of the Lth channel for the jth scale.
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3. The Calculation of MFE

The FE of each coarse-grained MI-EEG signal can be calculated according to Section 2.1. The FE
of coarse-grained sequences X1

L,1, X1
L,2, · · ·X1

L,j, · · ·, X1
L,τmax

can be denoted as FE1
L,1, FE1

L,2, · · ·, FE1
L,τmax

,
L = 1, 2, · · ·, C in turn. Thus, the MFE of the Lth channel MI-EEG is given by Equation (12):

MFE1
L = [FE1

L,1, FE1
L,2, · · ·, FE1

L,τmax
] ∈ R1×τmax . (12)

4. The parameters’ independent optimization of MFE for different scale factors τ

On different scale factors, the parameters, including embedding dimension m, boundary gradient
n, and boundary width r, will directly influence the MFE value. To obtain the feature vectors that
are beneficial to classification, the relevant parameters will be optimized independently. For multiple
scale factors τ, when any two parameters of m, n, and r remain relatively fixed, the variation curves of
the average and standard deviation of MI-EEG’s MFE with a parameter are calculated for different
imaginary tasks, respectively. The optimal values of the parameters may be determined by considering
the fluctuation of the error line for each imaginary task, the overlapping degree of error lines, and the
difference of means between different tasks. After the independent optimization of the parameters, the
MFE of the Lth channel MI-EEG is expressed as

IMFE1
L = [IFE1

L,1, IFE1
L,2, · · ·, IFE1

L,τmax
] ∈ R1×τmax , (13)

where IFE1
L,τ(τ = 1, 2, · · · , τmax) represents the improved FE of the Lth channel MI-EEG for scale

factor τ.

5. The construction of feature vector

The improved multiscale fuzzy entropies of MI-EEG signals on all channels are fused serially to
construct a feature vector, or based on the characteristics of MI-EEG, their improved multiscale fuzzy
entropies on relevant channels are organically fused. Only the feature vector after serial fusion is given
by Equation (14):

F = [IMFE1
1 , IMFE1

2, · · ·, IMFE1
C] ∈ R1×(C×τmax), (14)

where F represents the feature vector of MI-EEG in a trial.

4. Experimental Research

4.1. Data Source

The experimental data were derived from dataset III of Brain Computer Interface (BCI)
Competition II provided by BCI Lab, Graz University of Technology in Graz, Austria (http://www.
bbci.de/competition/ii/). The dataset was obtained by collecting the EEG signals of a healthy adult
female while she was imagining left hand or right hand movement. The dataset was composed of
280 trials, of which 140 were used for training and 140 were used for testing. The 140 trials used
for training and testing included 70 trials imagining left hand movement and 70 trials imagining
right hand movement. Each trial lasted for 9 s, and the timing diagram of the experiment is shown
schematically in Figure 2.

As shown in Figure 2, for the first two seconds the subject remained quiet and relaxed; when
the time reached 2 s, a short beep indicated the start of the trial and the ‘+’ cursor appeared on the
monitor simultaneously. When the time was 3–9 s, the visual cue (left–right arrow) was displayed as
the direction of motor imagery. At the same time, the subject imagined the hand movement according
to the direction indicated by the arrow. The data were sampled at 128 Hz. The three channels, C3,
Cz, and C4, were applied to acquire EEG, using Ag/AgCl as an electrode, and the placement of the
electrode is shown in Figure 3.

http://www.bbci.de/competition/ii/
http://www.bbci.de/competition/ii/
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Figure 3. Electrode placement.

4.2. Optimal Selection of Time Interval for MI-EEG

The MI-EEG signals on channels C3 and C4 from 280 trials of samples were selected as the
experimental data. Based on the event-related desynchronization (ERD)/event-related synchronization
(ERS) phenomenon associated with hand movement or imaging movement, the optimal sampling
interval of MI-EEG may be determined to ensure there is a significant difference between fuzzy
entropies corresponding to two motor imaginary tasks. First, for 140 trials of imaginary left hand
movement EEG signals on channel C3, the FE time series of each MI-EEG could be obtained by using
a sliding time window, where the window length was 1 s, the interval was one sampling point, and
parameters m, n, and r were set to 2, 2, and 0.1 SD, respectively. Next, the 140 FE time series of
imaginary left hand movement EEGs on channel C3 were superimposed, and averaged to obtain
their mean FE time series. In a similar way, the mean FE time series of 140 trials of imaginary left
hand movement MI-EEGs on channel C4 could be calculated. Furthermore, the mean FE time series
of 140 trials of imaginary right hand movement MI-EEGs on channels C3 and C4 were obtained as
well. The experimental results are shown in Figure 4. The solid magenta line represents the mean FE
time series of 140 trials of MI-EEG on channel C3 for each imaginary task, and the green dotted line
expresses the mean FE time series of 140 trials of MI-EEG on channel C4 for each imaginary task.

