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Abstract: The main purpose of this paper is to present some potential applications of sophisticated
data mining techniques, such as artificial neural network (ANN) and boosted tree (BT), for landslide
susceptibility modeling in the Yongin area, Korea. Initially, landslide inventory was detected from
visual interpretation using digital aerial photographic maps with a high resolution of 50 cm taken
before and after the occurrence of landslides. The debris flows were randomly divided into two
groups: training and validation sets with a 50:50 proportion. Additionally, 18 environmental factors
related to landslide occurrence were derived from the topography, soil, and forest maps. Subsequently,
the data mining techniques were applied to identify the influence of environmental factors on
landslide occurrence of the training set and assess landslide susceptibility. Finally, the landslide
susceptibility indexes from ANN and BT were compared with a validation set using a receiver
operating characteristics curve. The slope gradient, topographic wetness index, and timber age
appear to be important factors in landslide occurrence from both models. The validation result of
ANN and BT showed 82.25% and 90.79%, which had reasonably good performance. The study
shows the benefit of selecting optimal data mining techniques in landslide susceptibility modeling.
This approach could be used as a guideline for choosing environmental factors on landslide occurrence
and add influencing factors into landslide monitoring systems. Furthermore, this method can rank
landslide susceptibility in urban areas, thus providing helpful information when selecting a landslide
monitoring site and planning land-use.
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1. Introduction

The mountainous area of Korea covers approximately 70% of the total land. Areas with landslide
susceptibility in Korea have been reported in the steep slopes of mountainous areas consisting of
granite or gneiss [1]. These conditions, in addition to low strengths of weathered soil and unstable
slopes, are considered vulnerable to particularly shallow landslides when intense rainfall occurs during
the summer rainy season. There is a tendency that suggests that the risk of landslides is increasing
due to frequent localized heavy rain in Korea resulting from recent climate change [1,2]. In addition,
earlier landslides that developed in the upper mountainous areas extend to debris flows in the valley
area, and affect property damage and loss of human life in living areas which are developing and
expanding [3]. Therefore, landslides are viewed as hazards for human life and artificial structures
in Korea.
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The damage caused by landslides is the same worldwide. To minimize the damage to people and
property due to landslides, many efforts over the past few decades have been made to understand how
to control landslides and predict their spatial and temporal distribution [4–13]. Most approaches have
been applied on the Geographic Information System (GIS)-based landslide susceptibility assessment
representing predicted landslide risks. The classification of these approaches (e.g., heuristic, statistical,
probability, and deterministic approaches) are well documented in van Westen et al., 2006.

In particular, statistical and probability application models have been widely applied by several
studies to predict landslide susceptibility using a past landslide inventory and their environmental
factors. The models include frequency ratio [14,15], weight of evidence [16], logistic regression [17],
and fuzzy logic [18]. Recently, data mining techniques have been developed and are extremely
popular [19,20] when dealing with a variety of nonlinear issues. Techniques applied in landslide
susceptibility modeling include: artificial neural network, decision tree, boosted tree, neuro fuzzy,
Bayesian network, support vector machine, and random forest [21–30].

When using these approaches to predict landslide-susceptible areas, it is assumed that past
landslide occurrence conditions are similar to the conditions for future landslide occurrence [12].
Therefore, it is necessary to train and explore the relationship between past landslide locations and
environmental factors (e.g., topographic, hydrologic, soil, and forest data) when using these approaches
to predict landslide-vulnerable areas. To do so, it is important to prepare accurate landslide maps and
to select environmental variables that affect landslide occurrence to apply to models [31].

Although several different models have been compared in previous studies [22,26], this study
analyzed landslide susceptibility based on artificial neural networks (ANN) and boosted tree (BT)
models that have not been applied simultaneously in other studies. Furthermore, as various
topographic and hydrologic factors have been calculated from a digital elevation model (DEM) using
a System for Automated Geoscientific Analyses (SAGA) GIS Module, and landslide occurrences have
accurately been detected from digital aerial photos, the contribution of these factors were evaluated
from these models. Therefore, this research aimed to: (i) investigate and compare the performance
of data mining-based ANN and BT models, (ii) prepare accurate landslide maps using digital aerial
photographs with high resolution, and (iii) determine the contribution of the environmental factors.

The preparation of the landslide susceptibility model was accomplished in three major steps.