As seen in Figure 4, the means of FE on channels C3 and C4 also change with the variation of
sampling point for any one of two imaginary tasks. When the sampling interval is [451,900], the
difference of mean FE values between C3 and C4 channels is remarkable. In this paper, the sampling
interval will be chosen in the following feature extraction of MI-EEG.
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Figure 4. (a) The mean FE time series of MI-EEG on channels C3 and C4 for imaginary left hand
movement; (b) the mean FE time series of MI-EEG on channels C3 and C4 for imaginary right
hand movement.

4.3. Multiscale Analysis

The entropy of time series is usually used to characterize its complexity, but the entropy variation
of some sequences may be inconsistent on different scale factors. If the majority of scales’ entropy
values are higher for one time series than for another, the former is considered more complex than
the latter.

We randomly selected two trials of MI-EEG signals on channel C3, in which one is derived from
imaginary left hand movement and the other is derived from imaginary right hand movement. Then,
we calculated MFE values of two trials of MI-EEG signals. At this time, τmax was equal to 4 and in the
calculation of MFE values on different scale factors, the parameters m, n, and r were set to 2, 2, and 0.1
SD, respectively. Here, SD was the standard deviation of the original MI-EEG signal. The experimental
result is shown in Figure 5.
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Figure 5. The MFE variation curves with scale factor τ. The pink dotted line and blue solid line
represent the MFE of MI-EEG on channel C3 corresponding to imaginary left hand and right hand
movement, respectively.

From Figure 5, we can see that the FE of MI-EEG signal for imaginary left hand movement is
smaller than the FE of MI-EEG signal for imaginary right hand movement when τ = 1. This means
that the latter is more complex than the former. However, when τ = 2, 3 and 4, the FE values of
the MI-EEG signal for imaginary left hand movement are all higher than those of the MI-EEG signal
for imaginary right hand movement corresponding to one scale factor; this shows that the former is
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more complex than the latter. So, it is unreasonable to analyze the complexity of a time series on a
single scale with FE. In addition, it can be seen that the coarse-grained MI-EEG signal on each scale
factor contains important information related to the imaginary task. To obtain more information, it is
necessary for MI-EEG to conduct multiscale analysis.

4.4. Construction of Feature Vector

After performing multiscale analysis for MI-EEG on all channels, a variety of forms can be used
to construct the feature vector. If the multiscale fuzzy entropies of MI-EEG on all channels are fused
serially, the feature vector is obtained by Equation (15):

F1 = [MFE1
C3, MFE1

C4, MFE1
Cz] ∈ R1×(3×τmax), (15)

where τmax is the maximum of τ; MFE1
C3, MFE1

C4, and MFE1
Cz can be calculated by Equation (12) and

stand for the MFE of MI-EEG on channels C3, C4, and Cz, respectively.
Considering the ERD/ERS phenomenon of MI-EEG on channels C3 and C4, we can also flexibly

select the MFE values of MI-EEG on those channels to construct a feature vector after a specific
operation to guarantee the sharp distinction between two imaginary tasks. The result is as shown in
Equation (16):

F2 = [MFE1
C3 −MFE1

C4, MFE1
Cz] ∈ R1×(2×τmax). (16)

In calculations for fuzzy entropy on different scale factors, parameters m, n, and r were set to 2, 2,
and 0.1 SD, respectively; SD was the standard deviation of the original MI-EEG signal, and τmax was
equal to 4.