(1) Compilation of a spatial database. A total of 82 debris flows were detected by visual
interpretation of aerial photographs with a 50 cm resolution before and after landslide events.
The environmental factors were constructed into a spatial database including eight topographic
factors: slope gradient, aspect, plan curvature, convexity, mid-slope position (MSP), terrain
ruggedness index (TRI), topographic position index (TPI), and landforms; three hydrologic
factors: slope length (SL), stream power index (SPI), and topographic wetness index (TWI); four
soil factors: land-use, material, thickness, and topography; and three timber factors: age, density,
and diameter.

(2) Processing the data from the database. The number of debris flows were randomly divided into
training (50%) and validation (50%) data for landslide susceptibility analysis using ANN and
BT models.

(3) The influence of environmental factors on landslide occurrences as the training set was calculated
as the weight of the factor using both models.

(4) Mapping landslide susceptibility using ANN and BT, and assessing both maps using known
landslide occurrences as a validation set.

2. Study Area and Materials

The study area, Yongin City, recorded over 350 mm of cumulative rainfall on 27 July 2011, and a
shallow landslide occurred due to intense rainfall. Next, the debris flows collapsed houses and parts
of buildings, and resulted in loss of life and property (Figure 1). In this paper, the landslide inventory
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was mapped from digital aerial photographs with a high resolution of 50 cm. The 82 landslides were
detected from visual interpretation of before and after photos of landslide events in the study area.
The altitude of the study area ranges from 47 m to 457 m with 140 m of average and 79 m of standard
deviation. The landslide occurred at an altitude of 70 m~267 m. Specifically, 80% of total landslides
occurred between 100 m and 200 m. Biotite gneiss and alluvium are composed of about 65% and 20%
of the study area, respectively. Almost all landslides occurred in biotite gneiss. There are two fault
lines from the geological map in the study areas.

Topographic and hydrologic factors were constructed from DEM using the terrain analysis of the
SAGA GIS module (Table 1). The soil and timber factors were extracted from soil and forest maps.
The locations of landslides and environmental factors were denoted by pixels of 5 m by 5 m, and the
dimension of the study area had a total number of 1,918,400 cells with 1760 columns by 1090 rows.
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Table 1. Data layer related to the landslide of the study area.

Category Factors Data Type Scale Source

DEM

Topographic
factors

Slope

Grid 1:5000
National Geographic
Information Institute
(NGII) in Korea

Aspect
Plan curvature

Convexity
Mid-slope position (MSP)

Terrain ruggedness index (TRI)
Topographic position index (TPI)

Landforms

Hydrologic
factors

Slope length (SL)
Stream power index (SPI)

Topographic wetness index (TWI)

Soil map

Land-use

Polygon 1:5000
National Academy of
Agricultural Science
(NAAS) in Korea

Material
Thickness

Topography

Forest map
Timber age

Polygon 1:5000
Korea Forest Research
Institute (KFRI)

Timber density
Timber diameter

2.1. Precipitation Characteristics

Rainfall affects the slope stability by means of its influence on run-off and pore water pressure [32].
Specifically, high intensity rainfall usually relates to a high concentration of landslide events in time
and space [33]. In this study, rainfall characteristics were analyzed over the period 26–28 July 2011,
which affected landslide occurrences. Hourly rainfall data were collected from one automatic weather
station (AWS) in the study area (Figure 2). Figure 2 shows the amount of hourly rainfall and its
accumulative rainfall. It was reported in articles that the landslides occurred around 1:00 p.m. on
27 July 2011. Before the landslide event, the rain fell for 10 h from 3:00 a.m. that day. The highest
hourly rainfall recorded was 78 mm at 10:00 a.m. The second highest recorded hourly rainfall was
68 mm at 12:00 a.m. before the landslide events at 1:00 p.m. The volume of rainfall accumulation at
the time of the landslide events was recorded at 385 mm in the study area. The different seven AWS
sites outside the study area showed a value of 205 mm, 282 mm, 188 mm, 182 mm, 178 mm, 222 mm,
and 130 mm. The study area has the highest volume of rainfall accumulation when compared to the
accumulated volume of rainfall in the surrounding area.
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2.2. Landslide Inventory

A landslide map is based on important information to determine the quantitative zoning of
landslide susceptibility, hazards, and risk [34,35]. In this study, a visual interpretation of digital aerial
photographs with a high resolution of 50 cm was used for accurate landslide mapping. Although visual
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interpretation is a classical method [34], it is very useful in detecting accurate landslide locations and
scars using high resolution photographs, as landslide scars are similar to tombs and their surrounding
area in the study area.

These types of photographs without ground control points (GCPs) can be freely obtained at portal
sites such as DAUM [36] and Skymap [37] (“Skymap”) in Korea [38]. The eighteen photos (taken before
and after the landslide events) were selected from each region of landslide occurrences and five GCPs
were applied to each photo from digital topographic features using ArcMap 10.2. Three out of the
82 landslides detected from the visual interpretation of the photos are shown in Figure 3. The photos
taken before and after landslide occurrences are shown in Figure 3a–c, respectively. Figure 3c,d shows
the blue plastic-covered area to prevent soil flow after landslides, and Figure 3d was taken by field
survey. Most of the intensive rainfall-triggered debris flows were approximately 10–70 m in length,
3–20 m in width range, and less than one m in depth.
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2.3. Environmental Factors

Intensive rainfall-triggered debris flows are controlled by the interaction of various factors
including topography, hydrology, soil, and forests [39]. Topography and hydrology influence debris
flow initiation through the effect of gradient on slope stability with rainfall. These factors also
determine the concentration and dispersion of the material and the material balance on the slope
associated with the slope stability. In addition, soil and timber factors on the slope affect the spatial
distribution of debris flows. These factors are significant controls, and can be represented as spatial
distribution from digital elevation models (DEM) and soil and forest maps. Geology and faults
were not considered as environmental factors in this study because shallow soil failure was mainly
related to positive pore water pressure in saturated soils by intensive rainfall [39–41]. In this study,
18 environmental factors were considered for landslide susceptibility modeling based on ANN and BT
(Table 1, Figure 4).
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Topographic and hydrologic factors were extracted from the DEM for determining the relationship
between these factors and debris flow using SAGA GIS modules [42]. A DEM with a 5 × 5 m grid
format was generated from a triangulated irregular network (TIN) derived from a digital elevation
contour with 5 m interval lines in ArcGIS 10.2. Soil and forest factors were also extracted from soil and
forest maps with a scale of 1:5000.

The extracted topographic factors were slope, aspect, plan curvature, convexity, topographic
position index (TPI), terrain ruggedness index (TRI), min-slope position (MSP), and landforms
(Figure 4a–h). The considered hydrologic factors were slope length (SL), stream power index (SPI),
and topographic wetness index (TWI) (Figure 4i–k). Slope indicated the steepness of a hill, and aspect
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was the steepest downhill direction. Plan curvature was perpendicular to the slope and affects the
divergence and convergence of flow across the surface. Terrain surface convexity was described as
positive surface curvature and represented the percentage of convex-upward cells [43]. TPI was the
difference between the elevation of each cell and the mean elevation for a neighborhood of cells [44].
Negative values represented lower features than surrounding features, values near zero were flat
areas, and positive values represented features typically higher. TRI were absolute values obtained by
squaring the difference between the value of a cell and neighbor cells, and convex and concave areas
could have similar values. MSP were assigned a 0 value, while maximum vertical distances to the
mid-slope in crest or valley directions were assigned a 1 value. Landform classification (cl 1: deeply
incised streams, cl 2: shallow valleys, cl 3: upland drainages, cl 4: U-shape valleys, cl 5: plains, cl 6: open
slopes, cl 7: upper slopes, cl8: local ridges, cl 9: mid-slope ridges, and cl 10: high ridges) was derived
by ranges of TPI values [45]. SL was based on specific catchment areas and slope, with the former used
as a substitute for slope length. SPI represented the erosive power of a water flow [46]. TWI indicated
the effect of topography on the location of the saturated area size of runoff generation [46]. In general,
higher SL and SPI, and lower TPI, represented a higher landslide susceptibility.

The attribute columns in the digital soil map (Table 1) included land-use, material, thickness,
and topographical values (Figure 4l–o). Land-use was classified into natural grasses, forests, paddy
fields, and farm orchard areas. Soil material included three classes: gneiss, acidic residuum, and granite
residuum. The class of soil thickness from the soil maps was divided into four classes: very shallow
(<20 cm), shallow (20–50 cm), moderate (50–100 cm), and deep (>100 cm). Topography was classified
into mountainous areas, fluvial plains, valley areas, hilly areas, alluvial fan areas, piedmont slope
areas, and diluvium areas.