To find the best means of feature vector construction, some experiments were conducted on
a public dataset using SVM as a classifier. In addition, to eliminate the contingency in the feature
extraction process and increase the objectivity of feature evaluation, 10-fold Cross-Validation (CV) was
employed. This means that the data, including 280 trials, were randomly divided into 10 subsets, each
of which was used as a validation set. Experiment environment: Win7 operating system, memory 4G,
programming language is Matlab R2014a. The experiment results of 10-fold CV are listed in Table 1.

Table 1. Comparison of feature vector construction.

Feature Vector Classifier Top Classification Rate (%) Average Classification Rate with 10-Fold CV (%)

F1 SVM 96.43 88.93
F2 SVM 100 90.36

Table 1 shows that the feature vector F2 constructed by Equation (16) has certain advantages over
F1 constructed by Equation (15), and the highest classification accuracy and average classification rate
with 10-fold CV were 100% and 90.36%, respectively. It is obvious that the feature vector F2 is more
conducive to mining and characterizes more and deeper feature information contained in the MI-EEG
signal. Therefore, feature vector F2 is employed in the following experiments.

4.5. The Parameters’ Independent Optimization of MFE

In the course of calculating MFE, the four parameters, i.e., scale factor τ, embedding dimension
m, boundary gradient n, and boundary width r, should be determined in advance. For scale factor
τ, when it was too large, the calculation of MFE would raise the problem of insufficient data points,
while a too small scale factor would not be good for accessing the deeper information of MI-EEG.
From Section 4.2 we can see that the change of FE is significant when the time range is [451,900].
Meanwhile, to ensure that the calculation of FE is not affected by the data length, the length of time
series is at least 100 points. As a result, τmax was set to 4. The remaining three parameters would
be determined by experiments. Firstly, when τ, m, n, and r were given fixed values, we calculated
the fuzzy entropy of 140 trials of MI-EEG on channel C3 and C4 for imaginary left hand movement.
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Then, we calculated 140 differences between the FE on channel C3 and the FE on channel C4, and
we defined FED = FEC3 − FEC4, where FEC3 and FEC4 stand for the FE of MI-EEG on channels C3
and C4, respectively. Finally, we calculated the mean and standard deviation of 140 FED, and they
were noted as MFED and SDFED, respectively. For a given τ, we could obtain the variation curve of
MFED and SDFED with any one parameter while the others were kept constant. When scale factor τ

was 1, we obtained three curves, which are presented in Figure 6. The solid pink line represents the
situation of imaginary left hand movement. Similarly, the results associated with imaginary right hand
movement are displayed with a green dotted line.Appl. Sci. 2017, 7, 92  10 of 19 
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Figure 6. For τ = 1, the mean and standard deviation of FED curves for input variables (a) embedding
dimension m; (b) boundary gradient n; and (c) boundary width r.

Figure 6a gives the variation curves of MFED and SDFED with parameter m when τ = 1,
n = 2, r = 0.1SD, and SD is the standard deviation of original MI-EEG. When m equals 1, although
SDFED is small for any one of the imaginary tasks, which means the MI-EEG signals are more intensive
for any one of two tasks, the MFED values corresponding to two imaginary tasks are quite close, which
means the two tasks show a poor distinction. With the increase of m, for any one of two imaginary tasks
the MFED first increases and then remains stable. The bigger m is, the more accurate the calculation of
FE is and the more detailed information is implied. Meanwhile, the more complex the computation,
the more data points are needed. Taking into account the constraints of the experimental dataset, the
parameter m is set to 2. Figure 6b displays the variations of MFED and SDFED with parameter n when
τ = 1, m = 2, r = 0.1SD, and SD is the standard deviation of the original MI-EEG. When parameter
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n is 1, the MFED values corresponding to the two imaginary tasks are quite different, which means
they show a better distinction, but the SDFED values are also very big for the two tasks, which means
the MI-EEG signal is too scattered for any one task. When parameter n equals 3 or 4, SDFED is small
for any one imaginary task. On the other hand, the MFED values corresponding to the two imaginary
tasks are very close. When parameter n equals 2, SDFED is moderate for any one imaginary task;
meanwhile the MFED values corresponding to the two imaginary tasks are quite different. To sum up,
the parameter n is set to 2. Figure 6c exhibits variations of MFED and SDFED with parameter r when
τ = 1, m = 2, n = 2. The MFED values corresponding to the two imaginary tasks are quite different,
while the SDFED values for the two tasks are both large when parameter r is relatively small. With the
increase of r, the MFED corresponding to the two imaginary tasks become smaller. In conclusion, the
parameter is selected as r = 0.1SD, and SD is the standard deviation of the original MI-EEG.