Timber factors from the digital forest map (Table 1) included timber age, density, and diameter
(Figure 4p–r). Timber age was grouped into the 1st to 6th ages; over 50% of the timber in the study area
belonged to the 1st age (less than 10 years), and the rest were classed as either the 2nd age (11–20 years),
3rd age (21–30 years), 4th age (31–40 years), 5th age (41–50 years), or 6th age (51–60 years). Timber
density was divided into three classes: loose (less than 50% of a covered area), moderate (51–70%),
and dense (over 71%). Timber diameter was divided into four classes: very small (over 51% of area
with <6 cm), small (over 51% of area with <18 cm), medium (over 51% of area with <30 cm), and large
(over 51% of area with >30 cm).

3. Application of Artificial Neural Network (ANN) and Boosted Tree (BT) Models for Landslide
Susceptibility Mapping

3.1. Artificial Neural Network (ANN)

The ANN is an abstract mathematical model based on the knowledge of the human brain
and its activities. The scope of possible applications of ANN is practically unlimited in fields such
as pattern recognition (also known as classification), decision making, automatic control systems,
and many others. Thus, ANN can be applied to the classification of landslide susceptibility by solving
the non-linear relationship between landslides and their spatial environmental factors [47].

A feedforward ANN model called a multilayer perceptron (MLP) maps a set of input values onto
a set of suitable outputs. The MLP comprises of an input and an output with one or more hidden
layers of nonlinearly-activating nodes. Each node in one layer is connected with a certain weight
to every node in the next layer. MLP utilizes a backpropagation algorithm for training the network.
The algorithm trains the network until some goal minimal error is reached between the anticipated
and actual output values of the network. At the end of this training step, the neural network produces
a model that should be able to calculate a target value from a given input value [48].

It is important to select training data, such as landslide- and non-landslide locations, to be used
as input to the ANN’s learning algorithm [49]. In this study, areas with zero slope value were assigned
as areas not prone to landslides, and areas with known landslides were assigned as areas prone to
landslide in the training set. Both groups had 41 datasets. The values of the 18 landslide-related
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environmental factors were normalized to a range of 0.1–0.9 as input data. The backpropagation
algorithm, as one of the most popular training algorithms, was used in this study. The three layered
feed-forward network based on the framework provided by [50] was applied using the MATLAB
software package as 18 (input layer) × 36 (hidden layer) × 2 (output layer). A log-sigmoid transfer
function was used in the hidden layer and the output layer.

The flow of data processing was as follows. First, feedforward sent the input data to the neural
network, and then the cost function with weight and bias were calculated. Many iterations of training
satisfactorily minimized errors in updating optimized weight and bias for the training data. The relative
influence indexes of the variables were calculated as the maximum repetitive number before reaching
the targeted error of 2000, the learning rate of 0.01, and root mean square error (RMSE) of 0.001 using
MATLAB. If the RMSE value of 0.001 was not achieved, then the maximum number of iterations was
terminated at 2000 epochs. When the latter case occurred, then the maximum RMSE value was <0.1.
As the calculated weights were granted to each factor (Table 2), landslide susceptibility for the whole
study area was classified.

Table 2. Summary of the influence weights of predictor variables for Artificial Neural Network (ANN)
and Boosted Tree (BT).

Normalized Weights Based on ANN Normalized Weights Based on BT

Soil thickness 0.00 Soil material 0.00
Plan curvature 0.05 Soil thickness 0.11

Aspect 0.14 Plan curvature 0.13
Slope length (SL) 0.19 Soil topography 0.18

Mid-slope position (MSP) 0.22 Landforms 0.21
Soil topography 0.24 Mid-slope position (MSP) 0.27

Topographic position index (TPI) 0.25 Stream power index (SPI) 0.33
Soil land-use 0.30 Soil land-use 0.34

Timber diameter 0.31 Convexity 0.36
Terrain ruggedness index (TRI) 0.35 Topographic position index (TPI) 0.42

Soil material 0.37 Timber density 0.43
Stream power index (SPI) 0.39 Aspect 0.45

Timber age 0.43 Slope length (SL) 0.65
Convexity 0.45 Slope gradient 0.66
Landforms 0.54 Topographic wetness index (TWI) 0.67

Timber density 0.58 Terrain ruggedness index (TRI) 0.71
Slope gradient 0.60 Timber diameter 0.73

Topographic wetness index (TWI) 1.00 Timber age 1.00

3.2. Boosted Tree (BT)

The boosted-tree technique has emerged as one of the most-influential methods for predictive data
mining over the past few years. The boost-tree algorithm stems from one of the general computational
approaches of stochastic-gradient boosting, also known as TreeNet (TM Salford Systems, Inc., 9685 Via
Excelencia, Suite 208, San Diego, CA 92126, USA). These potent algorithms can effectively be used
for regression as well as classification with continuous and categorical predictors. Boosted trees can
ultimately produce a more-effective fit of the prediction values to the observation values, despite its
complex relationship with the predictor and dependent variables, such as a nonlinear relationship;
therefore, the boosted-tree algorithm can serve as a reliable machine-learning algorithm by fitting a
weighted additive expansion of simple trees.

The training set in the BT model was the same as the training set in ANN. In the BT model in
STATISTICA 10.0 [51], where the learning rate = 0.01, the tree complexity = 5, and the bag fraction = 0.5,
the optimal number of trees was reached/selected at 262. The relative influence indexes of the variables
were calculated summing the contribution of each variable (Table 2).

4. Landslide Susceptibility Mapping and Validation

The probability for landslide susceptibility was predicted by reflecting the relative influence
indexes of predictor variables calculated in the ANN and BT models. The predicted landslide
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susceptibility index was classified into four classes based on area for simple and visual interpretation:
very high, high, medium, and low index ranges in 5%, 10%, 15%, and 70% of the study area, respectively
(Figure 5a,b).

Susceptibility maps were verified and compared by using known 41 actual landslide events
as a validation set that were not used in the ANN and BT training to evaluate whether they could
effectively reflect future landslide hazard areas. The landslide susceptibility indexes were sorted
in descending order, and divided by 100 classes with cumulative 1% intervals. The cumulative
distributions of landslide occurrence were compared with receiver operating characteristics (ROC)
curves in 100 classes [52]. The ANN and BT models had a reasonable performance of 82.25% and
90.79% as percentage of area under ROC curves, respectively (Figure 6).
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5. Discussion and Conclusions

Digital aerial photographs of high resolution are very useful in constructing detailed landslide
inventory maps, as it is difficult to separate the similar shapes of landslide scar areas and surrounding
tombs in the study area using satellite images or panchromatic aerial photographs. Therefore, both shapes
could be easily interpreted visually in high-resolution aerial photographs taken in a high-vegetation
season. Using aerial photographs could also save time and costs in field surveying to identify damage
from natural disasters.

In Korea, debris flows occur randomly in several slope regions due to intensive rainfall per day.
Therefore, it is necessary to select factors related to landslide occurrence and analyze the landslide
susceptibility using pattern classification by looking at the relationship between the various factors
and landslide location. However, it is not possible to know quantitatively how the environmental
factors relate to the occurrence of landslides. ANN and BT models, which are used in many fields as
sophisticated modeling techniques, were applied in identifying the influence of environmental factors
to landslide occurrence and in mapping landslide susceptibility.

The training and validation sets, which were used in the ANN and BT models, were the same:
50% and 50% of a total of 82 landslide occurrences, respectively. ANN modeling was performed while
changing the number of hidden layers (18 to 36), the value of learning rate (0.1 to 0.01), and RMSE
(0.01~0.001). A sigmoid function for a backpropagation network was used as one of the more popular
activation functions. The result of ANN modeling was best in 36 hidden layers, with 0.01 of learning
rate and 0.001 of RMSE. BT modeling was performed at 0.01 of learning rate, 5 of tree complexity,
and 0.5 of bag fraction. The optimal number of trees was reached at 262.

The weights of all factors from the ANN and BT models were normalized from 0 to 1. The factors’
weights were divided into three groups: high, medium, and low influence groups from the ANN
and BT models. The high group of ANN and BT included three factors: timber age, TWI, and slope
gradient. The medium group of both models had three factors: TPI, soil land-use, and SPI. The low
group had four factors: MSP, soil topography, plan curvature, and soil thickness. Although it was
difficult to identify the influence ranking of the environmental factor (i.e., topographic, hydrologic, soil,
forest, etc.) to landslide occurrence because of these intersections from intensive rainfall, the common
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factors in each ANN and BT group could be identified and can be used as a guideline for selecting
environmental factors affecting landslide occurrence in other study areas in Korea.