In summary, when scale factor τ is 1, the values of parameters m, n, and r have a significant
influence on the FE of MI-EEG for two imaginary tasks, and this will directly affect the quality of the
FE features. Therefore, it is necessary to further optimize the parameters of FE when scale factor τ

equals 2, 3, and 4. The MFED and SDFED values with different parameters m, n, and r are obtained by
using a similar computation process, and their variations are shown in Figures 7–9, respectively.
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Figure 7. For τ = 2, the mean and standard deviation of FED curves for input variables (a) embedding
dimension m; (b) boundary gradient n; and (c) boundary width r.
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Figure 8. For τ = 3, the mean and standard deviation of FED curves for input variables (a) embedding
dimension m; (b) boundary gradient n; and (c) boundary width r.

A detailed analysis of Figures 7–9 was performed using the analysis method of Figure 6. It can be
seen that the parameters m = 2, n = 2, r = 0.1SD are more suitable for the classification of MI-EEG
when τ = 2, 3, and 4. Note that SD is the standard deviation of the coarse-grained MI-EEG
corresponding to each scale factor τ, and not the standard deviation of the original MI-EEG.

To prove the necessity of parameter optimization, a comparison between IMFE and MFE was
carried out on a public dataset and SVM was chosen as a classifier. In the computation of MFE,
τmax = 4, n = 2, m = 2, r = 0.1SD were selected, but SD was different in the two methods. In the IMFE
method, SD was the standard deviation of the coarse-grained MI-EEG corresponding to each scale
factor τ, i.e., SD was varied with τ. However, in the MFE method, SD was the standard deviation of
the original MI-EEG on each scale factor τ and was constant. The experimental results are listed in
Table 2.
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Figure 9. For τ = 4, the mean and standard deviation of FED curves for input variables (a) embedding
dimension m; (b) boundary gradient n; and (c) boundary width r.

Table 2. The influence of parameter optimization in MFE on recognition rate.

Feature Extraction Method Classifier Top Classification Rate (%) Average Classification Rate with 10-Fold CV (%)

MFE SVM 100 90.36 ± 2.67
IMFE SVM 100 92.14 ± 2.1

As seen from Table 2, when IMFE is employed to extract the feature of MI-EEG, the average
classification rate with 10-fold CV increases by 1.78% from 90.36% to 92.14% compared with MFE, and
the experimental results of IMFE show more stability than MFE. This demonstrates that the parameters’
independent optimization of MFE is beneficial for enhancing the accuracy and adaptability of the
feature extraction method.

4.6. Comparison of Multi-Feature Extraction Methods

To compare IMFE with the nonlinear dynamic methods and the classical feature extraction
methods, some experiments were conducted on a public dataset using SVM as a classifier.
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4.6.1. Comparison with Multiple Nonlinear Dynamic Methods

The proposed IMFE and the other nonlinear dynamic methods, including ApEn, SampEn, FE, PE,
WPE, MSE, MPE, and MFE, were used to extract the features of MI-EEG. The experimental results are
given in Figure 10.
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Figure 10. The average classification accuracy and standard deviation performed by 10-fold CV for
IMFE and multiple nonlinear dynamic methods.

As seen from Figure 10, the classification results of ApEn and SampEn are relatively poor, because
they use the Heaviside function to measure the similarity definition of reconstructed vectors. FE
replaces the Heaviside function with fuzzy membership function, and the recognition rate has been
improved. The classification accuracy of WPE is higher than that of PE. This is because WPE also
contains amplitude information besides the order structure of MI-EEG, compared with PE. Compared
with ApEn, SampEn, FE, and PE, the classification rates of MSE, MPE, and MFE have been greatly
improved. That is because ApEn, SampEn, FE, and PE can only estimate the complexity of time series
based on a single scale and MSE, MPE, and MFE can measure the complexity of time series on multiple
scale factors. IMFE is improved by adding the parameters’ independent optimization to MFE, and it
can adaptively extract more and deeper information so that the classification accuracy can be further
improved. In addition, compared to other nonlinear dynamic methods, its standard deviation (±2.1) is
the smallest, which means that the improved MFE method has better stability.