ANNs are capable of handling complex and robustly nonlinear processes without previously
assuming the relationships between the input and output variables (Lollino et al., 2014). Boosted tree
has all of the strengths of decision trees, including the advantage of being able to handle both
continuous and categorical variables (Krauss et al., 2017). In this study, the validation result of
the ANN and BT models was 82.25% and 90.79%, respectively, which demonstrated reasonably
good performance. In particular, the BT model had a higher accuracy (about 8%) than the ANN
model. In other fields (using both models) [53,54], BT reported a better performance than ANN.
The results of this study demonstrate the benefits of selecting optimal data mining techniques in
landslide susceptibility modeling.

For future study, it is necessary to generalize the regularized relationships between the classes of
each factor and landslide occurrence, and to combine the influence score of factors and factor classes.
This approach could be used as a guideline to apply threshold values to a landslide monitoring system
in the Korean rainy season. In addition, it could rank landslide susceptibility in urban areas, making
this information helpful in selecting landslide monitoring sites and planning land-use.
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16. Armaş, I. Weights of evidence method for landslide susceptibility mapping. Prahova subcarpathians, romania.
Nat. Hazards 2012, 60, 937–950. [CrossRef]

17. Wang, L.-J.; Sawada, K.; Moriguchi, S. Landslide susceptibility analysis with logistic regression model based
on FCM sampling strategy. Comput. Geosci. 2013, 57, 81–92. [CrossRef]

18. Pradhan, B. Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and
multivariate logistic regression approaches. J. Indian Soc. Remote Sens. 2010, 38, 301–320. [CrossRef]

19. Tsai, F.; Lai, J.-S.; Chen, W.W.; Lin, T.-H. Analysis of topographic and vegetative factors with data mining for
landslide verification. Ecol. Eng. 2013, 61, 669–677. [CrossRef]

20. Nefeslioglu, H.A.; Sezer, E.; Gokceoglu, C.; Bozkir, A.S.; Duman, T.Y. Assessment of landslide susceptibility
by decision trees in the metropolitan area of Istanbul, Turkey. Math. Probl. Eng. 2010, 2010. [CrossRef]

21. Kim, J.-C.; Lee, S.; Jung, H.-S.; Lee, S. Landslide susceptibility mapping using random forest and boosted
tree models in Pyeong-Chang, Korea. Geocarto Int. 2017, 1–16. [CrossRef]

22. Youssef, A.M.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Al-Katheeri, M.M. Landslide susceptibility mapping
using random forest, boosted regression tree, classification and regression tree, and general linear models
and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides 2017, 13,
839–856. [CrossRef]

23. Huang, F.; Yin, K.; Huang, J.; Gui, L.; Wang, P. Landslide susceptibility mapping based on self-organizing-map
network and extreme learning machine. Eng. Geol. 2017, 223, 11–22. [CrossRef]

24. Park, I.; Lee, S. Spatial prediction of landslide susceptibility using a decision tree approach: A case study of
the Pyeongchang area, Korea. Int. J. Remote Sens. 2014, 35, 6089–6112. [CrossRef]

25. Oh, H.-J.; Pradhan, B. Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow
landslides in a tropical hilly area. Comput. Geosci. 2011, 37, 1264–1276. [CrossRef]

26. Pradhan, B. A comparative study on the predictive ability of the decision tree, support vector machine
and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput. Geosci. 2013, 51, 350–365.
[CrossRef]

27. Liang, W.-J.; Zhuang, D.-F.; Jiang, D.; Pan, J.-J.; Ren, H.-Y. Assessment of debris flow hazards using a bayesian
network. Geomorphology 2012, 171–172, 94–100. [CrossRef]

28. Song, Y.; Gong, J.; Gao, S.; Wang, D.; Cui, T.; Li, Y.; Wei, B. Susceptibility assessment of earthquake-induced
landslides using bayesian network: A case study in Beichuan, China. Comput. Geosci. 2012, 42, 189–199.
[CrossRef]

29. Ballabio, C.; Sterlacchini, S. Support vector machines for landslide susceptibility mapping: The Staffora
River Basin case study, Italy. Math. Geosci. 2012, 44, 47–70. [CrossRef]

30. Lee, S.; Ryu, J.-H.; Kim, I.-S. Landslide susceptibility analysis and its verification using likelihood ratio,
logistic regression, and artificial neural network models: Case study of Youngin, Korea. Landslides 2007, 4,
327–338. [CrossRef]

31. Samodra, G.; Chen, G.; Sartohadi, J.; Kasama, K. Comparing data-driven landslide susceptibility models
based on participatory landslide inventory mapping in Purwosari area, Yogyakarta, Java. Environ. Earth Sci.
2017, 76, 184. [CrossRef]

32. Tsukamoto, Y.; Ohta, T. Runoff process on a steep forested slope. J. Hydrol. 1988, 102, 165–178. [CrossRef]
33. Bui, D.T.; Lofman, O.; Revhaug, I.; Dick, O. Landslide susceptibility analysis in the Hoa Binh province of

Vietnam using statistical index and logistic regression. Nat. Hazards 2011, 59, 1413. [CrossRef]
34. Guzzetti, F.; Mondini, A.C.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K.-T. Landslide inventory

maps: New tools for an old problem. Earth Sci. Rev. 2012, 112, 42–66. [CrossRef]

http://dx.doi.org/10.1007/s10064-005-0023-0
http://dx.doi.org/10.1016/j.enggeo.2011.09.011
http://dx.doi.org/10.1007/s12665-015-4048-9
http://dx.doi.org/10.1007/s11069-011-9879-4
http://dx.doi.org/10.1016/j.cageo.2013.04.006
http://dx.doi.org/10.1007/s12524-010-0020-z
http://dx.doi.org/10.1016/j.ecoleng.2013.07.070
http://dx.doi.org/10.1155/2010/901095
http://dx.doi.org/10.1080/10106049.2017.1323964
http://dx.doi.org/10.1007/s10346-015-0614-1
http://dx.doi.org/10.1016/j.enggeo.2017.04.013
http://dx.doi.org/10.1080/01431161.2014.943326
http://dx.doi.org/10.1016/j.cageo.2010.10.012
http://dx.doi.org/10.1016/j.cageo.2012.08.023
http://dx.doi.org/10.1016/j.geomorph.2012.05.008
http://dx.doi.org/10.1016/j.cageo.2011.09.011
http://dx.doi.org/10.1007/s11004-011-9379-9
http://dx.doi.org/10.1007/s10346-007-0088-x
http://dx.doi.org/10.1007/s12665-017-6475-2
http://dx.doi.org/10.1016/0022-1694(88)90096-0
http://dx.doi.org/10.1007/s11069-011-9844-2
http://dx.doi.org/10.1016/j.earscirev.2012.02.001


Appl. Sci. 2017, 7, 1000 14 of 14

35. Hervas, J.; Van Den Eeckhaut, M.; Legorreta, G.; Trigila, A. Landslide Science and Practice Volume 1: Landslide
Inventory and Susceptibility and Hazard Zoning; Introduction; Springer: Berlin, Germany, 2013.

36. Daum. Available online: http://map.daum.net/ (accessed on 2 March 2017).
37. Skymap. Available online: http://www.skymaps.co.kr/ (accessed on 2 March 2017).
38. Lee, S.; Song, K.-Y.; Oh, H.-J.; Choi, J. Detection of landslides using web-based aerial photographs and

landslide susceptibility mapping using geospatial analysis. Int. J. Remote Sens. 2012, 33, 4937–4966. [CrossRef]
39. Montgomery, D.R.; Dietrich, W.E. A physically based model for the topographic control on shallow landsliding.

Water Resour. Res. 1994, 30, 1153–1171. [CrossRef]
40. Baum, R.L.; Savage, W.Z.; Godt, J.W. TRIGRS-A Fortran Program for Transient Rainfall Infiltration and Grid-Based

Regional Slope-Stability Analysis; US Geological Survey: Reston, VA, USA, 2002.
41. Montrasio, L.; Valentino, R. A model for triggering mechanisms of shallow landslides. Nat. Hazards Earth

Syst. Sci. 2008, 8, 1149–1159. [CrossRef]
42. Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J.