4.6.2. Comparison with Multiple Classical Feature Extraction Methods

In this section, some experiments were carried out to compare the proposed IMFE with classical
feature extraction methods, including AR, WT, CSP, CSSP, and FBCSP. In the experiments, the parameter
values of AR and WT were the same as the reference [3,4], respectively. The parameter values of CSP,
CSSP, and FBCSP were the same as the reference [34]. The average classification accuracies with 10-fold
CV are shown in Figure 11.

The classification results of AR, WT, CSP, CSSP, and FBCSP are not as good as those of the
IMFE method. This is mainly because these classical feature extraction methods only take into
account the information in one domain, including time domain, frequency domain or spatial domain,
and they are even completed on the premise that MI-EEG is a linear signal. In fact, MI-EEG is a
typical nonlinear signal. IMFE is matched with the nonlinear property of signal, and the parameters’
independent optimization of MFE is advantageous for accurately extracting and correctly interpreting
the characteristic information of MI-EEG. Furthermore, the minimal standard deviation of IMFE (±2.1)
shows the strong stability, and this can better meet the requirements of a real application.
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IMFE and multiple classical feature extraction methods.

4.7. Comparison of Multiple Recognition Methods

In this section, a comparative study was performed on the same public dataset to prove the
effectiveness of the recognition method, i.e., the combination of IMFE and SVM.

First, the combined recognition of IMFE and SVM was compared with the top three methods in
BCI competition II in many aspects [35]. The detailed information is illustrated in Table 3.

Table 3. Comparison with the top three recognition methods in BCI competition II.

Feature Extraction Classifier Top Classification Rate (%) Average Classification Rate with 10-Fold CV (%)

WT Bayes 89.29 -
ERD LDA 86.43 -
AR LDA 84.29 -

IMFE SVM 100 92.14

Note: “-” means that average classification rate with 10-fold CV is not given in the reference.

From Table 3, it can be seen that the highest recognition rate of 100% is achieved by using
IMFE feature extraction and the SVM classifier; it has increased significantly compared with the top
three methods. Furthermore, the average recognition rate with 10-fold CV is higher than the highest
recognition rates of the other three methods.

Next, some research was completed about the combined recognition of IMFE and SVM and the
other recognition methods, whose experimental data was from the same dataset III of BCI Competition
II [4,36–49]. The detailed information, including the reference numbers, feature extraction methods,
classifiers, etc., is shown in Table 4.

From Table 4, we can see that the proposed recognition method has the highest classification rate
(100%) and its average recognition rate (92.14%) with 10-fold CV is higher than the highest recognition
rates corresponding to the other methods except references [4,40,49].
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Table 4. Comparison with other recognition methods.

Reference
Number Feature Extraction Classifier Top Classification

Rate (%)
Average Classification Rate

with 10-Fold CV (%)

4 WT BP 92.4 -
36 WPT LDA 88.57 -
37 CSP SVM 82.86 -
38 CSP BPR 90 -
39 CSSP SVM 87.14 -
40 WT–AR LDA 92.86 -
41 WT–ICA GA–SVM 90.71 -
42 WT–PSD LDA 89.29 -
43 WT–WE Kmeans 90.1 -
44 MOWT SVM 91.8 -
45 SSE KNN 85.16 -
46 WPE BP 88.57 -
47 EMD FCM 83 -
48 EMD PSO–SVM 87.6 -
49 PCA GHSOM 96 -

this paper IMFE SVM 100 92.14

Note: “–”represents the combination or optimization of methods for feature extraction or classification; “-”
means that average classification rate with 10-fold CV is not given in the reference. BP: Back propagation, WPT:
Wavelet Packet Transform, BPR: Biomimetic Pattern Recognition, ICA: Independent Component Analysis, PSD:
Power Spectral Density, WE: Wavelet Entropy, MOWT: Maximum Overlap Wavelet Transform, SSE: Singular
Spectrum Entropy, KNN: K-Nearest Neighbor, EMD: Empirical Mode Decomposition, FCM: Fuzzy C-means,
PSO: Particle Swarm Optimization, PCA: Principal Component Analysis, GHSOM: Growing Hierarchical
Self-organizing Map.