System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007.
[CrossRef]

43. Iwahashi, J.; Pike, R.J. Automated classifications of topography from DEMs by an unsupervised nested-means
algorithm and a three-part geometric signature. Geomorphology 2007, 86, 409–440. [CrossRef]

44. Guisan, A.; Weiss, S.B.; Weiss, A.D. Glm versus cca spatial modeling of plant species distribution. Plant Ecol.
1999, 143, 107–122. [CrossRef]

45. Weiss, A.D. Topographic position and landforms analysis. In Proceedings of the Poster Presentation, ESRI
User Conference, San Diego, CA, USA, 9–13 July 2001.

46. Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital terrain modelling: A review of hydrological,
geomorphological, and biological applications. Hydrol. Process. 1991, 5, 3–30. [CrossRef]

47. Gómez, H.; Kavzoglu, T. Assessment of shallow landslide susceptibility using artificial neural networks in
Jabonosa River Basin, Venezuela. Eng. Geol. 2005, 78, 11–27. [CrossRef]

48. Pradhan, B.; Lee, S. Landslide susceptibility assessment and factor effect analysis: Backpropagation artificial
neural networks and their comparison with frequency ratio and bivariate logistic regression modelling.
Environ. Model. Softw. 2010, 25, 747–759. [CrossRef]

49. Paola, J.D.; Schowengerdt, R.A. A detailed comparison of backpropagation neural network and
maximum-likelihood classifiers for urban land use classification. IEEE Trans. Geosci. Remote Sens. 1995, 33,
981–996. [CrossRef]

50. Hines, J.W.; Tsoukalas, L.H.; Uhrig, R.E. Matlab Supplement to Fuzzy and Neural Approaches in Engineering;
John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1997; p. 210.

51. STATISTICA. Boosted Trees for Regression and Classification Overview (Stochastic Gradient Boosting)—Basic
Ideas. Available online: http://documentation.statsoft.com/STATISTICAHelp.aspx?path=Gxx/Boosting/
BoostingTreesforRegressionandClassificationOverviewStochasticGradientBoostingBasicIdeas (accessed on 1
July 2017).

52. Deng, X.; Li, L.; Tan, Y. Validation of spatial prediction models for landslide susceptibility mapping by
considering structural similarity. ISPRS Int. J. Geo-Inf. 2017, 6, 103. [CrossRef]

53. Suleiman, A.; Tight, M.R.; Quinn, A.D. Hybrid neural networks and boosted regression tree models for
predicting roadside particulate matter. Environ. Model. Assess. 2016, 21, 731–750. [CrossRef]

54. Roe, B.P.; Yang, H.-J.; Zhu, J.; Liu, Y.; Stancu, I.; McGregor, G. Boosted decision trees as an alternative to
artificial neural networks for particle identification. Nucl. Instrum. Methods Phys. Res. Sect. A 2005, 543,
577–584. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://map.daum.net/
http://www.skymaps.co.kr/
http://dx.doi.org/10.1080/01431161.2011.649862
http://dx.doi.org/10.1029/93WR02979
http://dx.doi.org/10.5194/nhess-8-1149-2008
http://dx.doi.org/10.5194/gmd-8-1991-2015
http://dx.doi.org/10.1016/j.geomorph.2006.09.012
http://dx.doi.org/10.1023/A:1009841519580
http://dx.doi.org/10.1002/hyp.3360050103
http://dx.doi.org/10.1016/j.enggeo.2004.10.004
http://dx.doi.org/10.1016/j.envsoft.2009.10.016
http://dx.doi.org/10.1109/36.406684
http://documentation.statsoft.com/ STATISTICAHelp.aspx?path=Gxx/Boosting/BoostingTreesfor RegressionandClassificationOverviewStochasticGradientBoostingBasicIdeas
http://documentation.statsoft.com/ STATISTICAHelp.aspx?path=Gxx/Boosting/BoostingTreesfor RegressionandClassificationOverviewStochasticGradientBoostingBasicIdeas
http://dx.doi.org/10.3390/ijgi6040103
http://dx.doi.org/10.1007/s10666-016-9507-5
http://dx.doi.org/10.1016/j.nima.2004.12.018
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Study Area and Materials 
	Precipitation Characteristics 
	Landslide Inventory 
	Environmental Factors 

	Application of Artificial Neural Network (ANN) and Boosted Tree (BT) Models for Landslide Susceptibility Mapping 
	Artificial Neural Network (ANN) 
	Boosted Tree (BT) 

	Landslide Susceptibility Mapping and Validation 
	Discussion and Conclusions 