4.8. Computation Time

The computation time can actually reflect the complexity of a method, and it is closely related
to the application in a BCI system. Figure 12 presents the test time of feature extraction in a trial by
using the proposed IMFE method and the conventional feature extraction methods (AR, WT, CSP,
CSSP, FBCSP, ApEn, SampEn, FE, PE, WPE, MSE, and MPE). Less time is consumed in application
of AR, WT, CSP, CSSP, and ApEn, but their effect of feature extraction is not ideal, as we know from
the above analysis. The time consumption of SampEn, PE, WPE, MSE, and MPE is at a medium level.
FBCSP, FE, and IMFE need more time, especially IMFE, which means that IMFE has a relatively higher
computational complexity compared to the other methods. This is mainly because of the exponential
membership function in IMFE. However, it could basically satisfy the requirements of a BCI system.
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4.9. Statistical Analysis

The IMFE is developed in this paper on the basis of MFE. It is necessary to analyze the differences
between IMFE and MFE statistically. In the following, a paired t-test is applied to identify whether
there is a significant difference when they are used for feature extraction of MI-EEG.
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Suppose that IFElh
L,τ and IFErh

L,τ stand for the improved fuzzy entropy of the Lth channel MI-EEG
for scale factor τ corresponding with imaginary left hand and right hand movements, respectively.
Similarly, FElh

L,τ and FErh
L,τ denote the normal fuzzy entropy of the Lth channel MI-EEG for scale

factor τ corresponding with imaginary left hand and right hand movements, respectively. Define
DIMFE = IFElh

L,τ − IFErh
L,τ , DMFE = FElh

L,τ − FErh
L,τ , and D = DIMFE − DMFE, and calculate D for each

channel of C3, C4, and Cz and each one of scale factor τ = 2, 3 and 4. Then, we tested that D is a
sample from a normal population N(µD, σ2

D). The null hypothesis is H0 : µD ≤ 0; the alternative
hypothesis is H1 : µD > 0. The one-tailed paired t-test was chosen (α = 0.05). The decision rule is to
reject H0 if:

d
sD√

n
> tα(n− 1) (17)

or
p = P{t > tα(n− 1)} ≤ 0.05, (18)

where d and sD denote the mean and standard deviation of sample D, respectively; n is the number of
elements in sample D. The t-test results are shown in Table 5.

Table 5. Paired t-test results.

t-test
Channel

C3 Cz C4

τ = 2
Null hypothesis rejection True True True

p value 0.0037 2.4309 × 10−4 7.0122 × 10−6

Test statistic 2.7161 3.5727 4.5037

τ = 3
Null hypothesis rejection True True True

p value 7.0122 × 10−6 0.0169 1.4949 × 10−8

Test statistic 4.5037 2.1425 5.8743

τ = 4
Null hypothesis rejection True True True

p value 1.3387 × 10−6 0.0497 5.3877 × 10−17

Test statistic 4.8958 1.6591 9.4577

From Table 5, we see that all the p values are less than 0.05. Therefore, the null hypothesis H0 is
rejected at the 0.05 significance level. Therefore, the fuzzy entropy values obtained by IMFE and MFE
are significantly different and IMFE outperforms MFE in discriminating between two imaginary tasks.

5. Conclusions

Aiming at the highly nonlinearity and multiscale property of MI-EEG, MFE is introduced and
improved to measure its complexity. Especially with the parameters’ independent optimization
strategy, all the parameters of MFE are optimized for each scale factor in sequence. So, the MFE of each
coarse-grained MI-EEG on a different scale factor is calculated by using different parameter values.
This makes IMFE a more accurate multiscale analysis method. It would be helpful to discover the
nature of a nonlinear signal in more detail. The improved MFE is applied to the feature extraction of
MI-EEG, and results in relatively higher classification accuracy compared with the exiting nonlinear
dynamic methods and conventional time, frequency, or spatial domain analysis methods. The statistical
results of a paired t-test further illustrate that IMFE has significant advantages over MFE. These lay
the foundation for expanding the application of nonlinear dynamic methods in EEG or even other
bioelectrical signals. However, IMFE requires relatively more computation time than some other
methods. This is mainly due to the exponential fuzzy membership function in MFE. We will solve
that problem by simplifying the fuzzy membership function and improving programming skills in
future work.
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